bioRxiv preprint doi: https://doi.org/10.1101/100453; this version posted July 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Heritability of the Symbiodinium community in vertically- and horizontally-transmitting 2 broadcast spawning corals 3 4 Kate M. Quigley1,2*, Bette L. Willis1,2, Line K. Bay2,3 5 6 1ARC Centre of Excellence for Coral Reef Studies, and College of Science and 7 Engineering, James Cook University, Townsville, QLD 4811, Australia 8 2AIMS@JCU, Australian Institute of Marine Science and James Cook University, 9 Townsville, QLD 4811, Australia 10 3Australian Institute of Marine Science, PMB3, Townsville, Queensland 4810, Australia 11 12 *Corresponding author: KM Quigley 13 Address: College of Marine and Environmental Sciences, James Cook University, 14 Townsville, QLD 4811, Australia 15 Email:
[email protected] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1 bioRxiv preprint doi: https://doi.org/10.1101/100453; this version posted July 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 35 Abstract 36 The dinoflagellate-coral partnership influences the coral holobiont’s tolerance to 37 thermal stress and bleaching. However, the comparative roles of host genetic versus 38 environmental factors in determining the composition of this symbiosis are largely 39 unknown. Here we quantify the heritability of the initial Symbiodinium communities for 40 two broadcast-spawning corals with different symbiont transmission modes: Acropora 41 tenuis has environmental acquisition, whereas Montipora digitata has maternal 42 transmission.