Model Vulcanization Systems for Butyl Rubber and Halobutyl Rubber Manual

Total Page:16

File Type:pdf, Size:1020Kb

Model Vulcanization Systems for Butyl Rubber and Halobutyl Rubber Manual Exxon™ butyl and halobutyl rubber Model vulcanization systems for butyl rubber and halobutyl rubber manual Country name(s) 2 - Model vulcanization systems for butyl rubber and halobutyl rubber manual Model vulcanization systems for butyl rubber and halobutyl rubber manual - 3 Abstract The vulcanization of isobutylene-co-isoprene rubber (IIR), brominated isobutylene-co-isoprene rubber (BIIR), chlorinated isobutylene-co-isoprene rubber (CIIR), and brominated isobutylene-co-para-methylstyrene elastomer (BIMSM) differs from that of general-purpose rubbers (GPR). Butyl rubber has approximately 2% unsaturation in the backbone. Halobutyl rubber (BIIR and CIIR) incorporates the butyl backbone with either bromine or chlorine, which significantly increases the chemical reactivity of the isoprenyl units located in the butyl backbone. Similarly, in BIMSM the bromine atom is bonded to the para-methylstyrene (PMS) group, thus affording the completely saturated polymer backbone a site of chemical reactivity. Utilization of the unique attributes of butyl rubber and halobutyl rubbers with their minimal backbone unsaturation and of BIMSM elastomers with no backbone unsaturation is found in many areas of industry. These properties are excellent vapor impermeation, resistance to heat degradation, and improved chemical resistance as compared to general-purpose rubbers. However, this low amount of reactivity requires special consideration to vulcanize these isobutylene-based polymers. The type of vulcanization system selected is a function of the composite structure in which it is used, and the cured product performance requirements. Therefore, vulcanization systems vary and may include an accelerator package along with resins, zinc oxide, zinc oxide and sulfur, and quinoid systems. This review will discuss the types and selection of appropriate vulcanization systems for isobutylene-based elastomers. Model vulcanization systems for butyl rubber and halobutyl rubber manual - 3 1. Introduction ........................................................................................................................................................................................................................................................ 4 2. Composition of isobutylene polymers ................................................................................................................................................................................. 5 3. General trends in vulcanization chemistry ......................................................................................................................................................................7 4. Overview of the vulcanization of isobutylene-based elastomers ................................................................................................... 10 5. Vulcanization of butyl rubber ..................................................................................................................................................................................................... 11 6. Halobutyl rubber ....................................................................................................................................................................................................................................... 14 7. Vulcanization of brominated isobutylene-co-para-methylstyrene (BIMSM) ..................................................................... 18 8. Model cure system formulary .................................................................................................................................................................................................... 20 9. Summary ............................................................................................................................................................................................................................................................ 24 Appendix 1 ..............................................................................................................................................................................................................................................................25 10. References ........................................................................................................................................................................................................................................................ 26 4 - Model vulcanization systems for butyl rubber and halobutyl rubber manual Model vulcanization systems for butyl rubber and halobutyl rubber manual - 5 1. Introduction Isobutylene-based elastomers include butyl rubber, halogenated butyl rubber, star-branched versions of these polymers and brominated isobutylene-co-para-methylstyrene (BIMSM). Due to their impermeability and resistance to heat and oxidation, these polymers find application in tire innerliners, innertubes, curing bladders and envelopes, and other specialty applications where air retention and resistance to heat and oxidation are desired. Butyl rubbers are produced via a cationic polymerization in a methyl chloride diluent at temperatures less than -90°C. These unique attributes and difficult manufacturing requirements place butyl rubbers in the special purpose elastomers category distinct from general- purpose rubbers (GPR) such as polybutadiene rubber (BR), natural rubber (NR), and styrene-butadiene rubbers (SBR) 1. Model vulcanization systems for butyl rubber and halobutyl rubber manual - 5 2. Composition of isobutylene polymers Butyl rubber (IIR) is the copolymer of isobutylene and a small Copolymers of isobutylene and para-methylstyrene have a amount of isoprene, typically in the order of 2%. Figure 1 is a random structure, again due to the monomer reactivity ratios schematic of butyl rubber. being nearly equivalent. After polymerization and subsequent bromination some of the para-methylstyrene Figure 1 groups are converted to reactive bromomethylstyryl groups. Structure of butyl rubber These saturated backbone polymers contain isobutylene, 1 to 5 mole-% of para-methylstyrene, and 0.5 to 1.3 mole-% of 2 brominated para-methylstyrene (Figure 3) . Their glass CH3 CH3 563/bs[[1[1[2]d6404gr 109[0end 172110001038010382110047420116248760105403640460048805940796084206400578057826404702411440118203380 119020 1 10540I99 16500628070207380809784548094 6500702073808097845480946480DSt2290 3 65004 [2964008420966046005260578057826404702470223640200040 110001038010382110041162411622966011820131805 780I 11000 8118206500]5960]7080]7020]73808097]84548094]73777377]9020] 366500]11000 7020]73808097]84548094]73777377]9020]6480] 20 6400587169346500]6480 chemdict 1100010471115347020 712380458043 DSt DSt 712380458043 12587064046933begin [6 30 104701100411533 I 743183517429 1732SP 59403{bs 743183517429 ] e6500 g] Bd}repeat DSt [9 I 11004Db 9020 DSt [10 I 18 7960 6500 DSt [13 31 I 15 4600 7080 DSt [14 I 4600 5960 DSt [16 I 5260 6500 DSt [19 I 8420 5960 DSt [20 I 8420 7080 DSt [21 I 22 23 24 25 26 27 6400 7020 DSt [28 I %userdict/chemdictL/gr/grestoreL/tr/transformxl0pplSARA}{6-1st}b/OrA{py-8dppycpnpgsfilleo5awyInx w20cwpy1-1gbWdp/cY dp ChemDrawCopyRightsc8pcm pp}{sqrt0pAfill-1m2grixo2DA}{cwpdv1 -9.6rl lt{12 -2180pm scmvs px-1cma}b/PT{8exec}{aldv2 0gr}{pp}{gssm dvdps{dpm mvg HA}{dLdv dprO-.6sc xpy 12execneg-10b2WICAsmlpneg stnp 0wFmvnpyLBp 1.2sc pbd-9.6gr atneg a}{ex ep1 mvst 5pxeL/gs/gsavepOA}{1larcn1986, clip}b/Ct{bsp L/xl/translateLaserneg}if/pyn2m lnpaLgs05cpppmpmvgr st}b/HA{lWex lOB pmat16.8o1-1 mv2.250wypxsl 190 gs0fill145 l lp128acpyro st}{0nnpn/excounttomark{bssgbWr 3.375 aR1987,1ix pyPrepdpbd 0.30.6dvacrowx 8px-1grcvOB/bL SApxscradfilldict 1 transitionaL0 p0DLBnm1 xnegend}b/Db{bs{dp sc -9.6eq{DD}{DS}ieat1L/ie/ifelse1.2dpx0 py8l pyne{bWDA}{dLpgr ey0 SACambridgemscdpbd pputpx120-1mt rotl}for radmrOpeL/S{sfcm mv 2n/ey18021.6x 0m/w-1 10DA}{cwpcptlrob1py chemdict gdv 0 bWCAac-.6 180lt{-10p-1 sm0 bs 12tr/dy sta}ie}b/WW{gsa}ie}b/BW{wDaAdp0 2 lxxl -8pyxpx8 2.2cpsc 1.5rotOA}{1pgr}{gs0dv}{bd}iem}b/dA{[3L/ix/index dxpyest}{Asc6 np0sc m24.6 s13ne{bWppyDLB g cm-136016x/dxScientific p180scn/dxlp gnegSA-1al052 begin/versionmvpxr gssqrt50 acm4neg}if/pxsmtype[]type s-4.8r arc DA}{dL12arc pgs1e-1gixso 180py0xslor0.6LB neg2mv ac30st}{0dp CBalrrOdy OB0.5pyscgs2.25 25.8wFL/l/lineto0pdv/bd12lW S]}b/dL{dA1662.2gs pp Computing,rev{neg}ifcwr 90lwacn/dyeq{DB}{DS}ie 1eCBlpwD sg-11pxbeginsecond em 2sg0.50xl}{xl rOSAo2cvxscpxpspyCA-2 1 filldvr 16eq{dpcW cX0x}ifm1enp[{pybeginlfill sxSAp -1.6npdvsg23cm0DA}{cwlpp 0setgraydparc lxwy1OA}{1gr mvbs L/mt/matrix ne0la0 grfillac bW1ppdef/b{bindDA}{2.25nprlinetocp ly1cmsm0 p27egs wx0acosc}b/Ov{OrAbscm 0pxodprO lmvpp}ifelseInc.p0g/wbgrcm16 gcY 0wcmpy1.6 stnsm cmel0 clippath at2lp smac-1ne{bWgs 0WIp divggr}b/OB{/bS215p smnecppxeq{gspp}{2 mt3 sm27st}{Asc slsm2orderm0 scmvxcm st1 lW0 por{4fill}b/SA{aFpydup4 0pst}{pxbs rowsl4.8SA def}bind270L/mv/movetostpegr lst}]egism0l bL1 pmcpmv1.5rOep trdp20 grfill4ZLBpy 12al 25.8OA}{1.5 lg/bb1 l0dv/bdwy AA}{1bdput gi stfillcpcptS 1radgsac1 SArppprO0px39lW gr0.4 dv g4lt{ppal 4apsetgraycm a/py-1pxgsend0cv xe owx0s1ac def/L{loadmDA}{270ppnptransition2setdash}d/cR dpx}if atwbgsco 3mv-1pxeq{dL}ifr}if0.5py8 psm}b/CB{np[{[{CS}{CS}{cB}{CW}{pp}{cB}{CW}{pp}{cB}]odvcp -1mgr}b/In{pxexec xlDT}]o ix-0.4ro}ie}b/AA{np2xSAsc 24.60l pyL/m/mul 4 pxrad1S}if/lp sgwxlWasc1 st}{1.0pp0round43 Bd cmg/cXZLB 0lWOA}{1 lp1-1ix-0.40180fillgr}ie}b/Cr{0 pp9.6 wm/aLa/pxp nH 0gr}b/wD rO accurrentmatrixrxlCA 0 ap-2 6def}b/d/def360
Recommended publications
  • The Difference of Butyl Rubber and Butadiene Styrene Rubber? by Butyl Rubber Sheets - [email protected], Date: Sep.18.06
    The difference of butyl rubber and butadiene styrene rubber? By Butyl Rubber Sheets - www.dongrubber.com, [email protected], Date: Sep.18.06 Butyl rubber sheets is a kind of synthetic rubber which is a copolymer of Isobutylene and a small amount of isoprene copolymer, short for IIR. Butyl rubber sheeting has good chemical stability and thermal stability, the most prominent character is the air tightness and water tightness. Its air transmittance is only about 1/7 of the natural rubber, 1/5 of the styrene-butadiene rubber. Meanwhile its transmittance of steam is 1/200 of the natural rubber, and 1/140 of the styrene-butadiene rubber. Thus IIR is mainly used in the manufacture of tires, inner tubes, steam pipe, water dam and bottom gasket and other rubber products. Styrene-butadiene rubber (SBR) is one of the biggest general synthetic rubber varieties, and is also among the first rubber to realize industrialization production. Styrene butadiene rubber sheet is a random copolymer of butadiene and styrene. Its physical performance, processing performance and product performance is close to those of natural rubber sheets, and some properties such as wear resistance, heat resistance, ageing resistance and curing rate are more excellent than natural rubber sheeting, SBR can be used with a variety of natural rubber sheets and synthetic rubbers, widely applied to tires, tape, rubber hose, wire and cable, medical instruments and various kinds of rubber products production and other fields. Author: Butyl Rubber Sheets copyright reserved. Original URL should be kept in reproduction. .
    [Show full text]
  • 5. Progress in Radiation Vulcanization of Natural Rubber Latex
    JP0050691 JAERI-Conf 2000^003 5. Progress in Radiation Vulcanization of Natural Rubber Latex K. MAKUUCHI Takasaki Radiation Chemistry Research Establishment, JAERI 1233 Watanuki, Takasaki Gunma, 370-12 Japan 1. INTRODUCTION Radiation-induced crosslinking of natural rubber in latex can be accomplished by irradiating NR latex. The dose at which the maximum tensile strength (Tb) is found is called vulcanization dose (Dv). The Dv of NR latex is more than 250 kGy that is too high to be used in industry. The first RV accelerators proposed was carbon tetrachloride. Addition of 5 phr of carbon tetrachloride can reduce. The RVNRL was selected as one of the regional projects of the International Atomic Energy Agency (IAEA) known as the Regional Cooperative Agreement in the Asia and Pacific Region (RCA) in 1981. A pilot plant for the RVNRL was built in. Jakarta in 1983. The products from the pilot plant were tested and evaluated by several institutes in the region during 1983-1985, The results were as follows: Low tensile strength (less than 20MPa) Poor aging properties Inconsistent properties Not economic due to high dose requirement No advantages The results caused argument among the RCA member states and the IAEA whether the project should be continued or stopped. The preliminary R&D in the TRCRE on RVNRL indicated that the properties of RVNRL could be improved by proper selection of an accelerator. Finally, the IAEA decided to support the R&D on RVNRL at Takasaki. The following R&D were carried out in 1985 - 1989. Selection of NR latex to improve tensile strength Selection of accelerator to reduce required dose Selection of process factors to avoid inconsistency Selection of antioxidants to improve aging properties Biological safety test to find advantages of RVNRL As an accelerator n-butyl acrylate (n-BA) was selected by reason of its high accelerating efficiency, no residue in the final dipped products and tolerable price.
    [Show full text]
  • Vulcanization & Accelerators
    Vulcanization & Accelerators Vulcanization is a cross linking process in which individual molecules of rubber (polymer) are converted into a three dimensional network of interconnected (polymer) chains through chemical cross links(of sulfur). The vulcanization process was discovered in 1839 and the individuals responsible for this discovery were Charles Goodyear in USA and Thomas Hancock in England. Both discovered the use of Sulfur and White Lead as a vulcanization system for Natural Rubber. This discovery was a major technological breakthrough for the advancement of the world economy. Vulcanization of rubbers by sulfur alone is an extremely slow and inefficient process. The chemical reaction between sulfur and the Rubber Hydrocarbon occurs mainly at the C = C (double bonds) and each crosslink requires 40 to 55 sulphur atoms (in the absence of accelerator). The process takes around 6 hours at 140°C for completion, which is uneconomical by any production standards. The vulcanizates thus produced are extremely prone to oxidative degradation and do not possess adequate mechanical properties for practical rubber applications. These limitations were overcome through inventions of accelerators which subsequently became a part of rubber compounding formulations as well as subjects of further R&D. Following is the summary of events which led to the progress of ‘Accelerated Sulfur Vulcanization'. Event Year Progress - Discovery of Sulfur Vulcanization: Charles Goodyear. 1839 Vulcanizing Agent - Use of ammonia & aliphatic ammonium derivatives: Rowley. 1881 Acceleration need - Use of aniline as accelerator in USA & Germany: Oenslager. 1906 Accelerated Cure - Use of Piperidine accelerator- Germany. 1911 New Molecules - Use of aldehyde-amine & HMT as accelerators in USA & UK 1914-15 Amine Accelerators - Use of Zn-Alkyl Xanthates accelerators in Russia.
    [Show full text]
  • Reinforcement of Styrene Butadiene Rubber Employing Poly(Isobornyl Methacrylate) (PIBOMA) As High Tg Thermoplastic Polymer
    polymers Article Reinforcement of Styrene Butadiene Rubber Employing Poly(isobornyl methacrylate) (PIBOMA) as High Tg Thermoplastic Polymer Abdullah Gunaydin 1,2, Clément Mugemana 1 , Patrick Grysan 1, Carlos Eloy Federico 1 , Reiner Dieden 1 , Daniel F. Schmidt 1, Stephan Westermann 1, Marc Weydert 3 and Alexander S. Shaplov 1,* 1 Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; [email protected] (A.G.); [email protected] (C.M.); [email protected] (P.G.); [email protected] (C.E.F.); [email protected] (R.D.); [email protected] (D.F.S.); [email protected] (S.W.) 2 Department of Physics and Materials Science, University of Luxembourg, 2 Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg 3 Goodyear Innovation Center Luxembourg, L-7750 Colmar-Berg, Luxembourg; [email protected] * Correspondence: [email protected]; Tel.: +352-2758884579 Abstract: A set of poly(isobornyl methacrylate)s (PIBOMA) having molar mass in the range of 26,000–283,000 g mol−1 was prepared either via RAFT process or using free radical polymerization. ◦ These linear polymers demonstrated high glass transition temperatures (Tg up to 201 C) and thermal Citation: Gunaydin, A.; stability (T up to 230 ◦C). They were further applied as reinforcing agents in the preparation of the Mugemana, C.; Grysan, P.; onset Eloy Federico, C.; Dieden, R.; vulcanized rubber compositions based on poly(styrene butadiene rubber) (SBR). The influence of the Schmidt, D.F.; Westermann, S.; PIBOMA content and molar mass on the cure characteristics, rheological and mechanical properties of Weydert, M.; Shaplov, A.S.
    [Show full text]
  • Long Term Performance of Rubber in Seismic and Non-Seismic Bearings: a Literature Review
    Long Term Performance of Rubber in Seismic and Non-Seismic Bearings: A Literature Review J. W. Martin us. DEPARTMENT OF COMMERCE National Institute of Standards and Technology Building and Fire Research Laboratory Gaithersburg, MD 20899 US. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary NATIONAL INSmUTE OF STANDARDS AND TECHNOLOGY UL John W. Lyons, Director 100 U56 NBT //4615 1991 NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY Research Information Center Gaithersburg, MD 20899 NISTIR 4613 / Long Term Performance of Rubber in Seismic and Non-Seismic Bearings: A Literature Review J. W. Martin U^. DEPARIMENT OF COMMERCE Nation^ Institute of Standards and Technoiogy Buiiding and Fire Research Laboratory Gaithersburg, MD 20899 June 1991 U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, ScK:retary NATIONAL INSrmJTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director ABSTRACT The use of seismic isolation bearings to decouple buildings and lifeline structures from strong ground motion has received an increased amount of attention in recent years. While several types of seismic isolation bearings have been developed and proposed for use, the most common type is the laminated rubber (elastomeric) bearing. Because the design lifetime of these bearings is expected to be on the order of 50 to 100 years, the long-term performance of the rubber must be addressed. Therefore, a literature review was conducted to identify potential limits on the long-term performance of rubbers used in bearings. Several issues, including the need for consensus performance standards and for additional research on the effects of creep, aging, temperature, and high-energy radiation on the properties of rubber, were identified.
    [Show full text]
  • Exxon™ Butyl Rubber Innertube Technology Manual
    Exxon™ butyl rubber Exxon™ butyl rubber innertube technology manual Country name(s) 2 - Exxon™ butyl rubber innertube technology manual Exxon™ butyl rubber innertube technology manual - 3 Abstract Many bias and radial tires have innertubes. Radial truck tube-type tires are particularly common, and in many instances, such as in severe service, off-road applications, are preferred over tubeless radial tire constructions. The technology requirements for tubes for such tires is, in many respects, equally demanding when compared to that for the tire and wheel in the assembly. This manual has been prepared to describe how butyl rubber is important in meeting the demanding performance requirements of tire innertubes. Representative innertube compound formulations and compound properties are discussed along with typical processing guidelines of the compound in the manufacture of innertubes. Chlorobutyl rubber based compound formulations are also used in innertubes. Such innertubes show good heat resistance, durability, allow greater flexibility in compounding, and process equally well as regular butyl rubber tube compounds. An extensive discussion of bicycle tire innertubes has been included. Service conditions can range from simple commuting and recreation to high speed competitive sporting applications. Like automobile and truck tire innertubes, tubes for bicycle tires can thus have demanding performance requirements. Guidelines on troubleshooting provide a checklist for the factory process engineer to enhance manufacturing efficiency, high
    [Show full text]
  • Tensile Properties of Pre-Vulcanised Natural Rubber Latex Films Via Hybrid Radiation and Peroxide Vulcanisations
    ASM Sci. J., 11(2), 67-75 Tensile Properties of Pre-vulcanised Natural Rubber Latex Films via Hybrid Radiation and Peroxide Vulcanisations Sofian Ibrahim1;2∗, Chai Chee Keong1, Chantara Thevy Ratnam1 and Khairiah Badri2 1Malaysian Nuclear Agency, 43000 Kajang, Selangor, Malaysia 2School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia Radiation pre-vulcanised natural rubber latex (RVNRL) prepared by using gamma irradia- tion technique has many advantages over the conventionally prepared sulphur pre-vulcanised natural rubber latex (SPVL). Despite the fact that many potential latex dipped products can be made from RVNRL, little effort was made to fully commercialise the products because of the inferior strength of RVNRL products compared to SPVL products. An attempt was made to improve the tensile strength of RVNRL by combining both radiation and peroxide vulcanisation in order to ensure that the products will not tear or fail, and has sufficient stretch. Hexanediol diacrylate (HDDA) plays the main role as sensitizer during radiation vulcanisation and tert-butyl hydroperoxide (t-BHPO) as the co-sensitizer in peroxide vul- canisation. Pre-vulcanised natural rubber latex dipped films via hybrid radiation and perox- idation vulcanisations obtained showed tensile strength of 26.7 MPa, an increment of more than 15% compared to controlled film (22.5 MPa). Besides, the crosslink percentage of the rubber films also showed around 5% increment from 90.7% to 95.6%. Keywords: RVNRL, vulcanisation, irradiation, latex I. INTRODUCTION the expansion of this positive sales performance. One of the major contributors to Malaysia's national income is rubber and latex-based prod- ucts.
    [Show full text]
  • California Skid Tests with Butyl Rubber Tires and Report of Visit to Road Research Laboratories in Europe Engaged in Skid Prevention Research
    California Skid Tests with Butyl Rubber Tires and Report of Visit to Road Research Laboratories in Europe Engaged in Skid Prevention Research RALPH A. MOYER, Professor of Transportation Engineering and Research Engineer, TnctH11to nf 'T'l"<>ncnnrtsitinn sinrl 'T'rsiffir F.naino,:,rina TTniv,:,rcitv nf r.silifnrnisi - -------- -- -- - ---- .1,·· ..... ., Berkeley •AN EXTENSIVE California program of skid resistance tests conducted in 1961 was reported in HRB Bull. 348 (1962). The 1961 tests yielded significant results primarily because of the use of a new torque meter device to measure the friction forces. The tests were run with four different types of tires including one tire with the recently developed butyl rubber tread which provided high hysteresis or energy losses and high coefficients of friction on wet pavements. In view of the improved accuracy obtained with the new torque meter, and the high friction values obtained in the exploratory tests with the butyl rubber tire, a program of tests was carried out in 1962. Skid resistance measurements were made on a wide variety of pavement surfaces with two different brands of butyl rubber tires, and also with the 1958 and 1961 pavement test standard tires. Before 1961, it was generally assumed that the only way to obtain significant improvement in the skid resistance of wet pavements was by the selection of aggregate types and pavement construction methods and controls, and/or by de-slicking treatments which had been established by laboratory and field tests. Studies were conducted by California in 1961, by the British Road Research Laboratory, and by Dr. Tabor of Cambridge University, England.
    [Show full text]
  • Isobutylene Polymer Having Unsaturated Group and Preparation
    Europaisches Patentamt European Patent Office Office europeen des brevets (11) EP 0 452 875 B2 (12) NEW EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) |nt CI.6: C08F 10/10, C08F 2/42 of the opposition decision: 18.08.1999 Bulletin 1999/33 (45) Mention of the grant of the patent: 09.08.1995 Bulletin 1995/32 (21) Application number: 91106042.4 (22) Date of filing: 16.04.1991 (54) Isobutylene polymer having unsaturated group and preparation thereof Isobutylenpolymer mit ungesattigter Gruppe und seine Herstellung Polymere de I'isobutylene ayant un groupe insature et sa preparation (84) Designated Contracting States: (74) Representative: BE CH DE ES FR GB IT LI NL SE Hansen, Bernd, Dr. Dipl.-Chem. et al Hoffmann Eitle, (30) Priority: 16.04.1990 JP 10102990 Patent- und Rechtsanwalte, 29.11.1990 JP 33636490 Postfach 81 04 20 81904 Miinchen (DE) (43) Date of publication of application: 23.10.1991 Bulletin 1991/43 (56) References cited: EP-A- 0 265 053 EP-B- 0 322 241 (73) Proprietor: Kanegafuchi Chemical Industry Co., CA-A- 467 049 GB-A- 1 059 580 Ltd. US-A- 4 31 6 973 US-A- 4 327 201 Kita-ku Osaka-shi Osaka-fu (JP) US- A- 4 524 1 88 US-A- 4 758 63 1 US-A- 4 929 683 (72) Inventors: • Noda, Koji Remarks: Kobe-shi, Hyogo-ken (JP) The file contains technical information submitted • Fujisawa, Hiroshi after the application was filed and not included in this Kobe-shi, Hyogo-ken (JP) specification • Yonezawa, Kazuya Kobe-shi, Hyogo-ken (JP) CM DO 10 Is- 00 CM IO ^- o a.
    [Show full text]
  • Butyl Rubber Product Safety Summary
    Product Safety Summary Exxon™ Butyl Rubber This Product Safety Summary document is a high-level summary intended to provide the general public with an overview of product safety information on this chemical substance. It is not intended to provide emergency response, medical or treatment information, or to provide a discussion of all safety and health information. This document is not intended to replace the (Material) Safety Data Sheet. Warnings and handling precautions provided below are not intended to replace or supersede manufacturers' instructions and warning for their consumer products which may contain this chemical substance. 1. Chemical Identity Butyl Rubber Polymers are characterized as high-quality synthetic rubber polymers. The major components are isobutylene and isoprene. CAS No. Chemical Names: Other Names 9010-85-9 IIR: Isobutylene-Isoprene Rubber Exxon™Butyl Rubber 68441-14-5 BB: brominated isobutylene-isoprene rubber BIIR Exxon™Bromobutyl 68081-82-3 CB: chlorinated isobutylene-isoprene rubber CIIR Exxon™Chlorobutyl 134737-24-9 Exxpro: brominated isobutylene-paramethylstyrene rubber Exxpro™specialty (BIMSM) elastomer 2. Product Uses Butyl rubber is used in a variety of consumer applications including tires and medical tube stoppers. 3. Physical / Chemical Properties Butyl Rubber Polymers are solid, stable polymers that are not hazardous and highly impermeable to air and water relative to other rubber polymers. If heated above the flash point, they may burn or decompose to flammable hydrocarbons (fire situations). Safety hazards at ambient temperature are generally negligible, due to its high molecular weight, minimal toxicity and general inertness. Butyl Rubber is not a combustible liquid, a compressed gas, an explosive, an organic peroxide, an oxidizer, or pyrophoric; nor is it unstable (reactive), water-reactive, or flammable.
    [Show full text]
  • FID Vs PID: the Great Debate
    5/5/2017 FID vs PID: The Great Debate 2017 Geotechnical, GeoEnvironmental, and Geophysical Technology Transfer April 11, 2017 Raleigh, NC Why is it Important? As consultants, we are expected to produce data that is Reliable Repeatable Representative Defensible We can only meet these criteria if we understand the instruments we use and their limitations 1 5/5/2017 PID=Photo Ionization Detector Non-destructive to the sample Responds to functional groups Can operate in non-oxygen atmosphere Does not respond to methane Affected by high humidity FID=Flame Ionization Detector Destructive to the sample Responds to carbon chain length Must have oxygen to operate Responds to methane Not affected by high humidity 2 5/5/2017 Combination FID/PID TVA 1000B Main Concepts Ionization Energy Minimum amount of energy required to remove an electron from an atom or molecule in a gaseous state Response Factors The response factor is a calculated number provided by the instrument manufacturer for each compound, which is used to calculate the actual concentration of said compound in relation to the calibration gas. 3 5/5/2017 Ionization Energy Basis for FID/PID operations and measurement Measurements are in electron volts (eV) Ionization in a PID Energy source for ionization with PID is an ultraviolet light Three UV lamp energies are used: 9.5 eV, 10.6 eV, and 11.7 eV The higher the lamp energy, the greater the number of chemicals that can be detected. Detection range of 0.1 to 10,000 ppm 4 5/5/2017 Ionization in a FID Energy source for ionization
    [Show full text]
  • Reduced Zinc Oxide Levels in Sulphur Vulcanisation of Rubber Compounds
    REDUCED ZINC OXIDE LEVELS IN SULPHUR VULCANISATION OF RUBBER COMPOUNDS The research described in this thesis was financially supported by the Ministry of Economic Affairs in the Netherlands in the framework of the Innovative Research Program (IOP): Environmental Technology / Heavy Metals. Reduced zinc oxide levels in sulphur vulcanisation of rubber compounds; mechanistic aspects of the role of activators and multifunctional additives By G. Heideman Ph.D. Thesis, University of Twente, Enschede, the Netherlands, 2004. With references – With summary in English and Dutch Copyright © G. Heideman, Enschede, 2004 All rights reserved. Cover design by G. Heideman Cover illustration: Diffuse emissions of zinc from products, such as the wear of tyres and run off from galvanised structures may enter the environment. Although zinc is generally considered one of the least harmful of the heavy metals, specifically soluble zinc compounds are classified as ecotoxic to aquatic organisms. If there is spillage into a watercourse, there might be an immediate localised toxic effect on algae in particular. Printed by Print Partners Ipskamp, P.O. Box 333, 7500 AH, Enschede, the Netherlands ISBN 90 365 2081 9 REDUCED ZINC OXIDE LEVELS IN SULPHUR VULCANISATION OF RUBBER COMPOUNDS MECHANISTIC ASPECTS OF THE ROLE OF ACTIVATORS AND MULTIFUNCTIONAL ADDITIVES PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus, prof. dr. F.A. van Vught, volgens het besluit van het College voor Promoties in het openbaar te verdedigen op vrijdag 15 oktober 2004 om 13.15 uur door Geert Heideman geboren op 22 april 1976 te Dinxperlo Dit proefschrift is goedgekeurd door: Promotor : prof.
    [Show full text]