Exxon™ Butyl Rubber Innertube Technology Manual

Total Page:16

File Type:pdf, Size:1020Kb

Exxon™ Butyl Rubber Innertube Technology Manual Exxon™ butyl rubber Exxon™ butyl rubber innertube technology manual Country name(s) 2 - Exxon™ butyl rubber innertube technology manual Exxon™ butyl rubber innertube technology manual - 3 Abstract Many bias and radial tires have innertubes. Radial truck tube-type tires are particularly common, and in many instances, such as in severe service, off-road applications, are preferred over tubeless radial tire constructions. The technology requirements for tubes for such tires is, in many respects, equally demanding when compared to that for the tire and wheel in the assembly. This manual has been prepared to describe how butyl rubber is important in meeting the demanding performance requirements of tire innertubes. Representative innertube compound formulations and compound properties are discussed along with typical processing guidelines of the compound in the manufacture of innertubes. Chlorobutyl rubber based compound formulations are also used in innertubes. Such innertubes show good heat resistance, durability, allow greater flexibility in compounding, and process equally well as regular butyl rubber tube compounds. An extensive discussion of bicycle tire innertubes has been included. Service conditions can range from simple commuting and recreation to high speed competitive sporting applications. Like automobile and truck tire innertubes, tubes for bicycle tires can thus have demanding performance requirements. Guidelines on troubleshooting provide a checklist for the factory process engineer to enhance manufacturing efficiency, high quality, and meet the end-product performance requirements. A set of references for further consultation conclude the manual. Exxon™ butyl rubber innertube technology manual - 3 1. Introduction ........................................................................................................................................................................................................................................................ 4 2. Innertube application requirements ....................................................................................................................................................................................... 6 3. Compounding of butyl and chlorobutyl rubber innertubes ....................................................................................................................... 8 4. Processing of butyl rubber innertube compounds ........................................................................................................................................... 14 5. Manufacture of butyl rubber innertubes ...................................................................................................................................................................... 20 6. Butyl rubber in bicycle innertubes ........................................................................................................................................................................................ 27 7. Heat resistant chlorobutyl rubber innertube ........................................................................................................................................................... 31 8. Guidelines for trouble shooting innertube processing and manufacturing ......................................................................... 35 9. Flaps......................................................................................................................................................................................................................................................................... 41 10. Summary ............................................................................................................................................................................................................................................................ 42 Appendix 1 ..............................................................................................................................................................................................................................................................43 Appendix 2 ..............................................................................................................................................................................................................................................................44 Appendix 3 ..............................................................................................................................................................................................................................................................45 11. References ........................................................................................................................................................................................................................................................ 46 4 - Exxon™ butyl rubber innertube technology manual Exxon™ butyl rubber innertube technology manual - 5 1. Introduction Butyl rubber (IIR) is a copolymer of isobutylene and a small Of the many properties of butyl rubber, low permeability to amount of isoprene (Figure 1)1,2. The primary attributes of gases is among the most important. Tables I and II illustrate butyl rubber are excellent impermeability for air barrier some of the properties of both butyl rubber and compounded performance and good flex fatigue properties. These butyl rubber, and compare the properties of butyl rubber to properties result from low levels of unsaturation in between other elastomers such as natural rubber, styrene butadiene the long polyisobutylene chain segments. Tire innertubes were rubber (SBR), and special purpose elastomers2,5. Tire inflation the first major use of butyl rubber, and this continues to be a pressure retention is now clearly recognized as a very significant market today. important parameter in maintaining tire operating performance, ensuring low tire rolling resistance and minimize Figure 1 vehicle fuel consumption, and ensuring long tire life by Butyl rubber: poly(isobutylene-co-isoprene)1,2,3 maintaining a proper tire tread footprint. The air retention properties of butyl rubber innertubes contributes toward attaining these properties. ISOBUTYLENE ISOPRENE Figure 2 CH CH3 3 Examples of butyl innertubes CH2 = C + CH2 = C CH = CH2 CH3 BUTYL RUBBER CH CH3 CH3 3 CH3 CH2 C CH2 C CH2 C = CH CH2 CH2 C CH CH3 CH3 n 3 In the most widely used manufacturing process for butyl elastomers, a slurry of fine particles of rubber dispersed in methyl chloride is formed from isobutylene and isoprene, in a reactor after Lewis acid initiation. The reaction is highly exothermic, and a high molecular weight can be achieved by controlling the polymerization catalyst level and temperature, which is typically between -90oC to -100oC. The most common polymerization process uses methyl chloride as the reaction Ref: ExxonMobil data. diluent and boiling liquid ethylene to remove the heat of reaction and maintain the low temperature needed. The final molecular weight of the butyl rubber is determined primarily by controlling the catalyst level, temperature, and initiation and chain transfer reactions. Water and oxygenated organic compounds that can terminate the propagation step are minimized by purifying the feed systems. The chloro and bromo derivatives of butyl rubber were introduced commercially in the 1950s and early 1960’s. Due to butyl rubber’s low air and gas permeability, a large proportion of the world’s tube-type pneumatic tires, from bicycle and passenger car to truck and earthmover tires, rely on butyl rubber innertubes to retain air pressure. Figure 2 illustrates various types of butyl rubber innertubes2,3,4. Exxon™ butyl rubber innertube technology manual - 5 Table I Physical properties of butyl rubber2 Property Value Composition a Density, g/cm3 0.917 B 1.130 CBV Coefficient of volume expansion 560 x 10” BV (1/V) (V/T), K 460 x 10” CBV Glass-transition temperature, °C -75 to -67 B Heat capacity, Cp kJ/(kg.K)b 1.95 B 1.85 BV Thermal conductivity, W/(m.K) 0.130 BV 0.230 CBV Refractive index, np 1.5081 B (a) B = butyl rubber; BV = vulcanized butyl rubber; CBV = common stringent operating conditions such as long-distance vulcanized butyl rubber with 50 phr carbon black. travel at higher operating speeds, and heavier payloads under (b) To convert J to cal, divide by 4.184 difficult weather and temperature conditions. This manual provides a review of the current butyl rubber and chlorobutyl In addition, butyl rubber has good heat, oxygen and ozone rubber innertube technology. It also discusses basic resistance as well as good dynamic properties which enhance technology on compounding, processing, and troubleshooting. the long-term durability of innertubes. This is important given Table II Permeability of various elastomers to gases at 25ºC relative to natural rubber gum vulcanizates (=100)5 Elastomer He H2 O2 N2 CO2 Air Silicone Rubber 1070 2200 3300 1600 2700 Natural Rubber 100 100 100 100 100 100 EPDM 88 80 66 83 Polybutadiene 86 82 80 105 81 SBR 74 81 73 78 94 76 NBR (80/20 butadiene acrylonitrile) 55 51 35 31 48 33 NBR (73/27 butadiene acrylonitrile) 39 32 17 13 24 15 Polchloroprene 27 17 13 24 15 NBR (68/32 butadiene acrylonitrile) 32 24 10 7.5 14 8.5 Butyl Rubber 27 15 5.6 5.0 4.0 4.8 Note: 1. Lower rating is better. 2. Permeability at 25°C. 3. See Appendix 1 for abbreviations. 6 - Exxon™ butyl rubber innertube technology
Recommended publications
  • The Difference of Butyl Rubber and Butadiene Styrene Rubber? by Butyl Rubber Sheets - [email protected], Date: Sep.18.06
    The difference of butyl rubber and butadiene styrene rubber? By Butyl Rubber Sheets - www.dongrubber.com, [email protected], Date: Sep.18.06 Butyl rubber sheets is a kind of synthetic rubber which is a copolymer of Isobutylene and a small amount of isoprene copolymer, short for IIR. Butyl rubber sheeting has good chemical stability and thermal stability, the most prominent character is the air tightness and water tightness. Its air transmittance is only about 1/7 of the natural rubber, 1/5 of the styrene-butadiene rubber. Meanwhile its transmittance of steam is 1/200 of the natural rubber, and 1/140 of the styrene-butadiene rubber. Thus IIR is mainly used in the manufacture of tires, inner tubes, steam pipe, water dam and bottom gasket and other rubber products. Styrene-butadiene rubber (SBR) is one of the biggest general synthetic rubber varieties, and is also among the first rubber to realize industrialization production. Styrene butadiene rubber sheet is a random copolymer of butadiene and styrene. Its physical performance, processing performance and product performance is close to those of natural rubber sheets, and some properties such as wear resistance, heat resistance, ageing resistance and curing rate are more excellent than natural rubber sheeting, SBR can be used with a variety of natural rubber sheets and synthetic rubbers, widely applied to tires, tape, rubber hose, wire and cable, medical instruments and various kinds of rubber products production and other fields. Author: Butyl Rubber Sheets copyright reserved. Original URL should be kept in reproduction. .
    [Show full text]
  • Vulcanization & Accelerators
    Vulcanization & Accelerators Vulcanization is a cross linking process in which individual molecules of rubber (polymer) are converted into a three dimensional network of interconnected (polymer) chains through chemical cross links(of sulfur). The vulcanization process was discovered in 1839 and the individuals responsible for this discovery were Charles Goodyear in USA and Thomas Hancock in England. Both discovered the use of Sulfur and White Lead as a vulcanization system for Natural Rubber. This discovery was a major technological breakthrough for the advancement of the world economy. Vulcanization of rubbers by sulfur alone is an extremely slow and inefficient process. The chemical reaction between sulfur and the Rubber Hydrocarbon occurs mainly at the C = C (double bonds) and each crosslink requires 40 to 55 sulphur atoms (in the absence of accelerator). The process takes around 6 hours at 140°C for completion, which is uneconomical by any production standards. The vulcanizates thus produced are extremely prone to oxidative degradation and do not possess adequate mechanical properties for practical rubber applications. These limitations were overcome through inventions of accelerators which subsequently became a part of rubber compounding formulations as well as subjects of further R&D. Following is the summary of events which led to the progress of ‘Accelerated Sulfur Vulcanization'. Event Year Progress - Discovery of Sulfur Vulcanization: Charles Goodyear. 1839 Vulcanizing Agent - Use of ammonia & aliphatic ammonium derivatives: Rowley. 1881 Acceleration need - Use of aniline as accelerator in USA & Germany: Oenslager. 1906 Accelerated Cure - Use of Piperidine accelerator- Germany. 1911 New Molecules - Use of aldehyde-amine & HMT as accelerators in USA & UK 1914-15 Amine Accelerators - Use of Zn-Alkyl Xanthates accelerators in Russia.
    [Show full text]
  • Michelin: Socially Responsible Industrial Restructuring (Research Report)
    Michelin: Socially Responsible Industrial Restructuring (Research Report) Professor Sandra J. Sucher and Research Associate Susan J. Winterberg* Introduction This report describes Michelin’s approach to socially responsible industrial restructuring.a The report was designed to serve two purposes—documentation and learning. The report provides documentation of Michelin’s practices in socially responsible industrial restructuring and contains an agreed upon description of Michelin’s planned, integrative, and humanistic approach. The report was also written as an opportunity for learning for Michelin’s leaders. The report traces the evolution in planning and practices that Michelin has used to conduct socially responsible restructuring over time. The resulting picture is both a view from the inside—told in the words and through the actions of Michelin’s managers—and a view from the outside—incorporating the reactions of stakeholders to Michelin’s restructuring approaches in various situations. Hopefully, it helps Michelin’s leaders assess where they have been and where they are headed in their evolving journey in socially responsible industrial restructuring. Michelin: Socially Responsible Industrial Restructuring Company Background Managing People at Michelin Industrial Restructuring at Michelin: Foundations and Evolution 2003–2013: Developing the ‘Ramp Down & Up Model’ of Restructuring 2013–Forward: Developing the New Restructuring Process Preparing the Annual Restructuring Plan Case Studies of Restructuring at Michelin Managing Stakeholders during Ramp Downs: Three Case Studies A Perfect Storm: Closing the Kleber Factory in Toul, France Closing a Truck Tire Factory in Budapest, Hungary Divestiture of a Rubber Plantation in Bahía, Brazil Managing Collaboration During Turnarounds: Two Case Studies Developing the Turnaround Option: Bourges, France A Beta-Test for Empowerment: Transforming the Roanne Factory, France Summary a Reviews Included: C.
    [Show full text]
  • Tubeless-Ready Bead Tire Instructions Say Goodbye to Cold
    TUBELESS-READY BEAD TIRE INSTRUCTIONS SAY GOODBYE TO COLD. SAY HELLO TO COMFORT. INTENDED USE 45North is built on real-world needs and knowledge. Our collection Studded tires: winter commuting, fatbiking and winter delivers unrivaled comfort and control through advanced technical off-road cycling. design and effective use of materials. We have more people who Fatbike tires: for bicycles that accommodate a 26 x 3.7" or larger ride more miles in colder weather than anywhere on the planet. tire, for winter off-road cycling. Enjoy. NOTE: 45North Studded tires are not intended for long-haul loaded WARNING: CYCLING CAN BE DANGEROUS. touring on pavement. BICYCLE PRODUCTS SHOULD BE INSTALLED AND SERVICED BY A PROFESSIONAL MECHANIC. NEVER MODIFY YOUR RIM COMPATIBILITY BICYCLE OR ACCESSORIES. READ AND FOLLOW ALL PRODUCT WARNING: Standard bead 45North tires are not tubeless ready. INSTRUCTIONS AND WARNINGS INCLUDING INFORMATION ON THE MANUFACTURER’S WEBSITE. INSPECT YOUR BICYCLE Tire Width Outside Rim Width BEFORE EVERY RIDE. ALWAYS WEAR A HELMET. 30mm 20–25mm WARNING: Tires are a part of your bike that will wear out with 35mm 20–25mm use. Tires may pick up foreign objects such as glass or road debris that will puncture the tire and inner tube, causing a loss of air 38mm 20–28mm pressure and reduced ability to control or stop the bike, which 54mm (2.1") 25–35mm could lead to a crash resulting in serious injury or death. Before each ride check to ensure that your tires are in good condition, 60mm (2.35") 25–40mm properly seated on the rim, and properly inflated.
    [Show full text]
  • Development of Recommended Guidelines for Preservation Treatments for Bicycle Routes
    UC Davis Research reports Title Development of Recommended Guidelines for Preservation Treatments for Bicycle Routes Permalink https://escholarship.org/uc/item/72q3c143 Authors Li, H. Buscheck, J. Harvey, J. et al. Publication Date 2017 eScholarship.org Powered by the California Digital Library University of California January 2017 Research Report: UCPRC-RR-2016-02 Development of Recommended Guidelines for Preservation Treatments for Bicycle Routes Version 2 Authors: H. Li, J. Buscheck, J. Harvey, D. Fitch, D. Reger, R. Wu, R. Ketchell, J. Hernandez, B. Haynes, and C. Thigpen Part of Partnered Pavement Research Program (PPRC) Strategic Plan Element 4.57: Development of Guidelines for Preservation Treatments for Bicycle Routes PREPARED FOR: PREPARED BY: California Department of Transportation University of California Division of Research, Innovation, and System Information Pavement Research Center Office of Materials and Infrastructure UC Davis, UC Berkeley TECHNICAL REPORT DOCUMENTATION PAGE 1. REPORT NUMBER 2. GOVERNMENT ASSOCIATION 3. RECIPIENT’S CATALOG NUMBER UCPRC-RR-2016-02 NUMBER 4. TITLE AND SUBTITLE 5. REPORT PUBLICATION DATE Development of Recommended Guidelines for Preservation Treatments for Bicycle January 2017 Routes 6. PERFORMING ORGANIZATION CODE 7. AUTHOR(S) 8. PERFORMING ORGANIZATION H. Li, J. Buscheck, J. Harvey, D. Fitch, D. Reger, R. Wu, R. Ketchell, J. Hernandez, B. REPORT NO. Haynes, C. Thigpen 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NUMBER University of California Pavement Research Center Department of Civil and Environmental Engineering, UC Davis 1 Shields Avenue 11. CONTRACT OR GRANT NUMBER Davis, CA 95616 65A0542 12. SPONSORING AGENCY AND ADDRESS 13. TYPE OF REPORT AND PERIOD California Department of Transportation COVERED Division of Research, Innovation, and System Information Research Report, May 2015 – P.O.
    [Show full text]
  • Measuring Dynamic Properties of Bicycle Tires
    Proceedings, Bicycle and Motorcycle Dynamics 2010 Symposium on the Dynamics and Control of Single Track Vehicles, 20 - 22 October 2010, Delft, The Netherlands Measuring Dynamic Properties of Bicycle Tires A. E. Dressel *, A. Rahman # * Civil Engineering and Mechanics # Civil Engineering and Mechanics University of Wisconsin-Milwaukee University of Wisconsin-Milwaukee P.O. Box 784, Milwaukee, WI 53201-0784 P.O. Box 784, Milwaukee, WI 53201-0784 e-mail: [email protected] e-mail: [email protected] ABSTRACT Dynamic tire properties, specifically the forces and moments generated under different circum- stances, have been found to be important to motorcycle dynamics. A similar situation may be expected to exist for bicycles, but limited bicycle tire data and a lack of the tools necessary to measure it may contribute to its absence in bicycle dynamics analyses. This paper describes tools developed to measure these bicycle tire properties and presents some of the findings. Cornering stiffness, also known as sideslip and lateral slip stiffness, of either the front or rear tires, has been found to influence both the weave and wobble modes of motorcycles. Measuring this property requires holding the tire at a fixed orientation, camber and steer angles, with re- spect to the pavement and its direction of travel, and then measuring the lateral force generated as the tire rolls forward. Large, sophisticated, and expensive devices exist for measuring this characteristic of automobile tires. One device is known to exist for motorcycle tires, and it has been used at least once on bicycle tires, but the minimum load it can apply is approximately 200 pounds, nearly double the actual load carried by most bicycle tires.
    [Show full text]
  • Reinforcement of Styrene Butadiene Rubber Employing Poly(Isobornyl Methacrylate) (PIBOMA) As High Tg Thermoplastic Polymer
    polymers Article Reinforcement of Styrene Butadiene Rubber Employing Poly(isobornyl methacrylate) (PIBOMA) as High Tg Thermoplastic Polymer Abdullah Gunaydin 1,2, Clément Mugemana 1 , Patrick Grysan 1, Carlos Eloy Federico 1 , Reiner Dieden 1 , Daniel F. Schmidt 1, Stephan Westermann 1, Marc Weydert 3 and Alexander S. Shaplov 1,* 1 Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; [email protected] (A.G.); [email protected] (C.M.); [email protected] (P.G.); [email protected] (C.E.F.); [email protected] (R.D.); [email protected] (D.F.S.); [email protected] (S.W.) 2 Department of Physics and Materials Science, University of Luxembourg, 2 Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg 3 Goodyear Innovation Center Luxembourg, L-7750 Colmar-Berg, Luxembourg; [email protected] * Correspondence: [email protected]; Tel.: +352-2758884579 Abstract: A set of poly(isobornyl methacrylate)s (PIBOMA) having molar mass in the range of 26,000–283,000 g mol−1 was prepared either via RAFT process or using free radical polymerization. ◦ These linear polymers demonstrated high glass transition temperatures (Tg up to 201 C) and thermal Citation: Gunaydin, A.; stability (T up to 230 ◦C). They were further applied as reinforcing agents in the preparation of the Mugemana, C.; Grysan, P.; onset Eloy Federico, C.; Dieden, R.; vulcanized rubber compositions based on poly(styrene butadiene rubber) (SBR). The influence of the Schmidt, D.F.; Westermann, S.; PIBOMA content and molar mass on the cure characteristics, rheological and mechanical properties of Weydert, M.; Shaplov, A.S.
    [Show full text]
  • Long Term Performance of Rubber in Seismic and Non-Seismic Bearings: a Literature Review
    Long Term Performance of Rubber in Seismic and Non-Seismic Bearings: A Literature Review J. W. Martin us. DEPARTMENT OF COMMERCE National Institute of Standards and Technology Building and Fire Research Laboratory Gaithersburg, MD 20899 US. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary NATIONAL INSmUTE OF STANDARDS AND TECHNOLOGY UL John W. Lyons, Director 100 U56 NBT //4615 1991 NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY Research Information Center Gaithersburg, MD 20899 NISTIR 4613 / Long Term Performance of Rubber in Seismic and Non-Seismic Bearings: A Literature Review J. W. Martin U^. DEPARIMENT OF COMMERCE Nation^ Institute of Standards and Technoiogy Buiiding and Fire Research Laboratory Gaithersburg, MD 20899 June 1991 U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, ScK:retary NATIONAL INSrmJTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director ABSTRACT The use of seismic isolation bearings to decouple buildings and lifeline structures from strong ground motion has received an increased amount of attention in recent years. While several types of seismic isolation bearings have been developed and proposed for use, the most common type is the laminated rubber (elastomeric) bearing. Because the design lifetime of these bearings is expected to be on the order of 50 to 100 years, the long-term performance of the rubber must be addressed. Therefore, a literature review was conducted to identify potential limits on the long-term performance of rubbers used in bearings. Several issues, including the need for consensus performance standards and for additional research on the effects of creep, aging, temperature, and high-energy radiation on the properties of rubber, were identified.
    [Show full text]
  • California Skid Tests with Butyl Rubber Tires and Report of Visit to Road Research Laboratories in Europe Engaged in Skid Prevention Research
    California Skid Tests with Butyl Rubber Tires and Report of Visit to Road Research Laboratories in Europe Engaged in Skid Prevention Research RALPH A. MOYER, Professor of Transportation Engineering and Research Engineer, TnctH11to nf 'T'l"<>ncnnrtsitinn sinrl 'T'rsiffir F.naino,:,rina TTniv,:,rcitv nf r.silifnrnisi - -------- -- -- - ---- .1,·· ..... ., Berkeley •AN EXTENSIVE California program of skid resistance tests conducted in 1961 was reported in HRB Bull. 348 (1962). The 1961 tests yielded significant results primarily because of the use of a new torque meter device to measure the friction forces. The tests were run with four different types of tires including one tire with the recently developed butyl rubber tread which provided high hysteresis or energy losses and high coefficients of friction on wet pavements. In view of the improved accuracy obtained with the new torque meter, and the high friction values obtained in the exploratory tests with the butyl rubber tire, a program of tests was carried out in 1962. Skid resistance measurements were made on a wide variety of pavement surfaces with two different brands of butyl rubber tires, and also with the 1958 and 1961 pavement test standard tires. Before 1961, it was generally assumed that the only way to obtain significant improvement in the skid resistance of wet pavements was by the selection of aggregate types and pavement construction methods and controls, and/or by de-slicking treatments which had been established by laboratory and field tests. Studies were conducted by California in 1961, by the British Road Research Laboratory, and by Dr. Tabor of Cambridge University, England.
    [Show full text]
  • Model Vulcanization Systems for Butyl Rubber and Halobutyl Rubber Manual
    Exxon™ butyl and halobutyl rubber Model vulcanization systems for butyl rubber and halobutyl rubber manual Country name(s) 2 - Model vulcanization systems for butyl rubber and halobutyl rubber manual Model vulcanization systems for butyl rubber and halobutyl rubber manual - 3 Abstract The vulcanization of isobutylene-co-isoprene rubber (IIR), brominated isobutylene-co-isoprene rubber (BIIR), chlorinated isobutylene-co-isoprene rubber (CIIR), and brominated isobutylene-co-para-methylstyrene elastomer (BIMSM) differs from that of general-purpose rubbers (GPR). Butyl rubber has approximately 2% unsaturation in the backbone. Halobutyl rubber (BIIR and CIIR) incorporates the butyl backbone with either bromine or chlorine, which significantly increases the chemical reactivity of the isoprenyl units located in the butyl backbone. Similarly, in BIMSM the bromine atom is bonded to the para-methylstyrene (PMS) group, thus affording the completely saturated polymer backbone a site of chemical reactivity. Utilization of the unique attributes of butyl rubber and halobutyl rubbers with their minimal backbone unsaturation and of BIMSM elastomers with no backbone unsaturation is found in many areas of industry. These properties are excellent vapor impermeation, resistance to heat degradation, and improved chemical resistance as compared to general-purpose rubbers. However, this low amount of reactivity requires special consideration to vulcanize these isobutylene-based polymers. The type of vulcanization system selected is a function of the composite structure in which it is used, and the cured product performance requirements. Therefore, vulcanization systems vary and may include an accelerator package along with resins, zinc oxide, zinc oxide and sulfur, and quinoid systems. This review will discuss the types and selection of appropriate vulcanization systems for isobutylene-based elastomers.
    [Show full text]
  • The New Zealand & Australian Experience with Central Tyre Inflation
    TheThe NewNew ZealandZealand && AustralianAustralian ExperienceExperience withwith CentralCentral TyreTyre InflationInflation Neil Wylie Innovative Transport Equipment Ltd Log Transport Safety Council Tyre Development • 1846 – Robert William Thomson invented and patented the pneumatic tire • 1888 – First commercial pneumatic bicycle tire produced by Dunlop • 1889 – John Boyd Dunlop patented the pneumatic tire in the UK • 1890 – Dunlop, and William Harvey Du Cros began production of pneumatic tires in Ireland • 1890 – Bartlett Clincher rim introduced • 1891 – Dunlop's patent invalidated in favor of Thomson’s patent • 1892 – Beaded edge tires introduced in the U.S. • 1894 – E.J. Pennington invents the first balloon tire • 1895 – Michelin introduced pneumatic automobile tires • 1898 – Schrader valve stem patented • 1900 – Cord Tires introduced by Palmer (England) and BFGoodrich (U.S.) • 1903 – Goodyear Tire Company patented the first tubeless tire, however it was not introduced until 1954 • 1904 – Goodyear and Firestone started producing cord reinforced tires • 1904 – Mountable rims were introduced that allowed drivers to fix their own flats • 1908 – Frank Seiberling invented grooved tires with improved road traction • 1910 – BFGoodrich Company invented longer life tires by adding carbon black to the rubber • 1919 – Goodyear and Dunlop announced pneumatic truck tires[2] • 1938 – Goodyear introduced the rayon cord tire • 1940 – BFGoodrich introduced the first commercial synthetic rubber tire • 1946 – Michelin introduced the radial tire •
    [Show full text]
  • Butyl Rubber Product Safety Summary
    Product Safety Summary Exxon™ Butyl Rubber This Product Safety Summary document is a high-level summary intended to provide the general public with an overview of product safety information on this chemical substance. It is not intended to provide emergency response, medical or treatment information, or to provide a discussion of all safety and health information. This document is not intended to replace the (Material) Safety Data Sheet. Warnings and handling precautions provided below are not intended to replace or supersede manufacturers' instructions and warning for their consumer products which may contain this chemical substance. 1. Chemical Identity Butyl Rubber Polymers are characterized as high-quality synthetic rubber polymers. The major components are isobutylene and isoprene. CAS No. Chemical Names: Other Names 9010-85-9 IIR: Isobutylene-Isoprene Rubber Exxon™Butyl Rubber 68441-14-5 BB: brominated isobutylene-isoprene rubber BIIR Exxon™Bromobutyl 68081-82-3 CB: chlorinated isobutylene-isoprene rubber CIIR Exxon™Chlorobutyl 134737-24-9 Exxpro: brominated isobutylene-paramethylstyrene rubber Exxpro™specialty (BIMSM) elastomer 2. Product Uses Butyl rubber is used in a variety of consumer applications including tires and medical tube stoppers. 3. Physical / Chemical Properties Butyl Rubber Polymers are solid, stable polymers that are not hazardous and highly impermeable to air and water relative to other rubber polymers. If heated above the flash point, they may burn or decompose to flammable hydrocarbons (fire situations). Safety hazards at ambient temperature are generally negligible, due to its high molecular weight, minimal toxicity and general inertness. Butyl Rubber is not a combustible liquid, a compressed gas, an explosive, an organic peroxide, an oxidizer, or pyrophoric; nor is it unstable (reactive), water-reactive, or flammable.
    [Show full text]