Solar System Inventory Mars

Total Page:16

File Type:pdf, Size:1020Kb

Solar System Inventory Mars Life in the Solar System ... and Beyond • While Earth is the only confirmed body with life in the Solar System, we have found many other bodies which may support life • Today, we will talk about some of these worlds and the life that may exist there • Knowledge of life in our Solar System also lets us estimate what life may exist beyond BestSolar Candidates System Inventory for Life? 1 star Sun 4 terrestrial planets Mercury, Venus, Earth, Mars 4 gas giant planets Jupiter, Saturn, Uranus, Neptune 7 large moons Moon, Io, Europa, Ganymede, Callisto, Titan, Triton small moons, asteroids, Phobos, Ceres, Amalthea, comets, KBOs, dust Rhea, Enceladus, Titania, Proteus, Pluto, Charon Mars • No hard evidence for any lifeform on the surface, though only Viking landers looked • Much more likely in the distant past when Mars was warmer and wetter • May still be very small microbial life near water ice deposits around the poles or a few feet below the surface 1 Jupiter? • The idea is a bit far fetched, but there are layers in Jupiter's atmosphere where temperatures and pressures would be right for liquid water • Any life that developed in the atmosphere would float through the different layers, much like life in Earth's oceans • Very unlikely, but possible Europa and Enceledus • Of all the gas giant moons, Europa and Enceledus offer the best possibilities • Each moon, especially Europa, shows evidence for a large amount of liquid water • Life systems much like the deep sea vents on Earth may exist on both worlds • It will take quite a bit of time and effort to know for sure Titan • Titan seems to have all the proper ingredients for life, but not high enough temperatures • A large amount of hydrocarbons reside in the atmosphere and surface • Some amino acids are also detected • If Titan were warmer, it may be an ideal location for life 2 Beyond the Solar System The Habitable Zone • When looking outside our Solar System, it is easiest to think about zones where life could survive • The habitable zone usually corresponds to locations where liquid water can exist • The habitable zone is 'not too hot' and 'not too cold', but should be just right for life The Habitable Zone • Since different stars have different brightness and temperatures, the size and location of the habitable zone can change Problems with the Habitable Zone • There has been some dispute of the accuracy of the habitable zone • After all, there are locations in our Solar System well outside the HZ where liquid water may exist • Despite the argument, the habitable zone is the most favorable location for life to occur in a star system 3 Finding the Right Star • While it is easiest to think about life around a Sun-like star, that doesn't have to be the case • However, there are some stars which make their surroundings quite inhabitable • Some small, red M dwarfs have violent flaring activity • Large, massive O/B stars have strong winds and put out more ultraviolet and X-ray Artist concept of a flaring M dwarf radiation The Galactic Habitable Zone • The HZ concept can be expanded to the galaxy as a whole • The interior of the galaxy is a very energetic, very unstable place • The extremities of the galaxy contain too few heavy elements for Earth-like planets to form What About Intelligent Life? • One of the most interesting and controversial branches of astronomy is the Search for Extra- Terrestrial Intelligence • The SETI Institute is basically a large listening program, trying to find signals from aliens • The search continues... 4 Can They Hear Us? • Radio and television signals have been leaving Earth for over 50 years • If anyone within 50 light-years is listening, then they could have detected us • Odds of an intelligent civilization being that close is very slim • Also, our signals are not concentrated - instead they spread out thinly in all directions Can We Hear Them? • Under current technology, it would be hard to hear them unless the signal was directed straight at us • Unfortunately, they have no reason to send signals, since most of them would not know we exist • Improvements in tech and facilities over the next decade will let us here the slightest whispers of civilization SETI • The SETI Institute is a non- profit, privately funded organization • They use radio data which comes primarily from the Arecibo dish in Puerto Rico and the 100m radio telescope in Greenbank, West Virginia • A new array of telescopes is being built in California called the Allen Telescope Array, which will be fully devoted to SETI 5 Are They Even Out There? • One of the ultimate scientific/philosophical/ religious questions is 'Are We Alone?' • From a sheer numbers standpoint, the odds of only Earth possessing intelligent life are essentially impossible • Each galaxy contains 100's of billions of stars and there are 100's of billions of galaxies out there The Drake Equation • One quick and easy way to estimate the number of civilizations in the galaxy is the Drake equation • Frank Drake developed the equation in the 1960's • Based on a set of astronomical and biological factors, the equation will tell you the number of intelligent, communicating civilizations in the galaxy The Drake Equation * N R f p ne f l fi f c L N # civilizations with detectable electromagnetic emissions R* rate of star formation (stars/year) fp fraction of stars that are stable with planetary systems ne # of worlds/system with environment suitable for life fl fraction of planets on which life develops fi fraction of life-bearing planets on which intelligent life arises fc fraction of intelligent civilizations revealing existence L length of time civilizations release detectable signals (years) 6 Rate of Star Formation • This factor we have a pretty good estimate for • Stars are constantly being born in the galaxy, and the rate at which they are born will tell you how many are available • The galaxy has between 100-200 billion stars, and is about 10 billion years old Dusty star formation regions • Therefore, the average rate (REAL PICTURE!) is about 10-20 stars per year Fraction of Stable Stars with Planets • Not all of the stars in the galaxy will be stable and not all of the stars will have planets • We have only begun to find planets around stars, but the results are quite encouraging • It is most likely a natural process for stars to have planets • Earth-like planets are still waiting to be found Number of Worlds with Conditions Suitable for Life • This factor is the number of planets or moons in a solar system that may be able to support life • Habitable zone considerations come into play with this factor • As we already discussed, there may be five or six other places that could support life 7 Fraction of Worlds with Life • Of all the planets or moons in the star system, this is the fraction which actually develop life • We know of ONE planet with life in our Solar System • If you include all the planets and large moons, then this number is something like 1/15 Fraction with Intelligent Life • Of those planets which have developed life, this is the fraction which has developed 'intelligent' life • For our Solar System, Earth is the only case with life and it developed intelligence • The definition of 'intelligence' is somewhat hazy - some would argue the case for humanity Fraction with Communicating Life • Of the worlds with intelligence, what fraction will produce a signal that can travel through space? • Our civilization has been around thousands of years, but we have only been communicating for ~50 years • The development of technology will likely lead to some sort of signal into space 8 Length of Time Civilization is Communicating • This is one of the hardest factors to estimate, since we have no good reference • Our civilization has been communicating for ~50 years, but how much longer will we be sending signals? • This factor depends on how long the civilization survives, and how long its signal leaks into space So How Many? * N R f p ne f l fi f c L • Even conservative estimates for each of these factors produce a sizeable number of intelligent civilizations in the galaxy • With advances in technology, it is likely that IF there is a signal to be found, it will be found in our lifetime • We will do an exercise on Friday involving the Drake equation and the possibilities of alien life 9.
Recommended publications
  • Small Satellite Missions
    Distr. LIMITED A/CONF.184/BP/9 26 May 1998 ORIGINAL: ENGLISH SMALL SATELLITE MISSIONS Background paper 9 The full list of the background papers: 1. The Earth and its environment in space 2. Disaster prediction, warning and mitigation 3. Management of Earth resources 4. Satellite navigation and location systems 5. Space communications and applications 6. Basic space science and microgravity research and their benefits 7. Commercial aspects of space exploration, including spin-off benefits 8. Information systems for research and applications 9. Small satellite missions 10. Education and training in space science and technology 11. Economic and societal benefits 12. Promotion of international cooperation V.98-53862 (E) A/CONF.184/BP/9 Page 2 CONTENTS Paragraphs Page PREFACE ........................................................................... 2 SUMMARY ......................................................................... 4 I. PHILOSOPHY OF SMALL SATELLITES ................................. 1-12 5 II. COMPLEMENTARITY OF LARGE AND SMALL SATELLITE MISSIONS .... 13-17 7 III. SCOPE OF SMALL SATELLITE APPLICATIONS ......................... 18-43 8 A. Telecommunications ................................................ 19-25 8 B. Earth observations (remote sensing) .................................... 26-31 9 C. Scientific research .................................................. 32-37 10 D. Technology demonstrations .......................................... 38-39 11 E. Academic training .................................................
    [Show full text]
  • Abstracts of the 50Th DDA Meeting (Boulder, CO)
    Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011).
    [Show full text]
  • Arxiv:1604.04184V1 [Astro-Ph.EP] 14 Apr 2016 Fax: +33-1-46332834 E-Mail: [email protected] 2 Valery´ Lainey the Authors Obtained an Averaged Estimation of K2/Q
    Noname manuscript No. (will be inserted by the editor) Quantification of tidal parameters from Solar system data Valery´ Lainey the date of receipt and acceptance should be inserted later Abstract Tidal dissipation is the main driver of orbital evolution of natural satellites and a key point to understand the exoplanetary system configurations. Despite its importance, its quantification from observations still remains difficult for most objects of our own Solar system. In this work, we overview the method that has been used to determine, directly from observations, the tidal parameters, with emphasis on the Love number k2 and the tidal quality factor Q. Up-to-date values of these tidal parameters are summarized. Last, an assessment on the possible determination of the tidal ratio k2=Q of Uranus and Neptune is done. This may be particularly relevant for coming astrometric campaigns and future space missions focused on these systems. Keywords Tides · Astrometry · Space geodesy 1 Introduction While fundamental for our understanding of the Solar system and the long-term evolution of the exo-planetary systems, tidal parameters are difficult to determine from observations. Indeed, they provide a small dynamical signal, both on natural and artificial celestial objects, in comparison to other perturbations arising in the system (see next section). However, tides do provide large effects on the long term evolution of the natural bodies. This is why es- timations of the tidal parameters have often been done from the assumed past evolution of planets and moons. In that respect, estimation of the average tidal ratio k2=Q for the giant planets was done already back in the 60s by Goldreich & Soter (1966).
    [Show full text]
  • Resonant Moons of Neptune
    EPSC Abstracts Vol. 13, EPSC-DPS2019-901-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Resonant moons of Neptune Marina Brozović (1), Mark R. Showalter (2), Robert A. Jacobson (1), Robert S. French (2), Jack L. Lissauer (3), Imke de Pater (4) (1) Jet Propulsion Laboratory, California Institute of Technology, California, USA, (2) SETI Institute, California, USA, (3) NASA Ames Research Center, California, USA, (4) University of California Berkeley, California, USA Abstract We used integrated orbits to fit astrometric data of the 2. Methods regular moons of Neptune. We found a 73:69 inclination resonance between Naiad and Thalassa, the 2.1 Observations two innermost moons. Their resonant argument librates around 180° with an average amplitude of The astrometric data cover the period from 1981-2016, ~66° and a period of ~1.9 years. This is the first fourth- with the most significant amount of data originating order resonance discovered between the moons of the from the Voyager 2 spacecraft and HST. Voyager 2 outer planets. The resonance enabled an estimate of imaged all regular satellites except Hippocamp the GMs for Naiad and Thalassa, GMN= between 1989 June 7 and 1989 August 24. The follow- 3 -2 3 0.0080±0.0043 km s and GMT=0.0236±0.0064 km up observations originated from several Earth-based s-2. More high-precision astrometry of Naiad and telescopes, but the majority were still obtained by HST. Thalassa will help better constrain their masses. The [4] published the latest set of the HST astrometry GMs of Despina, Galatea, and Larissa are more including the discovery and follow up observations of difficult to measure because they are not in any direct Hippocamp.
    [Show full text]
  • Download This Article in PDF Format
    A&A 645, A48 (2021) Astronomy https://doi.org/10.1051/0004-6361/202038776 & c ESO 2021 Astrophysics New precise positions in 2013–2019 and a catalog of ground-based astrometric observations of 11 Neptunian satellites (1847–2019) based on Gaia-DR2 Ye Yuan (袁è)1,2, Fan Li (Ná)1,3, Yanning Fu (傅燕宁)1, and Shulin Ren (û树林)1 1 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, PR China e-mail: [email protected] 2 School of Astronomy and Space Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China 3 University of Chinese Academy of Sciences, Beijing 100049, PR China Received 29 June 2020 / Accepted 1 October 2020 ABSTRACT Context. Developing high-precision ephemerides for Neptunian satellites requires not only the continuation of observing campaigns but also the collection and improvement of existing observations. So far, no complete catalogs of observations of Neptunian satellites are available. Aims. We aim to provide new, precise positions, and to compile a catalog including all available ground-based astrometric observations of Neptunian satellites. The observations are tabulated in a single and consistent format and given in the same timescale, the Terrestrial Time (TT), and reference system, the International Celestial Reference System (ICRS), including necessary changes and corrections. Methods. New CCD observations of Triton and Nereid were made at Lijiang 2.4-m and Yaoan 0.8-m telescopes in 2013–2019, and then reduced based on Gaia-DR2. Furthermore, a catalog called OCNS2019 (Observational Catalog of Neptunian Satellites (2019 version)) was compiled, after recognizing and correcting errors and omissions.
    [Show full text]
  • Post-Main-Sequence Planetary System Evolution Rsos.Royalsocietypublishing.Org Dimitri Veras
    Post-main-sequence planetary system evolution rsos.royalsocietypublishing.org Dimitri Veras Department of Physics, University of Warwick, Coventry CV4 7AL, UK Review The fates of planetary systems provide unassailable insights Cite this article: Veras D. 2016 into their formation and represent rich cross-disciplinary Post-main-sequence planetary system dynamical laboratories. Mounting observations of post-main- evolution. R. Soc. open sci. 3: 150571. sequence planetary systems necessitate a complementary level http://dx.doi.org/10.1098/rsos.150571 of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the Received: 23 October 2015 interpretation and modelling of currently known systems and Accepted: 20 January 2016 upcoming discoveries. 1. Introduction Subject Category: Decades of unsuccessful attempts to find planets around other Astronomy Sun-like stars preceded the unexpected 1992 discovery of planetary bodies orbiting a pulsar [1,2]. The three planets around Subject Areas: the millisecond pulsar PSR B1257+12 were the first confidently extrasolar planets/astrophysics/solar system reported extrasolar planets to withstand enduring scrutiny due to their well-constrained masses and orbits. However, a retrospective Keywords: historical analysis reveals even more surprises. We now know that dynamics, white dwarfs, giant branch stars, the eponymous celestial body that Adriaan van Maanen observed pulsars, asteroids, formation in the late 1910s [3,4]isanisolatedwhitedwarf(WD)witha metal-enriched atmosphere: direct evidence for the accretion of planetary remnants. These pioneering discoveries of planetary material around Author for correspondence: or in post-main-sequence (post-MS) stars, although exciting, Dimitri Veras represented a poor harbinger for how the field of exoplanetary e-mail: [email protected] science has since matured.
    [Show full text]
  • Perfect Little Planet Educator's Guide
    Educator’s Guide Perfect Little Planet Educator’s Guide Table of Contents Vocabulary List 3 Activities for the Imagination 4 Word Search 5 Two Astronomy Games 7 A Toilet Paper Solar System Scale Model 11 The Scale of the Solar System 13 Solar System Models in Dough 15 Solar System Fact Sheet 17 2 “Perfect Little Planet” Vocabulary List Solar System Planet Asteroid Moon Comet Dwarf Planet Gas Giant "Rocky Midgets" (Terrestrial Planets) Sun Star Impact Orbit Planetary Rings Atmosphere Volcano Great Red Spot Olympus Mons Mariner Valley Acid Solar Prominence Solar Flare Ocean Earthquake Continent Plants and Animals Humans 3 Activities for the Imagination The objectives of these activities are: to learn about Earth and other planets, use language and art skills, en- courage use of libraries, and help develop creativity. The scientific accuracy of the creations may not be as im- portant as the learning, reasoning, and imagination used to construct each invention. Invent a Planet: Students may create (draw, paint, montage, build from household or classroom items, what- ever!) a planet. Does it have air? What color is its sky? Does it have ground? What is its ground made of? What is it like on this world? Invent an Alien: Students may create (draw, paint, montage, build from household items, etc.) an alien. To be fair to the alien, they should be sure to provide a way for the alien to get food (what is that food?), a way to breathe (if it needs to), ways to sense the environment, and perhaps a way to move around its planet.
    [Show full text]
  • 2012 Smallsat Paper
    SSC12-VI-1 Enabling Dexterous Manipulation and Servicing by Smallsats David L. Akin, Nicholas Limparis, Katherine McBryan University of Maryland Space Systems Laboratory 382 Technology Drive, College Park, MD 20742 301-405-1138 [email protected] ABSTRACT The University of Maryland Space Systems Laboratory is currently developing two flight-ready smallsats to demonstrate and validate the critical technologies for this new class of smallsat servicing system. The DYnamic FLight MAnipulation EXperiment (DYMAFLEX) , supported by the U. S. Air Force University Nanosat Program, is a smallsat incorporating a four degree-of-freedom high-performance manipulator and a fully maneuvering spacecraft bus, including a cold-gas reaction control system. Unlike past manipulator-equipped spacecraft such as ETS-VII or Orbital Express, the DYMAFLEX manipulator inertia (depending on payload) equals or exceeds that of the spacecraft bus, resulting in significant base reaction dynamics in response to arm motion. The goal of this mission, demonstrating the capability to adapt and control base motion during manipulator operations, is critical for the use of manipulators on very small spacecraft. Exo-SPHERES, supported by DARPA and NASA, is a program to develop a protoflight version of a 50-kg spacecraft intended to perform inspection and maintenance tasks on the International Space Station. Constrained to egress and ingress via the Japanese KIBO airlock, this system will implement an advanced modular smallsat architecture to support a large range of potential mission targets. The Smallsat Concept for Advanced Manipulation and Proximity operations (SCAMP) system has been proposed as a fully dexterous flight demonstration of smallsat servicing. Based on technologies from DYMAFLEX and Exo- SPHERES, SCAMP will be capable of equivalent dexterity to a human in a space suit, and will be used to demonstration both on-orbit proximity operations as well as capture and berthing and dexterous servicing operations.
    [Show full text]
  • Wave Features of the Neptune's Satellites: Triton, Proteus, Nereid
    Workshop on the Study of the Ice Giant Planets (2014) 2006.pdf Wave features of the Neptune’s satellites: Triton, Proteus, Nereid Kochemasov G.G., IGEM of the Russian Academy of Sciences, <[email protected]> Satellites in the Solar system bear traces of various wave processes as they are simultaneously involved in three cyclic movements: galactic (together with Sun and planets), circumstellar (with planets) and around planets. The Neptune’s icy satellites allow observing some of these features captured by the Voyager 2 images (Aug. 1989). Most spectacular is the north-south tectonic dichotomy of Triton – replica of the martian dichotomy but in a rocky body (2πR-structure). The Triton’s bright south is opposed with its dark north (Fig. 1, 2). A fretted boundary between these terrains could be compared with martian “chaoses” – also broken crust. The lighter southern terrain shows dark markings oriented by atmospheric winds. This dark material (similar to hydrocarbons of Titan?) penetrates into the light crust through fractures reaching the deeper layers with the darker material. It probably is represented at vast terrains of the somewhat subsided northern hemisphere. Its peculiar “cantaloupe” texture of tightly disposed regular rings could be produced under contraction due to subsidence. Uniform regularly spaced rings have diameters on average about ~17-18 km (5-25 km) (Fig. 3). This size is calculated according to the wave dependence between tectonic granule size and orbital frequency (for Triton it is 1/5.9 days and R=1350 km) [1]. The next large satellite is Proteus (R=208 km, frequency 1/1.12 days).
    [Show full text]
  • Mcleods0809.Pdf (15.34Mb)
    ISOSTATICALLY COMPENSATED EXTENSIONAL TECTONICS ON ENCELADUS by Scott Stuart McLeod A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences MONTANA STATE UNIVERSITY Bozeman, Montana May 2009 ©COPYRIGHT by Scott Stuart McLeod 2009 All Rights Reserved ii APPROVAL of a thesis submitted by Scott Stuart McLeod This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education. David R. Lageson Approved for the Department of Earth Sciences Stephan G. Custer Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. Scott Stuart McLeod May 2009 iv DEDICATION I dedicate this work to my parents, Grace and Rodney McLeod, for their tireless enthusiasm, encouragement and support, and to my friends and colleagues who never stopped believing in me – you know who you are.
    [Show full text]
  • The Universe Contents 3 HD 149026 B
    History . 64 Antarctica . 136 Utopia Planitia . 209 Umbriel . 286 Comets . 338 In Popular Culture . 66 Great Barrier Reef . 138 Vastitas Borealis . 210 Oberon . 287 Borrelly . 340 The Amazon Rainforest . 140 Titania . 288 C/1861 G1 Thatcher . 341 Universe Mercury . 68 Ngorongoro Conservation Jupiter . 212 Shepherd Moons . 289 Churyamov- Orientation . 72 Area . 142 Orientation . 216 Gerasimenko . 342 Contents Magnetosphere . 73 Great Wall of China . 144 Atmosphere . .217 Neptune . 290 Hale-Bopp . 343 History . 74 History . 218 Orientation . 294 y Halle . 344 BepiColombo Mission . 76 The Moon . 146 Great Red Spot . 222 Magnetosphere . 295 Hartley 2 . 345 In Popular Culture . 77 Orientation . 150 Ring System . 224 History . 296 ONIS . 346 Caloris Planitia . 79 History . 152 Surface . 225 In Popular Culture . 299 ’Oumuamua . 347 In Popular Culture . 156 Shoemaker-Levy 9 . 348 Foreword . 6 Pantheon Fossae . 80 Clouds . 226 Surface/Atmosphere 301 Raditladi Basin . 81 Apollo 11 . 158 Oceans . 227 s Ring . 302 Swift-Tuttle . 349 Orbital Gateway . 160 Tempel 1 . 350 Introduction to the Rachmaninoff Crater . 82 Magnetosphere . 228 Proteus . 303 Universe . 8 Caloris Montes . 83 Lunar Eclipses . .161 Juno Mission . 230 Triton . 304 Tempel-Tuttle . 351 Scale of the Universe . 10 Sea of Tranquility . 163 Io . 232 Nereid . 306 Wild 2 . 352 Modern Observing Venus . 84 South Pole-Aitken Europa . 234 Other Moons . 308 Crater . 164 Methods . .12 Orientation . 88 Ganymede . 236 Oort Cloud . 353 Copernicus Crater . 165 Today’s Telescopes . 14. Atmosphere . 90 Callisto . 238 Non-Planetary Solar System Montes Apenninus . 166 How to Use This Book 16 History . 91 Objects . 310 Exoplanets . 354 Oceanus Procellarum .167 Naming Conventions . 18 In Popular Culture .
    [Show full text]
  • Space Theme Circle Time Ideas
    Space Crescent Black Space: Sub-themes Week 1: Black/Crescent EVERYWHERE! Introduction to the Milky Way/Parts of the Solar System(8 Planets, 1 dwarf planet and sun) Week 2: Continue with Planets Sun and Moon Week 3: Comets/asteroids/meteors/stars Week 4: Space travel/Exploration/Astronaut Week 5: Review Cooking Week 1: Cucumber Sandwiches Week 2: Alien Playdough Week 3: Sunshine Shake Week 4: Moon Sand Week 5: Rocket Shaped Snack Cucumber Sandwich Ingredients 1 carton (8 ounces) spreadable cream cheese 2 teaspoons ranch salad dressing mix (dry one) 12 slices mini bread 2 to 3 medium cucumbers, sliced, thinly Let the children take turns mixing the cream cheese and ranch salad dressing mix. The children can also assemble their own sandwiches. They can spread the mixture themselves on their bread with a spoon and can put the cucumbers on themselves. Sunshine Shakes Ingredients and items needed: blender; 6 ounce can of unsweetened frozen orange juice concentrate, 3/4 cup of milk, 3/4 cup of water, 1 teaspoon of vanilla and 6 ice cubes. Children should help you put the items in the blender. You blend it up and yum! Moon Sand Materials Needed: 6 cups play sand (you can purchased colored play sand as well!); 3 cups cornstarch; 1 1/2 cups of cold water. -Have the children help scoop the corn starch and water into the table and mix until smooth. -Add sand gradually. This is very pliable sand and fun! -Be sure to store in an airtight container when not in use. If it dries, ad a few tablespoons of water and mix it in.
    [Show full text]