Views, 18, 63-84

Total Page:16

File Type:pdf, Size:1020Kb

Views, 18, 63-84 UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ A Comparison of Glacial Chronologies between the Eastern and Western Cordilleras, Bolivia By Colby A. Smith M.S. University of Maine, 2003 B.S. University of Maine, 2001 A Dissertation Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy (in Geology) The Graduate School The University of Cincinnati May 2008 Advisory Committee: Thomas V. Lowell, Professor of Geology, University of Cincinnati (primary advisor) Bryan G. Mark, Assistant Professor of Geology, Ohio State University David B. Nash Professor of Geology, University of Cincinnati Lewis A. Owen, Professor of Geology, University of Cincinnati Donald T. Rodbell, Professor of Geology, Union College i Abstract The timing and forcing of glacial advance in the tropical Andes remains uncertain with regard to both higher latitude and intra-tropical glacial fluctuations over the last glacial cycle and through the Holocene. Surface exposure age dating of glacial deposits in both the Eastern and Western Cordilleras of Bolivia coupled with glacial mass balance modeling provides a step towards understanding these relationships. 36Cl Surface exposure age dating at Nevado Sajama in the Western Cordillera, Bolivia suggests that glaciers retreated from moraines at ~16.9 ka -10.2 ka, 7.0 - 4.4 ka, and 4.7 - 3.3 ka. In the Eastern Cordillera of Bolivia at Nevado Illimani glaciers retreated from moraines at 15 ka -13.0 ka, 10.5 ka - 8.5 ka, and 3.0 ka -1.5 ka based on 10Be surface exposure ages. The new data from the Eastern Cordillera agree well with other Late Glacial and late Holocene aged moraines in the Eastern Cordillera while the data from the Western Cordillera agree well with the one previous study. However, this study provides the first dates on Holocene moraines in the Western Cordillera. The major chronological contribution from the Western Cordillera is that the Late Glacial aged advance appears to be the most extensive of the last glacial cycle and approximately synchronous with the Late Glacial advance in the Eastern Cordillera. If indeed the two advances occurred at the same time, reconstruction of past equilibrium line altitudes (ELA) suggests that that the regional ELA was nearly flat between the Eastern (4870 m a.s.l.) and Western Cordilleras (>4690 m a.s.l.) as opposed to today where it rises 360 m from the Eastern to the Western Cordillera. It is hypothesized that the change in the slope of the regional ELA results form increased winter precipitation from the west. A positive degree-day glacier mass balance model was applied to the paleo-ELAs associated with the moraines dated at Nevado Illimani. Unique solutions were obtained for ii periods where independent estimates of either precipitation or temperature are available. According to the model only a ~2.3 oC cooling is required to advance glaciers to their Late Glacial extents if precipitation was 50-75% higher. The model was also applied to the Western Cordillera. However, it did not produce the correct modern ELA. This suggests that PDD models are not applicable to regions where sublimation is the dominant ablation mechanism. iii iv Acknowledgments I would like to thank the members of my committee for their help over the past four years. All committee members have read and re-read drafts of these manuscripts and added useful comments for which I am grateful. However, many committee members have gone beyond the usual editing duties. I would like to thank Don Rodbell and Bryan Mark for introducing me to fieldwork in South America in 2005. I would like to thank Lewis Owen for the use of his lab and the help and insight he has given me regarding cosmogenic exposure age dating. Finally, I would like to thank Tom Lowell for his leadership and friendship over the past decade. Beyond my committee, I would like to thank the Parque Nacional de Sajama for permission to work in the park. Also, the Universidad de San Andres and Jose Escobar and Monica Escobar for organizing the logistics in Bolivia. Preface My dissertation is a compilation of three separate manuscripts. Chapter 2 has been submitted to the Journal of Quaternary Science with Thomas V. Lowell and Marc W. Caffee of the Department of Physics, Purdue University as co-authors. Chapter 3 is in preparation for submission to Quaternary Research with Thomas V. Lowell, Lewis A. Owen, and Marc W. Caffee as co-aruthors. Chapter 4 will likely be submitted to the Journal of Glaciology with Thomas V. Lowell as a co-author. v Table of Contents Chapter 1. Introductory Remarks………………….…………………………………………..1 Chapter 2. Late Glacial and Holocene Glacial Chronology and Geomorphologic Evidence for the Presence of Cold Based Glaciers at Nevado Sajama, Bolivia………........9 Abstract………………………………………………………………………………9 Introduction………………………………………………………………………..…9 Geologic and Climatic Setting…………………………...…………………………10 Previous Work…………………………...…………………………………….…....11 Methods…………………………...………………………………………….....…..12 Results…………………………...………………………………………….....…....14 Discussion……………………...…………………………………………...…....…19 Conclusion……..………………...…………………………………………...…..…28 Acknowledgements…………………………...…………………………………….29 References……………………….…………………………………………...…..…29 Tables…………………………...…………………………………………...…..….34 Figures…………………………...…………………………………………...…..…38 Chapter 3. Late Quaternary glacial chronology Nevado Illimani, Cordillera Real, Bolivia: Implications for paleoclimatic reconstructions across the Andes………………48 Abstract……………………………………………………………………………..48 Introduction.………………………………………………………………………...48 Geologic Setting…………………………………………………………….………50 Methods……………………………………………………………………………..51 Results……………………………………………………………………………....52 Discussion…………………………………………………………………………..56 Conclusions………………………………………………………………………....60 Acknowledgements………………………………………………………………....61 References…………………………………………………………………………..61 Tables…………………………………………………………………………….....67 Figures………………………………………………………………………………70 Chapter 4. Present, future, and past tropical Andean ELAs: Assessing the relative importance of precipitation and temperature on glacier mass balance using a positive degree-day model…………………………………………………..…….80 Abstract……………………………………………………………………………..80 Introduction…………………………………………………………………………80 Glaciological Setting……………………………………………………………..…82 Data…………………………………………………………………………………83 Methods…………………………………………………………………………..…84 Selection of Model Variables……………………………………………………….83 Results……………………………………………………………………………....87 Discussion…………………………………………………………………………..88 Conclusions……………………………………………………………………...….94 References……………………………………………………………………….….95 vi Figures……………………………………………………………………………..101 Chapter 5. Concluding Remarks……………………………………………………………...107 List of Tables and Figures Chapter 1. Introductory Remarks……………….….…………………………………………..1 Figure 1……………...………………………………………………………………..6 Figure 2……………...………………………………………………………………..7 Figure 3……………...………………………………………………………………..8 Chapter 2. Late Glacial and Holocene Glacial Chronology and Geomorphologic Evidence for the Presence of Cold Based Glaciers at Nevado Sajama, Bolivia………........9 Table 1………………………………………………………………………………34 Table 2……………………………………………………………………………....35 Table 3…………………………………………………………………………...….36 Table 4………………………………………………………………………………37 Figure 1…………………………………………………………………………...…38 Figure 2……………………………………………………………….……………..39 Figure 3……………………………………………………………………………...40 Figure 4………………………………………………………………………….41-42 Figure 5………………………………………………………………………….43-44 Figure 6……………………………………………………………………………...45 Figure 7……………………………………………………………………………...46 Figure 8…………………………………………………………………………...…47 Chapter 3. Late Quaternary glacial chronology Nevado Illimani, Cordillera Real, Bolivia: Implications for paleoclimatic reconstructions across the Andes………………48 Table 1 ………..……………………………………………………………….……67 Table 2…………………………………………………………………………...68-69 Table 3…………………………………………………………………………...….70 Figure 1…………………………………………………………………………...…70 Figure 2……………………………………………………………….……………..71 Figure 3……………………………………………………………………………...72 Figure 4………………………………………………………………..…………….73 Figure 5……………………………………………………………………..……….74 Figure 6…………………………………………………………………..……...75-76 Figure 7……………………………………………………………………………...77 Figure 8…………………………………………………………………………...…78 Figure 9…………………………………………………………………………...…79 vii Chapter 4. Present, future, and past tropical Andean ELAs: Assessing the relative importance of precipitation and temperature on glacier mass balance using a positive degree-day model…………………………………………………..….….80 Figure 1………………………………………………………………………….....101 Figure 2……………………………………………………………….……………102 Figure 3…………………………………………………………………………….103 Figure 4………………………………………………………………..…………...104 Figure 5……………………………………………………………………..……...104 Figure 6…………………………………………………………………..………...105 Figure 7…………………………………………………………………………….105 Figure 8………………………………………………………………………….…106 Chapter 5. Concluding Remarks……………………………………………………………...107 viii Chapter 1. Introductory Remarks The oxygen isotopic records from high latitude ice-cores broadly indicate climatic correlation between the two polar hemispheres over the past 25 ka. For example, the GISP II core from Greenland (Blunier and Brooks, 2001) and the Dome C core from Antarctica (Lorius et
Recommended publications
  • Freshwater Diatoms in the Sajama, Quelccaya, and Coropuna Glaciers of the South American Andes
    Diatom Research ISSN: 0269-249X (Print) 2159-8347 (Online) Journal homepage: http://www.tandfonline.com/loi/tdia20 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups To cite this article: D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups (2017): Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes, Diatom Research, DOI: 10.1080/0269249X.2017.1335240 To link to this article: http://dx.doi.org/10.1080/0269249X.2017.1335240 Published online: 17 Jul 2017. Submit your article to this journal Article views: 6 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tdia20 Download by: [Lund University Libraries] Date: 19 July 2017, At: 08:18 Diatom Research,2017 https://doi.org/10.1080/0269249X.2017.1335240 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes 1 1 2 3 D. MARIE WEIDE ∗,SHERILYNC.FRITZ,BRUCEE.BRINSON, LONNIE G. THOMPSON & W. EDWARD BILLUPS2 1Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA 2Department of Chemistry, Rice University, Houston, TX, USA 3School of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA Diatoms in ice cores have been used to infer regional and global climatic events. These archives offer high-resolution records of past climate events, often providing annual resolution of environmental variability during the Late Holocene.
    [Show full text]
  • Jürgen Reinmüller
    JÜRGEN REINMÜLLER KLIMAVERHÄLTNISSE IN EXTREMEN HOCHGEBIRGEN DER ERDE Ergebnisse eines Sonderklimamessnetzes Diplomarbeit zur Erlangung des akademischen Grades „Magister der Naturwissenschaften“ an der Naturwissenschaftlichen Fakultät der Karl-Franzens-Universität Graz Betreuung durch: Ao. UNIV. PROF. DR. REINHOLD LAZAR Institut für Geographie und Raumforschung 2010 Eidesstattliche Erklärung 2 Eidesstattliche Erklärung Ich, Jürgen Reinmüller, erkläre hiermit, dass die vorliegende Diplomarbeit von mir selbst und ohne unerlaubte Beihilfe verfasst wurde. Die von mir benutzten Hilfsmittel sind im Literaturverzeichnis am Ende dieser Arbeit aufgelistet und wörtlich oder inhaltlich entnommene Stellen wurden als solche kenntlich gemacht. Admont, im März 2010 Jürgen Reinmüller Vorwort 3 Vorwort Die höchstgelegenen Bereiche der Hochgebirge der Erde weisen bis dato eine außerordentlich geringe Dichte an Klimastationen und damit ein Defizit an verfügbaren Klimadaten auf. Aussagen zu den thermischen Aspekten in den Gipfellagen extremer Hochgebirge jenseits der 6000 m Grenze konnten bis dato nur unbefriedigend erörtert werden. Als staatlich geprüfter Berg- und Schiführer und begeisterter Höhenbergsteiger liegen die beeindruckenden, hochgelegenen Gipfel seit Jahren in meinem Interessensbereich. Zudem sehe ich mich in meinem bergführerischen Arbeitsbereich zunehmend mit den Zeichen des aktuellen Klimawandels konfrontiert. Schmelzende Gletscher oder auftauender Permafrost stellen für Bergsteiger ein nicht unwesentliches Gefahrenpotential dar. Die durch das von Univ. Prof. Dr. Reinhold Lazar ins Leben gerufene Projekt HAMS.net (High Altitude Meteorological Station Network) gewonnenen Daten können künftig bei der Tourenplanung diverser Expeditionen miteinbezogen werden und stellen eine wichtige Grundlage für klimatologische Hochgebirgsforschung in großen Höhen dar. Ich selbst durfte dieses interessante Projekt durch den Data-Logger-Tausch am Aconcagua im Februar 2007 ein wenig unterstützen und werde dem Projekt auch in Zukunft mit Rat und Tat zur Seite stehen.
    [Show full text]
  • Lake Tauca Highstand (Heinrich Stadial 1A) Driven by a Southward Shift of the Bolivian High
    SCIENCE ADVANCES | RESEARCH ARTICLE CLIMATOLOGY Copyright © 2018 The Authors, some Lake Tauca highstand (Heinrich Stadial 1a) driven by a rights reserved; exclusive licensee southward shift of the Bolivian High American Association for the Advancement 1,2 1,3 1 4 1 of Science. No claim to Léo C. P. Martin *, Pierre-Henri Blard *, Jérôme Lavé , Thomas Condom , Mélody Prémaillon , original U.S. Government 5 5 6 1 1 Vincent Jomelli , Daniel Brunstein , Maarten Lupker , Julien Charreau , Véronique Mariotti , Works. Distributed 1 † 1 Bouchaïb Tibari , ASTER Team , Emmanuel Davy under a Creative Commons Attribution Heinrich events are characterized by worldwide climate modifications. Over the Altiplano endorheic basin (high trop- NonCommercial ical Andes), the second half of Heinrich Stadial 1 (HS1a) was coeval with the highstand of the giant paleolake Tauca. License 4.0 (CC BY-NC). However, the atmospheric mechanisms underlying this wet event are still unknown at the regional to global scale. We use cosmic-ray exposure ages of glacial landforms to reconstruct the spatial variability in the equilibrium line altitude of the HS1a Altiplano glaciers. By combining glacier and lake modeling, we reconstruct a precipitation map for the HS1a period. Our results show that paleoprecipitation mainly increased along the Eastern Cordillera, whereas the southwestern region of the basin remained relatively dry. This pattern indicates a southward expansion of the east- erlies, which is interpreted as being a consequence of a southward shift of the Bolivian High. The results provide a new understanding of atmospheric teleconnections during HS1 and of rainfall redistribution in a changing climate. INTRODUCTION tropical Brazil changed in pace with the Heinrich stadials (5, 13–15)and A major uncertainty in our understanding of 21st century climate numerous sites record wetter conditions during these episodes [see concerns the global redistribution of rainfall and modification of mon- compilations (15, 16)].
    [Show full text]
  • An Ice-Core Pollen Record Showing Vegetation Response to Late-Glacial and Holocene Climate Changes at Nevado Sajama, Bolivia
    The University of Southern Mississippi The Aquila Digital Community Faculty Publications 2013 An Ice-Core Pollen Record Showing Vegetation Response to Late- Glacial and Holocene Climate Changes at Nevado Sajama, Bolivia C. A. Reese University of Southern Mississippi K. B. Liu L. G. Thompson Follow this and additional works at: https://aquila.usm.edu/fac_pubs Part of the Geography Commons Recommended Citation Reese, C., Liu, K., Thompson, L. (2013). An Ice-Core Pollen Record Showing Vegetation Response to Late- Glacial and Holocene Climate Changes at Nevado Sajama, Bolivia. Annals of Glaciology, 54(63), 183-190. Available at: https://aquila.usm.edu/fac_pubs/7807 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. Annals of Glaciology 54(63) 2013 doi:10.3189/2013AoG63A375 183 An ice-core pollen record showing vegetation response to Late-glacial and Holocene climate changes at Nevado Sajama, Bolivia C.A. REESE,1 K.B. LIU,2 L.G. THOMPSON3 1Department of Geography and Geology, University of Southern Mississippi, Hattiesburg, MS, USA E-mail: [email protected] 2Department of Oceanography and Coastal Sciences, School of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA 3School of Earth Sciences, The Ohio State University, Columbus, OH, USA ABSTRACT. We present the results of pollen analysis performed on an ice core recovered from Nevado Sajama, Bolivia, dated to 25 ka BP. Low pollen concentrations from 25 to 15 ka BP are consistent with the scenario of an expanded ice cap surrounded by sparse vegetation and cold conditions on the Altiplano during the Last Glacial Maximum.
    [Show full text]
  • Salar De Uyuni 20 Frequently Asked Questions
    B2B TRAINING KIT COURSE 3 SALAR DE UYUNI 20 FREQUENTLY ASKED QUESTIONS BBoolilviviaie: nT:h De iLea grrgöeßste S Saaltl zFplafat ninn teh dee Wr Woreldlt PAGE 2 Content 20 questions and answers about the salt desert of Bolivia, which every travel agency and every traveler should know 3 INTRODUCTION 5 20 FREQUENTLY ASKED QUESTIONS 6 General Information 8 Documents, Visa and Vaccinations 9 Climate in the Region 11 Trips in the Region 16 Accommodation in Uyuni 18 Other Concerns 22 Special: What to Pack for Uyuni 24 SUMMARY 26 ABOUT LOGISTUR Introduction PAGE 4 This is the third part of our training kit about El Salar de Uyuni, also known as the salt desert of Bolivia. In this course 3 you will find the 20 most frequently asked questions that everyone deals with when planning their trip to El Salar de Uyuni. This course is structured in a way that it serves as an essential guide for anyone interested in tourism in the region. If you have not yet read course 1 (Overview of the Salar de Uyuni), we recommend that you take a look at it. In Course 1 we will talk about the destination itself: The origin, historical data, demography, biodiversity and everything you need to know about the world's largest salt desert. Please also read course 2 (Travel planning Salar de Uyuni). In this course we will talk about all the important information needed to plan and carry out the trip and to sell this destination (arrival in Uyuni, places of interest, types of excursions, challenges in the region).
    [Show full text]
  • Convergent Margin Magmatism in the Central Andes and Its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations
    AN ABSTRACT OF THE DISSERTATION OF Morgan J. Salisbury for the degree of Doctor of Philosophy in Geology presented on June 3, 2011. Title: Convergent Margin Magmatism in the Central Andes and its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations Abstract approved: ________________________________________________________________________ Adam J.R. Kent This dissertation combines volcanological research of three convergent continental margins. Chapters 1 and 5 are general introductions and conclusions, respectively. Chapter 2 examines the spatiotemporal development of the Altiplano-Puna volcanic complex in the Lípez region of southwest Bolivia, a locus of a major Neogene ignimbrite flare- up, yet the least studied portion of the Altiplano-Puna volcanic complex of the Central Andes. New mapping and laser-fusion 40Ar/39Ar dating of sanidine and biotite from 56 locations, coupled with paleomagnetic data, refine the timing and volumes of ignimbrite emplacement in Bolivia and northern Chile to reveal that monotonous intermediate volcanism was prodigious and episodic throughout the complex. 40Ar/39Ar age determinations of 13 ignimbrites from northern Chile previously dated by the K-Ar method improve the overall temporal resolution of Altiplano-Puna volcanic complex development. Together with new and updated volume estimates, the new age determinations demonstrate a distinct onset of Altiplano-Puna volcanic complex ignimbrite volcanism with modest output rates beginning ~11 Ma, an episodic middle phase with the highest eruption rates between 8 and 3 Ma, followed by a general decline in volcanic output. The cyclic nature of individual caldera complexes and the spatiotemporal pattern of the volcanic field as a whole are consistent with both incremental construction of plutons as well as a composite Cordilleran batholith.
    [Show full text]
  • GRID-Arendal Annual Report 2018
    29 and counting GRID-Arendal Annual Report 2018 Established in 1989 as a non-profit foundation under Norwegian law, GRID-Arendal’s mission is to create environmental knowledge that encourages positive change. We do this by organising and transforming available environmental data into credible, science-based information products, delivered through innovative communication tools and capacity building services targeting relevant stakeholders. GRID-Arendal works closely with United Nations Environment, other UN agencies and partners around the world to connect science to policy. Our goal is to shorten the distance between the emergence of new science and policy actions. We seek to influence thinking and action at the level of the global community on issues that require collective efforts because many problems cannot be solved at the national level alone. Acknowledgements GRID-Arendal would like to acknowledge the support of the Government of Norway and its other funders, partners and supporters. Contents Foreword 3 From the desk of the Managing Director 5 Stories 6 Action to make mine waste dams safer 8 Participatory mapping in Vietnam 9 On the coast of West Africa 10 Helping Vanuatu and France hold historic meeting 11 Blue Carbon 12 Success in the Caspian Sea 13 And Caspian sturgeon better protected 14 Marine plastic pollution in the Arctic 15 © GRID-Arendal, 2018 Marine litter – research, not talking trash 16 Publication: GRID-Arendal 2018 Annual Report Sanitation and wastewater in Africa 17 ISBN: 978-82-7701-188-2 IW:LEARN 18 This publication may be reproduced in whole or in part and in any form Moving mountains (onto the agenda) 19 for educational or non-profit purposes without special permission from the copyright holder provided acknowledgement of the source is made.
    [Show full text]
  • Late Holocene Volcanic and Anthropogenic Mercury Deposition in the Western Central Andes (Lake Chungará, Chile)
    Science of the Total Environment 662 (2019) 903–914 Late Holocene volcanic and anthropogenic mercury deposition in the western Central Andes (Lake Chungará, Chile) S. Guédron a,b,⁎,J.Toluc,d, E. Brisset a,e,f,P.Sabatierg,V.Perrota,S.Boucheth,d,A.L.Develleg,R.Bindlerc, D. Cossa a, S.C. Fritz i,P.A.Bakerj a Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France b Laboratorio de Hidroquímica, Instituto de Investigaciones Químicas, Universidad Mayor de San Andres, Campus Universitario de Cota Cota, casilla 3161, La Paz, Bolivia c Department of Ecology and Environmental Science, Umeå University, Sweden d Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland and ETH Zürich, Universitätstrasse 16, CH-8092 Zürich, Switzerland e IPHES, Institut Català de Paleoecologia Humana i Evolució Social, Tarragona, Spain f Àrea de Prehistòria, Universitat Rovira i Virgili, Tarragona, Spain g Environnement, Dynamique et Territoires de Montagne (EDYTEM), Université Savoie Mont Blanc, CNRS, 73373 Le Bourget du Lac, France h LCABIE — Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM UMR 5254, CNRS et Université de Pau et des Pays de l'Adour, Hélioparc, F-64053 Pau, France i Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA j Division of Earth and Ocean Sciences, Duke University, Durham, NC, USA HIGHLIGHTS GRAPHICAL ABSTRACT • We studied mercury deposition in Lake Chungará (18°S) over the last ~2700 years. • Parinacota volcano produced 20 tephra layers recorded in lake sediments. • Lake primary production was the main, not limiting, carrier of Hg to the sedi- ment.
    [Show full text]
  • Climate Change and Tropical Andean Glaciers: Past, Present and Future
    Earth-Science Reviews 89 (2008) 79–96 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Climate change and tropical Andean glaciers: Past, present and future Mathias Vuille a,b,⁎, Bernard Francou c, Patrick Wagnon c, Irmgard Juen d, Georg Kaser d, Bryan G. Mark e, Raymond S. Bradley b a Department of Earth and Atmospheric Science, University at Albany, State University of New York, Albany, USA b Climate System Research Center, Department of Geosciences, University of Massachusetts, Amherst, USA c IRD-Great Ice, Laboratoire de Glaciologie et de Géophysique, BP 96 38402 Saint Martin d'Hères Cedex, France d Tropical Glaciology Group, Institute of Geography, University of Innsbruck, Austria e Department of Geography and Byrd Polar Research Center, Ohio State University, Columbus, USA ARTICLE INFO ABSTRACT Article history: Observations on glacier extent from Ecuador, Peru and Bolivia give a detailed and unequivocal account of Received 30 May 2007 rapid shrinkage of tropical Andean glaciers since the Little Ice Age (LIA). This retreat however, was not Accepted 8 April 2008 continuous but interrupted by several periods of stagnant or even advancing glaciers, most recently around Available online 24 April 2008 the end of the 20th century. New data from mass balance networks established on over a dozen glaciers allows comparison of the glacier behavior in the inner and outer tropics. It appears that glacier variations are Keywords: Andes quite coherent throughout the region, despite different sensitivities to climatic forcing such as temperature, glaciers precipitation, humidity, etc. In parallel with the glacier retreat, climate in the tropical Andes has changed climate change significantly over the past 50–60 years.
    [Show full text]
  • Covered Stratovolcano in the Cordillera Ampato, Peru, Using Remote Sensing Data (1986–2014)
    Geocarto International ISSN: 1010-6049 (Print) 1752-0762 (Online) Journal homepage: http://www.tandfonline.com/loi/tgei20 Variations in annual snowline and area of an ice- covered stratovolcano in the Cordillera Ampato, Peru, using remote sensing data (1986–2014) Bijeesh Kozhikkodan Veettil, Ulisses Franz Bremer, Sergio Florêncio de Souza, Éder Leandro Bayer Maier & Jefferson Cardia Simões To cite this article: Bijeesh Kozhikkodan Veettil, Ulisses Franz Bremer, Sergio Florêncio de Souza, Éder Leandro Bayer Maier & Jefferson Cardia Simões (2015): Variations in annual snowline and area of an ice-covered stratovolcano in the Cordillera Ampato, Peru, using remote sensing data (1986–2014), Geocarto International, DOI: 10.1080/10106049.2015.1059902 To link to this article: http://dx.doi.org/10.1080/10106049.2015.1059902 Accepted author version posted online: 08 Jun 2015. Published online: 25 Jun 2015. Submit your article to this journal Article views: 21 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tgei20 Download by: [University of Sherbrooke] Date: 19 October 2015, At: 20:56 Geocarto International, 2015 http://dx.doi.org/10.1080/10106049.2015.1059902 Variations in annual snowline and area of an ice-covered stratovolcano in the Cordillera Ampato, Peru, using remote sensing data (1986–2014) Bijeesh Kozhikkodan Veettila,b*, Ulisses Franz Bremera,b, Sergio Florêncio de Souzaa, Éder Leandro Bayer Maierc and Jefferson Cardia Simõesb
    [Show full text]
  • Prospecting Glacial Ages and Paleoclimatic Reconstructions Northeastward of Nevado Coropuna (16◦ S, 73◦ W, 6377 M), Arid Tropical Andes
    geosciences Article Prospecting Glacial Ages and Paleoclimatic Reconstructions Northeastward of Nevado Coropuna (16◦ S, 73◦ W, 6377 m), Arid Tropical Andes Jose Úbeda 1,2,3,* ID , Martí Bonshoms 2, Joshua Iparraguirre 1, Lucía Sáez 3, Ramón de la Fuente 3, Lila Janssen 3, Ronald Concha 1, Pool Vásquez 1 and Pablo Masías 1 1 Instituto Geológico Minero y Metalúrgico, Av. Canadá 1470, San Borja 15034, Peru; [email protected] (J.I.); [email protected] (R.C.); [email protected] (P.V.); [email protected] (P.M.) 2 Grupo de Investigación en Geografía Física de Alta Montaña, Departamento de Geografía, Universidad Complutense de Madrid, 28040 Madrid, Spain; [email protected] 3 Guías de Espeleología y Montaña (Speleology and Mountain Guides), Casilla del Mortero, Torremocha de Jarama, 28189 Madrid, Spain; [email protected] (L.S.); [email protected] (R.d.l.F.); [email protected] (L.J.) * Correspondence: [email protected]; Tel.: +34-656408790 Received: 19 July 2018; Accepted: 15 August 2018; Published: 20 August 2018 Abstract: This work investigates the timing, paleoclimatic framework and inter-hemispheric teleconnections inferred from the glaciers last maximum extension and the deglaciation onset in the Arid Tropical Andes. A study area was selected to the northeastward of the Nevado Coropuna, the volcano currently covered by the largest tropical glacier on Earth. The current glacier extent, the moraines deposited in the past and paleoglaciers at their maximum extension have been mapped. The present and past Equilibrium Line Altitudes (ELA and paleoELA) have been reconstructed and the chlorine-36 ages have been calculated, for preliminary absolute dating of glacial and volcanic processes.
    [Show full text]
  • Principales Altitudes En Asia
    PRINCIPALES ALTITUDES EN ASIA LOS HIMALAYAS El Himalaya es una cordillera situada en el continente asiático, y se extiende por los países de Bután, China, Nepal e India. Su nombre procede del sánscrito jimālaia, palabra compuesta por jimá: ‘nieve’ y alaia: ‘morada, lugar’. Es la cordillera más alta de la Tierra, con diez de las catorce cimas de más de 8000 metros de altura, incluyendo el Everest, con sus 8848 msnm, la montaña más alta del planeta. En un sentido amplio se menciona como «sistema de los Himalayas» al sistema de montañas compuesto por las cordilleras del Himalaya, Karakórum, Hindu Kush y diversas otras subcordilleras que se extienden a partir del Nudo del Pamir y sus subcordilleras adyacentes, y que forman un arco de oeste a este de 2400 kilómetros, y cuya anchura de norte a sur varía desde los 400 kilómetros en la zona más occidental, entre Cachemira y Xinjiang, hasta los 150 km al este, entre la parte oriental del Tíbet y el estado indio de Arunachal Pradesh Este sistema montañoso se extendería por siete Estados, sumando Afganistán, Birmania y Pakistán a los ya mencionados, e incluiría a las 14 montañas de la Tierra con una altitud mayor de 8000 msnm. Para comprender la enorme escala de este sistema basta considerar que el Aconcagua, en los Andes, con sus 6962 msnm es la montaña más alta del mundo fuera del Sistema de los Himalayas, conjunto que cuenta con más de 100 picos que superan al cerro argentino. En el Himalaya nacen algunos de los mayores ríos del mundo como son el Ganges, Indo, Brahmaputra, Yamuna y Yangtsé, en cuyos cauces viven no menos de 1300 millones de personas.
    [Show full text]