Microsatellite Loci for Symbiodinium Goreaui and Other Clade C Symbiodinium

Total Page:16

File Type:pdf, Size:1020Kb

Microsatellite Loci for Symbiodinium Goreaui and Other Clade C Symbiodinium Conservation Genet Resour DOI 10.1007/s12686-013-0023-5 MICROSATELLITE LETTERS Microsatellite loci for Symbiodinium goreaui and other Clade C Symbiodinium Drew C. Wham • Margaux Carmichael • Todd C. LaJeunesse Received: 27 June 2013 / Accepted: 12 August 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract The genus Symbiodinium comprises a diverse of ‘‘Clades’’, with the most ecologically dominant and group of dinoflagellates known for their obligate relation- diverse being Clade C (LaJeunesse et al. 2004). While the ship with reef–building corals. Members of the sub-genus group includes phylogenetic types that display narrow and ‘clade C’ are abundant, geographically wide-spread, as broad thermal tolerances, members of clade C are often the well as genetically and ecologically diverse. Coral colonies most severely impacted during bleaching events. For this harboring clade C are often the most exposed to physical reason, their symbiosis biology, dispersal capabilities and stressors. The genotypic diversity, dispersal and genetic genetic identities are of increasing importance to conser- connectivity exhibited by these Symbiodinium are the vation efforts as climates change globally, further affecting subjects of an increasing number of population genetic reef coral communities. studies utilizing microsatellites. Here we describe 18 new Coral endosymbionts are increasingly being studied with microsatellite loci and test their utility across four common multi-locus techniques because this approach offers genetic clade C types. We obtained multi-locus genotypes with resolution to the level of the individual. High-resolution individual level resolution in each of these types. Our markers, however, are not yet available for most Symbiodi- results indicate that multi-locus genotypes can be obtained nium spp. In the present study, we present 18 new loci for for many members of clade C using a subset of these Symbiodinium Clade C; 14 loci developed on a monoclonal markers. Data from these markers may assess population culture of S. goreaui (C1) and 4 loci developed from the dynamics during coral bleaching and recovery as well as symbiont specific to the zooanthid Zoanthus sansibaricus in resolve boundaries to genetic recombination among these the western tropical North Pacific referred to here by its closely related, yet ecologically distinct, lineages. diagnostic ITS2 sequences C3ee-ff, previously referred to as C1z (sensu Reimer 2008). In combination with previously Keywords Symbiodinium Á Microsatellites Á published markers on other clade C types (Bay et al. 2009), Population genetics Á Coral reefs these markers provide individual level resolution through multi-locus geneotypes for many members of clade C. We used 454 sequencing at the Penn State Nucleic Acids The genetically diverse dinoflagellates in the genus Sym- Facility (University Park, PA) to generate two genomic biodinium are often found in obligate symbiosis with reef libraries of [50,000 read lengths of 250–400 bp. The first building corals. This genus has been divided into a number sequence library was created from genomic DNA obtained from cultured S. goreaui (culture rt-113 from the Robert K. Trench collection). The second library was created from the Electronic supplementary material The online version of this article (doi:10.1007/s12686-013-0023-5) contains supplementary pooled DNA from the symbionts of Zoanthus sansibaricus. material, which is available to authorized users. Both libraries were prepared from 3,000 ng of double- stranded DNA, using the Nextera DNA Sample Prep Kit & D. C. Wham ( ) Á M. Carmichael Á T. C. LaJeunesse (Epicentre Biotechnologies, Madison WI) and sequenced on Department of Biology, 221 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA a 454 GS-FLX sequencer (Roche Diagnostics Corporation, e-mail: [email protected] Indianapolis, IN) utilizing the Titanium Sequencing Kit 123 Conservation Genet Resour Table 1 Size ranges of 4 clade C types, N is the number of samples genotyped and Na is the number of alleles observed Locus C1 GBR C3 GBR C1c Hawaii CZ Okinawa Range N Na Range N Na Range N Na Range N Na Sgr_9a 254–266 2 2 Sgr_19a 169–178 3 4 Sgr_21a 132–154 3 3 125–141 10 5 128–137 42 5 Sgr_33a 190–196 3 4 Sgr_34 154–166 3 4 129–135 12 4 Sgr_37a 124–136 5 7 109–121 25 6 Sgr_40 192–215 52 6 188–209 24 6 170–176 49 4 SgrSpl_13 136–193 46 19 96 12 1 SgrSpl_22 134–140 51 5 101–107 10 3 SgrSpl_24 121–133 9 4 SgrSpl_25 110–116 55 5 107–122 10 5 105–120 24 5 94 56 1 SgrSpl_26 112–126 30 8 95–101 5 3 199–214 22 4 SgrSpl_30 208–222 44 8 173–183 11 6 206–226 22 10 201–205 58 5 SgrSpl_78 168–184 9 5 153–159 58 5 Spl_1a 122–136 12 6 215–223 52 5 Spl_16 155–167 10 5 Spl_33 192–222 10 4 209–232 58 1 Spl_89a 191–199 47 5 Data in bold included in linkage-disequalibrium test a Allele sizes include 20 bp M13 sequence used to fluorescently label PCR products with the method described in (Schuelke 2000) (Roche). Sequences containing di-, tri- or tetranucleotide Hawaii and Spl_1 and Spl_89 in C3ee-ff from Okinawa, repeat motifs were identified following the procedures Japan. described in Wham et al. (2011). The software Primer3 These loci can be utilized in a number of genetic appli- (http://primer3.sourceforge.net/) was then used to design cations. Many of the microsatellites amplified across more primer sets for candidate microsatellites. than one of the species we tested (Table 1). Most loci were These PCR primers were screened for their ability to polymorphic across samples of a given phylogenetic type consistently amplify DNA fragments of expected allelic size and will be useful for examining diversity, gene-flow and from the monoclonal strains of S. goreaui (rt-113 and rt-152) genetic exchange. Several were polymorphic only between, and from samples obtained from animal tissues containing and hence diagnostic of, certain phylogenetic types Symbiodinium clade C. These samples were selected for their (Table 1). These may be utilized in the future as tools for diverse geographic origin (Hawaii, USA, Great Barrier Reef, identifying species within clade C. Collectively, these Australia and Okinawa, Japan) as well as their diagnostic ITS microsatellites offer additional high-resolution genetic sequence (C1, C1c, C3 and C3ee-ff). PCR reactions with markers for researchers investigating Symbiodinium ecology M13 labeled primers were preformed according to the and their use may provide new insights into species diversity, methods described in Wham et al. (2011). Loci were only mechanisms for local adaptation, as well as, population retained if they were polymorphic within or between types of dynamics during bleaching and recovery of reefs. Symbiodinium types (supplementary material 1). Dye labeled forward primers were then used to sample genetic Acknowledgments We would like to thank the Penn State diversity in populations of four sub-clade C types (Table 1). Genomics Core Facility at University Park for generating the 454 sequence data used in this study. This research was supported by the Fragment analysis returned genotypic data that was consis- Pennsylvania State University, the National Science Foundation tant with a diploid interpritation of genome copy number in grants (OCE-09287664) and by the National Science Foundation - both monoclonal cultures, as well as samples isolated from East Asia and Pacific Summer Institute (OISE-1108258). host tissue. A linkage disequilibrium test was preformed between all loci with sufficient sampling within populations References (Table 1) using the software GENEPOP (Raymond and Rousset 1995). All pairwise test were insignificant for link- Bay LK, Howells EJ, van Oppen MJ (2009) Isolation, characterisation age with the exceptions of SgrSpl_26 and Sgr_40 in C1c in and cross amplification of thirteen microsatellite loci for coral 123 Conservation Genet Resour endo-symbiotic dinoflagellates (Symbiodinium clade C). Conserv Reimer JD (2008) Implications for different diversity levels of Genet Resour 1(1):199–203 Symbiodinium spp. (Dinophyceae, Suessiales) within closely LaJeunesse TC, Bhagooli R, Hidaka M, Done T, deVantier L, related hosts: zoanthids (Cnidaria: Hexacorallia: Anthozoa) as a Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely- case study. Galaxea 10:3–13 related Symbiodinium spp. differ in relative dominance within Wham DC, Pettay DT, LaJeunesse TC (2011) Microsatellite loci for coral reef host communities across environmental, latitudinal, the host-generalist ‘‘zooxanthella’’ Symbiodinium trenchi and and biogeographic gradients. Mar Ecol Prog Ser 284:147–161 other Clade D Symbiodinium. Conserv Genet Resour 3:541–544 Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86:248–249 123.
Recommended publications
  • (Symbiodinium) in Scleractinian Corals from Tropical Reefs in Southern Hainan
    Journal of Systematics and Evolution 49 (6): 598–605 (2011) doi: 10.1111/j.1759-6831.2011.00161.x Research Article Low genetic diversity of symbiotic dinoflagellates (Symbiodinium) in scleractinian corals from tropical reefs in southern Hainan Island, China 1,2Guo-Wei ZHOU 1,2Hui HUANG∗ 1(Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China) 2(Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China) Abstract Endosymbiotic dinoflagellates in the genus Symbiodinium are among the most abundant and important group of photosynthetic protists found in coral reef ecosystems. In order to further characterize this diversity and compare with other regions of the Pacific, samples from 44 species of scleractinian corals representing 20 genera and 9 families, were collected from tropical reefs in southern Hainan Island, China. Denaturing gradient gel electrophoresis fingerprinting of the ribosomal internal transcribed spacer 2 identified 11 genetically distinct Symbiodinium types that have been reported previously. The majority of reef-building coral species (88.6%) harbored only one subcladal type of symbiont, dominated by host-generalist C1 and C3, and was influenced little by the host’s apparent mode of symbiont acquisition. Some species harbored more than one clade of Symbiodinium (clades C, D) concurrently. Although geographically isolated from the rest of the Pacific, the symbiont diversity in southern Hainan Island was relatively low and similar to both the Great Barrier Reef and Hawaii symbiont assemblages (dominated by clade C Symbiodinium). These results indicate that a specialist symbiont is not a prerequisite for existence in remote and isolated areas, but additional work in other geographic regions is necessary to test this idea.
    [Show full text]
  • Microbial Invasion of the Caribbean by an Indo-Pacific Coral Zooxanthella
    Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella D. Tye Pettaya,b,1, Drew C. Whama, Robin T. Smithc,d, Roberto Iglesias-Prietoc, and Todd C. LaJeunessea,e,1 aDepartment of Biology, The Pennsylvania State University, University Park, PA 16802; bCollege of Earth, Ocean, and Environment, University of Delaware, Lewes, DE 19958; cUnidad Académica de Sistemas Arrecifales (Puerto Morelos), Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, CP 77500 Cancún, Mexico; dScience Under Sail Institute for Exploration, Sarasota, FL 34230; and ePenn State Institutes of Energy and the Environment, University Park, PA 16802 Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved April 28, 2015 (received for review February 11, 2015) Human-induced environmental changes have ushered in the rapid coral communities distributed across broad geographic areas decline of coral reef ecosystems, particularly by disrupting the over the decadal ecological timescales that are necessary to keep symbioses between reef-building corals and their photosymbionts. pace with the current rate of warming. However, escalating stressful conditions enable some symbionts Research on the diversity and ecology of coral symbionts to thrive as opportunists. We present evidence that a stress-tolerant suggests that episodes of stressful warming may facilitate the “zooxanthella” from the Indo-Pacific Ocean, Symbiodinium trenchii, spread of ecologically rare or opportunistic species (13). The has rapidly spread to coral communities across the Greater Carib- severe mass bleaching and mortality of eastern Caribbean corals bean. In marked contrast to populations from the Indo-Pacific, in 2005 corresponded with an increased prevalence and abun- Atlantic populations of S.
    [Show full text]
  • 0Ca27eedadadd00c93df6016e4
    Long-Range Dispersal and High-Latitude Environments Influence the Population Structure of a “Stress-Tolerant” Dinoflagellate Endosymbiont D. Tye Pettay1,2*, Todd C. LaJeunesse1 1 Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America, 2 College of Earth, Ocean, and Environment, University of Delaware, Lewes, Delaware, United States of America Abstract The migration and dispersal of stress-tolerant symbiotic dinoflagellates (genus Symbiodinium) may influence the response of symbiotic reef-building corals to a warming climate. We analyzed the genetic structure of the stress- tolerant endosymbiont, Symbiodinium glynni nomen nudum (ITS2 - D1), obtained from Pocillopora colonies that dominate eastern Pacific coral communities. Eleven microsatellite loci identified genotypically diverse populations with minimal genetic subdivision throughout the Eastern Tropical Pacific, encompassing 1000’s of square kilometers from mainland Mexico to the Galapagos Islands. The lack of population differentiation over these distances corresponds with extensive regional host connectivity and indicates that Pocillopora larvae, which maternally inherit their symbionts, aid in the dispersal of this symbiont. In contrast to its host, however, subtropical populations of S. glynni in the Gulf of California (Sea of Cortez) were strongly differentiated from populations in tropical eastern Pacific. Selection pressures related to large seasonal fluctuations in temperature and irradiance likely explain this abrupt genetic
    [Show full text]
  • Bleaching' Event
    Downloaded from rspb.royalsocietypublishing.org on 26 October 2009 Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral 'bleaching' event Todd C. LaJeunesse, Robin T. Smith, Jennifer Finney and Hazel Oxenford Proc. R. Soc. B 2009 276, 4139-4148 first published online 9 September 2009 doi: 10.1098/rspb.2009.1405 Supplementary data "Data Supplement" http://rspb.royalsocietypublishing.org/content/suppl/2009/09/09/rspb.2009.1405.DC1.h tml References This article cites 46 articles, 11 of which can be accessed free http://rspb.royalsocietypublishing.org/content/276/1676/4139.full.html#ref-list-1 Subject collections Articles on similar topics can be found in the following collections ecology (956 articles) environmental science (231 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Proc. R. Soc. B go to: http://rspb.royalsocietypublishing.org/subscriptions This journal is © 2009 The Royal Society Downloaded from rspb.royalsocietypublishing.org on 26 October 2009 Proc. R. Soc. B (2009) 276, 4139–4148 doi:10.1098/rspb.2009.1405 Published online 9 September 2009 Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event Todd C. LaJeunesse1,*, Robin T. Smith2, Jennifer Finney3 and Hazel Oxenford3 1Department of Biology, Pennsylvania State University, University Park, PA 16802, USA 2Department of Biology, Florida International University, Miami, FL 33199, USA 3Center for Resource Management and Environmental Studies, University of the West Indies, Cave Hill Campus, Barbados Reef corals are sentinels for the adverse effects of rapid global warming on the planet’s ecosystems.
    [Show full text]
  • Heritability of the Symbiodinium Community in Vertically- and Horizontally-Transmitting 2 Broadcast Spawning Corals 3 4 Kate M
    bioRxiv preprint doi: https://doi.org/10.1101/100453; this version posted July 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Heritability of the Symbiodinium community in vertically- and horizontally-transmitting 2 broadcast spawning corals 3 4 Kate M. Quigley1,2*, Bette L. Willis1,2, Line K. Bay2,3 5 6 1ARC Centre of Excellence for Coral Reef Studies, and College of Science and 7 Engineering, James Cook University, Townsville, QLD 4811, Australia 8 2AIMS@JCU, Australian Institute of Marine Science and James Cook University, 9 Townsville, QLD 4811, Australia 10 3Australian Institute of Marine Science, PMB3, Townsville, Queensland 4810, Australia 11 12 *Corresponding author: KM Quigley 13 Address: College of Marine and Environmental Sciences, James Cook University, 14 Townsville, QLD 4811, Australia 15 Email: [email protected] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1 bioRxiv preprint doi: https://doi.org/10.1101/100453; this version posted July 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 35 Abstract 36 The dinoflagellate-coral partnership influences the coral holobiont’s tolerance to 37 thermal stress and bleaching. However, the comparative roles of host genetic versus 38 environmental factors in determining the composition of this symbiosis are largely 39 unknown. Here we quantify the heritability of the initial Symbiodinium communities for 40 two broadcast-spawning corals with different symbiont transmission modes: Acropora 41 tenuis has environmental acquisition, whereas Montipora digitata has maternal 42 transmission.
    [Show full text]
  • Improved Resolution of Reef-Coral Endosymbiont (Symbiodinium) Species Diversity, Ecology, and Evolution Through Psba Non-Coding Region Genotyping
    Improved Resolution of Reef-Coral Endosymbiont (Symbiodinium) Species Diversity, Ecology, and Evolution through psbA Non-Coding Region Genotyping Todd C. LaJeunesse1*, Daniel J. Thornhill2 1 Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, Pennsylvania, United States of America, 2 Defenders of Wildlife, Washington, District of Columbia, United States of America Abstract Ribosomal DNA sequence data abounds from numerous studies on the dinoflagellate endosymbionts of corals, and yet the multi-copy nature and intragenomic variability of rRNA genes and spacers confound interpretations of symbiont diversity and ecology. Making consistent sense of extensive sequence variation in a meaningful ecological and evolutionary context would benefit from the application of additional genetic markers. Sequences of the non-coding region of the plastid psbA minicircle (psbAncr) were used to independently examine symbiont genotypic and species diversity found within and between colonies of Hawaiian reef corals in the genus Montipora. A single psbAncr haplotype was recovered in most samples through direct sequencing (,80–90%) and members of the same internal transcribed spacer region 2 (ITS2) type were phylogenetically differentiated from other ITS2 types by substantial psbAncr sequence divergence. The repeated sequencing of bacterially-cloned fragments of psbAncr from samples and clonal cultures often recovered a single numerically common haplotype accompanied by rare, highly-similar, sequence variants. When sequence
    [Show full text]
  • Heritability of the Symbiodinium Community in Vertically- And
    www.nature.com/scientificreports OPEN Heritability of the Symbiodinium community in vertically- and horizontally-transmitting Received: 19 January 2017 Accepted: 10 July 2017 broadcast spawning corals Published: xx xx xxxx Kate M. Quigley 1,2, Bette L. Willis1,2 & Line K. Bay2,3 The dinofagellate-coral partnership infuences the coral holobiont’s tolerance to thermal stress and bleaching. However, the comparative roles of host genetic versus environmental factors in determining the composition of this symbiosis are largely unknown. Here we quantify the heritability of the initial Symbiodinium communities for two broadcast-spawning corals with diferent symbiont transmission modes: Acropora tenuis has environmental acquisition, whereas Montipora digitata has maternal transmission. Using high throughput sequencing of the ITS-2 region to characterize communities in parents, juveniles and eggs, we describe previously undocumented Symbiodinium diversity and dynamics in both corals. After one month of uptake in the feld, Symbiodinium communities associated with A. tenuis juveniles were dominated by A3, C1, D1, A-type CCMP828, and D1a in proportional abundances conserved between experiments in two years. M. digitata eggs were predominantly characterized by C15, D1, and A3. In contrast to current paradigms, host genetic infuences accounted for a surprising 29% of phenotypic variation in Symbiodinium communities in the horizontally- transmitting A. tenuis, but only 62% in the vertically-transmitting M. digitata. Our results reveal hitherto unknown fexibility in the acquisition of Symbiodinium communities and substantial heritability in both species, providing material for selection to produce partnerships that are locally adapted to changing environmental conditions. Coral bleaching, defned as either the loss of Symbiodinium cells from coral tissues or reduction in symbiont photosynthetic pigments, represents a threat to coral reefs world-wide as it increases in both frequency and mag- nitude1–4.
    [Show full text]
  • Genome Evolution of Symbiodiniaceae
    Genome evolution of Symbiodiniaceae Raúl Augusto González Pech MSc in Evolution, Ecology and Systematics BSc in Biology A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2020 Institute for Molecular Bioscience Abstract Symbiotic interactions between dinoflagellates (Symbiodiniaceae) and corals give rise to the ecological complexity and biodiversity of reef ecosystems. Comparative genomic studies can aid in tracing the evolutionary history of these dinoflagellates, and thus elucidate the evolutionary forces that drove their diversification and adaptation as predominantly symbiotic lineages. However, genome data from these ecologically important organisms remain scarce, largely due to their immense sizes and idiosyncratic genome features. The incorporation of genome-scale data from diverse lineages in a comprehensive comparative analysis is essential to better understand the molecular and evolutionary mechanisms that underpin the diversification of Symbiodiniaceae. In this thesis, I first review and discuss the state-of-the-art of Symbiodiniaceae genomics in depth, highlighting the genetic and ecological diversity of these dinoflagellates. In addition, I present a theoretical framework, based on our current knowledge of intracellular bacterial symbionts and parasites, to approach the study of genome evolution in Symbiodiniaceae along the broad spectrum of symbiotic associations they can establish. I also summarise and explain how common methods in comparative genomics can be implemented to improve our understanding of Symbiodiniaceae evolution. Using available genome and transcriptome data in a comparative analysis (Chapter 3), I identified gene functions that distinguish Symbiodiniaceae from other dinoflagellates in Order Suessiales, as well as functions specific to the major lineages within the family. These results show that gene functions shared by all lineages in Symbiodiniaceae are relevant to adaptation to the environment, as well as to the establishment and maintenance of symbiosis.
    [Show full text]
  • Diversity, Stability and Connectivity of Symbiodinium Populations at Various Spatial Scales
    The Pennsylvania State University The Graduate School Eberly College of Science Diversity, Stability and Connectivity of Symbiodinium Populations at Various Spatial Scales A Dissertation in Biology by Daniel T. Pettay © 2011 Daniel T. Pettay Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2011 The dissertation of Daniel T. Pettay was reviewed and approved* by the following: Todd C. LaJeunesse Assistant Professor of Biology Dissertation Adviser Stephen W. Schaeffer Associate Professor of Biology Chair of Committee Andrew F. Read Professor of Biology Timothy C. Reluga Assistant Professor of Mathematics Douglas R. Cavener Professor of Biology Department Head of Biology *Signatures are on file in the Graduate School ii ABSTRACT Coral-algal symbioses construct and maintain entire ecosystems, making symbiotic dinoflagellates (Symbiodinium) among the most abundant microbial eukaryotes found on coral reefs. Despite decades of research on these associations the genotypic diversity, dispersal and population differentiation of Symbiodinium, along with the fine-scale dynamics between populations of hosts and their endosymbionts, remain unclear. Modern population genetic approaches can elucidate these patterns and substantially advance our understanding of these associations. Coral bleaching is the loss of endosymbiotic dinoflagellates due to physiological stress, such as changes temperature or light. Bleaching can lead to disease outbreaks and mass mortality and has caused widespread degradation of many reef coral communities. However, some host-symbiont combinations show higher resistance to these perturbations and their proliferation has the potential to influence the response of reef communities to climate change. Symbionts of the phylogenetic grouping Clade D represent the best known and most geographically widespread example, where host colonies associating with these symbionts exhibit tolerance to physiological stress.
    [Show full text]
  • Assessing the Risk of Ocean Acidification for Scleractinian Corals on the Great Barrier Reef
    Assessing the risk of ocean acidification for scleractinian corals on the Great Barrier Reef Alicia Jane Lloyd B.Sc. (Hons) A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy at The University of Technology Sydney in 2013 School of the Environment Certificate of original authorship I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Signature of Student: Date: This thesis is dedicated to my son, Javier Patrick Lloyd. His arrival into this world during my PhD was a timely reminder that we do not inherit this earth from our ancestors; we borrow it from our children. Javier, I wrote this thesis in the hope that it will serve to maintain the beauty of the Great Barrier Reef for your generation and many more to come. Acknowledgements I am very fortunate to have worked under the supervision of Peter Ralph, Anthony Larkum and Sophie Dove, an amazing team of coral photo-biologists. Peter, thank you for taking me under your wing, even though it may have seemed risky at the time. Your organisation and dedication has restored my faith in the scientific process and gave me the motivation to complete this thesis.
    [Show full text]
  • A Web-Based Database of Symbiodinium
    Tonk et al. BMC Ecology 2013, 13:7 http://www.biomedcentral.com/1472-6785/13/7 DATABASE Open Access SymbioGBR: a web-based database of Symbiodinium associated with cnidarian hosts on the Great Barrier Reef Linda Tonk1,2*†, Pim Bongaerts2,3†, Eugenia M Sampayo1,2 and Ove Hoegh-Guldberg2,3 Abstract Background: The algal endosymbionts (genus Symbiodinium) associated with scleractinian corals (and other reef invertebrates) have received a lot of research attention in the past decade, particularly as certain host-symbiont associations appear more affected by increasing seawater temperatures than others. With the rapid accumulation of information on the diversity of Symbiodinium, it is becoming increasingly difficult to compare newly acquired Symbiodinium data with existing data to detect patterns of host-symbiont specificity on broader spatial scales. The lack of a general consensus on the classification of Symbiodinium species coupled with the variety of different markers used to identify the genus Symbiodinium (ITS1, ITS2, LSU D1/D2, chloroplast 23S rDNA and psbA minicircle) further complicate direct comparison. Description: The SymbioGBR database compiles all currently available Symbiodinium sequences and associated host information of data collected from the Great Barrier Reef into a single relational database that is accessible via a user-friendly, searchable web-based application (http://www.SymbioGBR.org). SymbioGBR allows users to query Symbiodinium types or sequences sourced from various genetic markers (e.g. ITS1, ITS2, LSU D1/D2 and chloroplast 23S) and invertebrate host species to explore their reported associations. In addition, as the database includes sequence information of multiple genetic markers, it allows cross-referencing between conventional (e.g.
    [Show full text]
  • Journal of the Marine Biological Association of the United Kingdom
    Journal of the Marine Biological Association of the United Kingdom http://journals.cambridge.org/MBI Additional services for Journal of the Marine Biological Association of the United Kingdom: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Habitat correlation of Symbiodinium diversity in two reef­building coral species in an upwelling region, eastern Hainan Island, China G. Zhou, H. Huang, J. Lian, C. Zhang and X. Li Journal of the Marine Biological Association of the United Kingdom / Volume 92 / Issue 06 / September 2012, pp 1309 ­ 1316 DOI: 10.1017/S0025315411001548, Published online: 21 October 2011 Link to this article: http://journals.cambridge.org/abstract_S0025315411001548 How to cite this article: G. Zhou, H. Huang, J. Lian, C. Zhang and X. Li (2012). Habitat correlation of Symbiodinium diversity in two reef­building coral species in an upwelling region, eastern Hainan Island, China. Journal of the Marine Biological Association of the United Kingdom, 92, pp 1309­1316 doi:10.1017/S0025315411001548 Request Permissions : Click here Downloaded from http://journals.cambridge.org/MBI, IP address: 202.40.139.167 on 02 Nov 2012 Journal of the Marine Biological Association of the United Kingdom, 2012, 92(6), 1309–1316. # Marine Biological Association of the United Kingdom, 2011 doi:10.1017/S0025315411001548 Habitat correlation of Symbiodinium diversity in two reef-building coral species in an upwelling region, eastern Hainan Island, China g. zhou1,2, h. huang1,2, j. lian1, c. zhang1 and x. li1 1Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China, 2National Experiment Station of Tropical Marine Biology, Sanya 572000, China Reef-building corals are fundamental to the most diverse marine ecosystems, and the coral–dinoflagellate (zooxanthellae) associations on fine scale remains largely unknown.
    [Show full text]