Model Vulcanization Systems for Butyl Rubber and Halobutyl Rubber Manual
Total Page:16
File Type:pdf, Size:1020Kb
Exxon™ butyl and halobutyl rubber Model vulcanization systems for butyl rubber and halobutyl rubber manual Country name(s) 2 - Model vulcanization systems for butyl rubber and halobutyl rubber manual Model vulcanization systems for butyl rubber and halobutyl rubber manual - 3 Abstract The vulcanization of isobutylene-co-isoprene rubber (IIR), brominated isobutylene-co-isoprene rubber (BIIR), chlorinated isobutylene-co-isoprene rubber (CIIR), and brominated isobutylene-co-para-methylstyrene elastomer (BIMSM) differs from that of general-purpose rubbers (GPR). Butyl rubber has approximately 2% unsaturation in the backbone. Halobutyl rubber (BIIR and CIIR) incorporates the butyl backbone with either bromine or chlorine, which significantly increases the chemical reactivity of the isoprenyl units located in the butyl backbone. Similarly, in BIMSM the bromine atom is bonded to the para-methylstyrene (PMS) group, thus affording the completely saturated polymer backbone a site of chemical reactivity. Utilization of the unique attributes of butyl rubber and halobutyl rubbers with their minimal backbone unsaturation and of BIMSM elastomers with no backbone unsaturation is found in many areas of industry. These properties are excellent vapor impermeation, resistance to heat degradation, and improved chemical resistance as compared to general-purpose rubbers. However, this low amount of reactivity requires special consideration to vulcanize these isobutylene-based polymers. The type of vulcanization system selected is a function of the composite structure in which it is used, and the cured product performance requirements. Therefore, vulcanization systems vary and may include an accelerator package along with resins, zinc oxide, zinc oxide and sulfur, and quinoid systems. This review will discuss the types and selection of appropriate vulcanization systems for isobutylene-based elastomers. Model vulcanization systems for butyl rubber and halobutyl rubber manual - 3 1. Introduction ........................................................................................................................................................................................................................................................ 4 2. Composition of isobutylene polymers ................................................................................................................................................................................. 5 3. General trends in vulcanization chemistry ......................................................................................................................................................................7 4. Overview of the vulcanization of isobutylene-based elastomers ................................................................................................... 10 5. Vulcanization of butyl rubber ..................................................................................................................................................................................................... 11 6. Halobutyl rubber ....................................................................................................................................................................................................................................... 14 7. Vulcanization of brominated isobutylene-co-para-methylstyrene (BIMSM) ..................................................................... 18 8. Model cure system formulary .................................................................................................................................................................................................... 20 9. Summary ............................................................................................................................................................................................................................................................ 24 Appendix 1 ..............................................................................................................................................................................................................................................................25 10. References ........................................................................................................................................................................................................................................................ 26 4 - Model vulcanization systems for butyl rubber and halobutyl rubber manual Model vulcanization systems for butyl rubber and halobutyl rubber manual - 5 1. Introduction Isobutylene-based elastomers include butyl rubber, halogenated butyl rubber, star-branched versions of these polymers and brominated isobutylene-co-para-methylstyrene (BIMSM). Due to their impermeability and resistance to heat and oxidation, these polymers find application in tire innerliners, innertubes, curing bladders and envelopes, and other specialty applications where air retention and resistance to heat and oxidation are desired. Butyl rubbers are produced via a cationic polymerization in a methyl chloride diluent at temperatures less than -90°C. These unique attributes and difficult manufacturing requirements place butyl rubbers in the special purpose elastomers category distinct from general- purpose rubbers (GPR) such as polybutadiene rubber (BR), natural rubber (NR), and styrene-butadiene rubbers (SBR) 1. Model vulcanization systems for butyl rubber and halobutyl rubber manual - 5 2. Composition of isobutylene polymers Butyl rubber (IIR) is the copolymer of isobutylene and a small Copolymers of isobutylene and para-methylstyrene have a amount of isoprene, typically in the order of 2%. Figure 1 is a random structure, again due to the monomer reactivity ratios schematic of butyl rubber. being nearly equivalent. After polymerization and subsequent bromination some of the para-methylstyrene Figure 1 groups are converted to reactive bromomethylstyryl groups. Structure of butyl rubber These saturated backbone polymers contain isobutylene, 1 to 5 mole-% of para-methylstyrene, and 0.5 to 1.3 mole-% of 2 brominated para-methylstyrene (Figure 3) . Their glass CH3 CH3 563/bs[[1[1[2]d6404gr 109[0end 172110001038010382110047420116248760105403640460048805940796084206400578057826404702411440118203380 119020 1 10540I99 16500628070207380809784548094 6500702073808097845480946480DSt2290 3 65004 [2964008420966046005260578057826404702470223640200040 110001038010382110041162411622966011820131805 780I 11000 8118206500]5960]7080]7020]73808097]84548094]73777377]9020] 366500]11000 7020]73808097]84548094]73777377]9020]6480] 20 6400587169346500]6480 chemdict 1100010471115347020 712380458043 DSt DSt 712380458043 12587064046933begin [6 30 104701100411533 I 743183517429 1732SP 59403{bs 743183517429 ] e6500 g] Bd}repeat DSt [9 I 11004Db 9020 DSt [10 I 18 7960 6500 DSt [13 31 I 15 4600 7080 DSt [14 I 4600 5960 DSt [16 I 5260 6500 DSt [19 I 8420 5960 DSt [20 I 8420 7080 DSt [21 I 22 23 24 25 26 27 6400 7020 DSt [28 I %userdict/chemdictL/gr/grestoreL/tr/transformxl0pplSARA}{6-1st}b/OrA{py-8dppycpnpgsfilleo5awyInx w20cwpy1-1gbWdp/cY dp ChemDrawCopyRightsc8pcm pp}{sqrt0pAfill-1m2grixo2DA}{cwpdv1 -9.6rl lt{12 -2180pm scmvs px-1cma}b/PT{8exec}{aldv2 0gr}{pp}{gssm dvdps{dpm mvg HA}{dLdv dprO-.6sc xpy 12execneg-10b2WICAsmlpneg stnp 0wFmvnpyLBp 1.2sc pbd-9.6gr atneg a}{ex ep1 mvst 5pxeL/gs/gsavepOA}{1larcn1986, clip}b/Ct{bsp L/xl/translateLaserneg}if/pyn2m lnpaLgs05cpppmpmvgr st}b/HA{lWex lOB pmat16.8o1-1 mv2.250wypxsl 190 gs0fill145 l lp128acpyro st}{0nnpn/excounttomark{bssgbWr 3.375 aR1987,1ix pyPrepdpbd 0.30.6dvacrowx 8px-1grcvOB/bL SApxscradfilldict 1 transitionaL0 p0DLBnm1 xnegend}b/Db{bs{dp sc -9.6eq{DD}{DS}ieat1L/ie/ifelse1.2dpx0 py8l pyne{bWDA}{dLpgr ey0 SACambridgemscdpbd pputpx120-1mt rotl}for radmrOpeL/S{sfcm mv 2n/ey18021.6x 0m/w-1 10DA}{cwpcptlrob1py chemdict gdv 0 bWCAac-.6 180lt{-10p-1 sm0 bs 12tr/dy sta}ie}b/WW{gsa}ie}b/BW{wDaAdp0 2 lxxl -8pyxpx8 2.2cpsc 1.5rotOA}{1pgr}{gs0dv}{bd}iem}b/dA{[3L/ix/index dxpyest}{Asc6 np0sc m24.6 s13ne{bWppyDLB g cm-136016x/dxScientific p180scn/dxlp gnegSA-1al052 begin/versionmvpxr gssqrt50 acm4neg}if/pxsmtype[]type s-4.8r arc DA}{dL12arc pgs1e-1gixso 180py0xslor0.6LB neg2mv ac30st}{0dp CBalrrOdy OB0.5pyscgs2.25 25.8wFL/l/lineto0pdv/bd12lW S]}b/dL{dA1662.2gs pp Computing,rev{neg}ifcwr 90lwacn/dyeq{DB}{DS}ie 1eCBlpwD sg-11pxbeginsecond em 2sg0.50xl}{xl rOSAo2cvxscpxpspyCA-2 1 filldvr 16eq{dpcW cX0x}ifm1enp[{pybeginlfill sxSAp -1.6npdvsg23cm0DA}{cwlpp 0setgraydparc lxwy1OA}{1gr mvbs L/mt/matrix ne0la0 grfillac bW1ppdef/b{bindDA}{2.25nprlinetocp ly1cmsm0 p27egs wx0acosc}b/Ov{OrAbscm 0pxodprO lmvpp}ifelseInc.p0g/wbgrcm16 gcY 0wcmpy1.6 stnsm cmel0 clippath at2lp smac-1ne{bWgs 0WIp divggr}b/OB{/bS215p smnecppxeq{gspp}{2 mt3 sm27st}{Asc slsm2orderm0 scmvxcm st1 lW0 por{4fill}b/SA{aFpydup4 0pst}{pxbs rowsl4.8SA def}bind270L/mv/movetostpegr lst}]egism0l bL1 pmcpmv1.5rOep trdp20 grfill4ZLBpy 12al 25.8OA}{1.5 lg/bb1 l0dv/bdwy AA}{1bdput gi stfillcpcptS 1radgsac1 SArppprO0px39lW gr0.4 dv g4lt{ppal 4apsetgraycm a/py-1pxgsend0cv xe owx0s1ac def/L{loadmDA}{270ppnptransition2setdash}d/cR dpx}if atwbgsco 3mv-1pxeq{dL}ifr}if0.5py8 psm}b/CB{np[{[{CS}{CS}{cB}{CW}{pp}{cB}{CW}{pp}{cB}]odvcp -1mgr}b/In{pxexec xlDT}]o ix-0.4ro}ie}b/AA{np2xSAsc 24.60l pyL/m/mul 4 pxrad1S}if/lp sgwxlWasc1 st}{1.0pp0round43 Bd cmg/cXZLB 0lWOA}{1 lp1-1ix-0.40180fillgr}ie}b/Cr{0 pp9.6 wm/aLa/pxp nH 0gr}b/wD rO accurrentmatrixrxlCA 0 ap-2 6def}b/d/def360