Jürgen Reinmüller

Total Page:16

File Type:pdf, Size:1020Kb

Jürgen Reinmüller JÜRGEN REINMÜLLER KLIMAVERHÄLTNISSE IN EXTREMEN HOCHGEBIRGEN DER ERDE Ergebnisse eines Sonderklimamessnetzes Diplomarbeit zur Erlangung des akademischen Grades „Magister der Naturwissenschaften“ an der Naturwissenschaftlichen Fakultät der Karl-Franzens-Universität Graz Betreuung durch: Ao. UNIV. PROF. DR. REINHOLD LAZAR Institut für Geographie und Raumforschung 2010 Eidesstattliche Erklärung 2 Eidesstattliche Erklärung Ich, Jürgen Reinmüller, erkläre hiermit, dass die vorliegende Diplomarbeit von mir selbst und ohne unerlaubte Beihilfe verfasst wurde. Die von mir benutzten Hilfsmittel sind im Literaturverzeichnis am Ende dieser Arbeit aufgelistet und wörtlich oder inhaltlich entnommene Stellen wurden als solche kenntlich gemacht. Admont, im März 2010 Jürgen Reinmüller Vorwort 3 Vorwort Die höchstgelegenen Bereiche der Hochgebirge der Erde weisen bis dato eine außerordentlich geringe Dichte an Klimastationen und damit ein Defizit an verfügbaren Klimadaten auf. Aussagen zu den thermischen Aspekten in den Gipfellagen extremer Hochgebirge jenseits der 6000 m Grenze konnten bis dato nur unbefriedigend erörtert werden. Als staatlich geprüfter Berg- und Schiführer und begeisterter Höhenbergsteiger liegen die beeindruckenden, hochgelegenen Gipfel seit Jahren in meinem Interessensbereich. Zudem sehe ich mich in meinem bergführerischen Arbeitsbereich zunehmend mit den Zeichen des aktuellen Klimawandels konfrontiert. Schmelzende Gletscher oder auftauender Permafrost stellen für Bergsteiger ein nicht unwesentliches Gefahrenpotential dar. Die durch das von Univ. Prof. Dr. Reinhold Lazar ins Leben gerufene Projekt HAMS.net (High Altitude Meteorological Station Network) gewonnenen Daten können künftig bei der Tourenplanung diverser Expeditionen miteinbezogen werden und stellen eine wichtige Grundlage für klimatologische Hochgebirgsforschung in großen Höhen dar. Ich selbst durfte dieses interessante Projekt durch den Data-Logger-Tausch am Aconcagua im Februar 2007 ein wenig unterstützen und werde dem Projekt auch in Zukunft mit Rat und Tat zur Seite stehen. Dank für die Anleitung und freundschaftliche Motivation gilt vor allem meinem Betreuer Univ. Prof. Dr. Reinhold Lazar. Durch seinen Tatendrang und sein Engagement zum Klimamonitoring im Hochgebirge konnte dieses Projekt erst verwirklicht werden. Für die nötigen technischen Informationen bezüglich der Messtechnik der Stationen bedanke ich mich bei Herrn Mag. Andreas Pilz und für das Auslesen der Datalogger am Institut für Geographie und Raumforschung der Universität Graz bei Herrn Mag. David Eckart. In lieber Erinnerung möchte ich diese Arbeit meinem kürzlich, leider viel zu früh verstorbenen Vater widmen. Durch seine unkomplizierte und liebenswürdige, unterstützende Art wurde mir die Freude am Hochgebirge erst ermöglicht. Zusammenfassung 4 Zusammenfassung Bei näherem Betrachten fällt weltweit bis heute eine sehr geringe Dichte an Hochgebirgsklimastationen in Hochlagen jenseits der 6000 m Grenze auf. Ziel dieser Arbeit ist es, die Daten der Stationen des Sonderklimamessnetzes HAMS.net (High Altitude Meteorological Station Network), welche im Zeitraum von 2004 bis heute in den südamerikanischen Anden und am westlichen tibetischen Hochplateau mit Hilfe von automatischen Wetterstationen aufgezeichnet wurden, statistisch-deskriptiv aufzubereiten. Als weiteres Ziel soll die möglichst lückenlose Erhebung aller bislang global betriebenen Klimastationen in extremen Hochgebirgen in einer Höhe über 4500 m gesehen werden. Zusätzlich soll auf die bisherigen Publikationen im Bereich der Hochgebirgsklimatologie in extremen Höhenlagen (Gipfelniveau ab 5000 m) eingegangen werden. Die methodische Vorgehensweise besteht in erster Linie aus einer sehr intensiven und mehrsprachigen Internetrecherche. Dabei sollen alle bislang veröffentlichten klimamesstechnischen Aktivitäten im extremen Hochgebirge herausgefiltert werden. Als Arbeitsgrundlage dienen die 221 450 Einzelmesswerte der Temperatur- und Feuchte- sensoren der sechs Stationen des HAMS.net und für Vergleichszwecke die Radiosondendaten von Antofagasta und Santo Domingo in Chile. Als zentrale Aussage dieser Arbeit steht die Tatsache im Vordergrund, dass wir es mit der Region Ladakh um einen ausgeprägten Wärmepol zu tun haben. Aufgrund der vorliegenden Datensätze gehe ich von einem Überwärmungsbetrag von etwa 3 K aus. Bezogen auf die Seehöhe trifft man hier auf die wärmsten Flächen im weltweiten Hochgebirgsvergleich. Zudem konnten aus der Literatur bereits bekannte klimatologische Aussagen mit diesen Daten untermauert werden. Wir erhalten Ergebnisse, dass beispielsweise freie Gipfel in den Morgenstunden kälter sind als die umgebene Atmosphäre oder dass wir im Bereich der Ariden Diagonale in Punkto Gipfeltage (Bergsteigen) gegenüber dem Aconcagua eine klimatische Gunstsituation vorfinden. Mit den vorliegenden Datensätzen konnten über die Tagesgänge Rückschlüsse zum Witterungsverhalten gemacht werden. Zudem konnte u. a. mittels der Darstellung von Temperaturgradienten und der Jahresgänge ein Überblick zu den thermischen Aspekten in diesen Lagen im extremen Hochgebirge geschaffen werden. Abstract 5 Abstract On closer examination, one is still struck today by the very low density of high mountain climatological stations across the world in high altitude locations above the 6000 m threshold. The aim of this work is the statistical and descriptive redaction of the data of the HAMS.net specialist climatological monitoring network (High Altitude Meteorological Station Network) that has been recorded using automatic weather stations in the period from 2004 to date in the Andes of South America and on the high plateau of western Tibet. The most comprehensive survey possible of all the climatological stations operated to date across the world in extreme mountain areas at an altitude of over 4,500 m should be seen as a further objective. In addition, the work aims to consider the existing publications in the field of high mountain area climatology at extreme altitudes (summit level at or above 5000 m). The methodological approach used primarily consists of very intensive and multi-lingual internet research. This is intended to select all the climatological measurement activities in extreme mountain areas that have been published to date. The basis of the work is formed by the 221,450 individual readings from the temperature and humidity sensors of the six HAMS.net stations, and, for comparison purposes, the radio sonde data from Antofagasta and Santo Domingo in Chile. The central finding of this work focuses on the fact that the Ladakh region forms a pronounced hotspot. Based on the available datasets, I assume an excess warming amount of about 3 K. In relation to height above sea level, one finds here the warmest high mountain areas in the world in comparative terms. In addition, with this data it has been possible to substantiate already known climatological findings from the existing subject literature. We are given results showing that, for example, free-standing summits are colder during the morning hours than the surrounding free atmosphere, or that in the area of the Arid Diagonal we find a favourable climatic situation in terms of (mountain climbing) summit ascent days in relation to Mount Aconcagua. It has been possible to use the available datasets to make inferences about weathering behaviour from the diurnal variations. In addition, by describing temperature gradients and annual variations, it has been possible amongst other things to create an overview of temperature aspects in these locations in extreme mountain areas. Inhaltsverzeichnis 6 Inhaltsverzeichnis Vorwort . 3 Zusammenfassung . 4 Abstract . 5 Inhaltsverzeichnis . 6 Abbildungsverzeichnis . 8 Tabellenverzeichnis . 9 Abkürzungsverzeichnis . 10 1 Einleitung . 11 1.1 Ziel und Zweck der Arbeit . 11 1.2 Arbeitsgrundlagen und Methodik . 11 1.3 Abgrenzung und Lage der Untersuchungsräume . 13 1.4 Messproblematiken im extremen Hochgebirge . 15 2 Höhenklimate extremer Hochgebirge . 20 2.1 Aktueller Publikationsstand . 20 2.2 Die chilenisch-argentinischen Anden . 21 2.3 Das tibetische Hochplateau . 27 3 Betriebene Hochgebirgsklimastationen . 30 3.1 Historischer Abriss . 30 3.2 Stationsstandorte, Betreiber und Messinstrumente . 33 4 Das Sonderklimamessnetz „HAMS.net“ . 36 4.1 Allgemeines . 36 4.2 Rahmenbedingungen . 36 4.2.1 Messmethodik und Geräte . 36 4.2.2 Das Stationsnetz . 39 4.2.3 Datengüte . 43 4.3 Statistisch-deskriptive Messdatenauswertung . 45 Inhaltsverzeichnis 7 4.3.1 Llullaillaco (Chile/Argentinien) . 45 4.3.1.1 Temperatur (Gipfelstation 6739 m) . 46 4.3.1.2 Relative Luftfeuchtigkeit (Gipfelstation 6739 m) . 51 4.3.2 Nevado de Cachi (Argentinien) . 55 4.3.2.1 Temperatur (Hangstation 4965 m) . 55 4.3.2.2 Relative Luftfeuchtigkeit (Hangstation 4965 m) . 60 4.3.3 Aconcagua (Argentinien) . 62 4.3.3.1 Temperatur (Talstation 4360 m) . 63 4.3.3.2 Relative Luftfeuchtigkeit (Talstation 4360 m) . 67 4.3.3.3 Temperatur (Gipfelstation 6955 m) . 69 4.3.3.4 Relative Luftfeuchtigkeit (Gipfelstation 6955 m) . 76 4.3.4 Chamser Kangri (Indien) . 78 4.3.4.1 Temperatur (Talstation 4500 m) . 79 4.3.4.2 Relative Luftfeuchtigkeit (Talstation 4500 m) . 83 4.3.4.3 Temperatur (Hangstation 5700 m) . 84 4.3.4.4 Relative Luftfeuchtigkeit (Hangstation 5700 m) . 88 5 Verifikation bzw. Falsifikation bisheriger Erkenntnisse durch die Daten des HAMS.net . 90 5.1 Anden . 90 5.2 Himalaya . 93 6 Schlussfolgerung und Ausblick . 96 Literaturverzeichnis . 99 Anhang . 106 A Datenbestand . 107 B Monatswerte . 108 C Datensätze
Recommended publications
  • Freshwater Diatoms in the Sajama, Quelccaya, and Coropuna Glaciers of the South American Andes
    Diatom Research ISSN: 0269-249X (Print) 2159-8347 (Online) Journal homepage: http://www.tandfonline.com/loi/tdia20 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups To cite this article: D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups (2017): Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes, Diatom Research, DOI: 10.1080/0269249X.2017.1335240 To link to this article: http://dx.doi.org/10.1080/0269249X.2017.1335240 Published online: 17 Jul 2017. Submit your article to this journal Article views: 6 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tdia20 Download by: [Lund University Libraries] Date: 19 July 2017, At: 08:18 Diatom Research,2017 https://doi.org/10.1080/0269249X.2017.1335240 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes 1 1 2 3 D. MARIE WEIDE ∗,SHERILYNC.FRITZ,BRUCEE.BRINSON, LONNIE G. THOMPSON & W. EDWARD BILLUPS2 1Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA 2Department of Chemistry, Rice University, Houston, TX, USA 3School of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA Diatoms in ice cores have been used to infer regional and global climatic events. These archives offer high-resolution records of past climate events, often providing annual resolution of environmental variability during the Late Holocene.
    [Show full text]
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]
  • Explora Atacama І Hikes
    ATACAMA explorations explora Atacama І Hikes T2 Reserva Tatio T4 Cornisas Nights of acclimatization Nights of acclimatization needed: 2 needed: 0 Type: Half day Type: Half day Duration: 1h Duration: 2h 30 min Distance: 2,3 km / 1,4 mi Distance: 6,7 kms / 4,2 mi Max. Altitude: 4.321 m.a.s.l / Max. Altitude: 2.710 m.a.s.l / HIKES 14.176 f.a.s.l 8.891 f.a.s.l Description: This exploration Description: Departing by van, we offers a different way of visiting head toward the Catarpe Valley Our hikes have been designed according the Tatio geysers, a geothermal by an old road. From there, we to different interests and levels of skill. field with over 80 boiling water hike along the ledges of La Sal They vary in length and difficulty so we sources. In this trip there are Mountains, with panoramic views always recommend travelers to talk to their excellent opportunities of studying of the oasis, the Atacama salt flat, guides before choosing an exploration. the highlands fauna, which includes and The, La Sal, and Domeyko Every evening, guides brief travelers vicuñas, flamingos and foxes, Mountains, three mountain ranges on the different explorations, so that among others. We walk through the that shape the region’s geography. they can choose one that best fit their reserve with views of The Mountains By the end of the exploration we interests. Exploration times do not consider and steaming hot water sources. descend through Marte Valley’s sand transportation. Return to the hotel by van.
    [Show full text]
  • An Ice-Core Pollen Record Showing Vegetation Response to Late-Glacial and Holocene Climate Changes at Nevado Sajama, Bolivia
    The University of Southern Mississippi The Aquila Digital Community Faculty Publications 2013 An Ice-Core Pollen Record Showing Vegetation Response to Late- Glacial and Holocene Climate Changes at Nevado Sajama, Bolivia C. A. Reese University of Southern Mississippi K. B. Liu L. G. Thompson Follow this and additional works at: https://aquila.usm.edu/fac_pubs Part of the Geography Commons Recommended Citation Reese, C., Liu, K., Thompson, L. (2013). An Ice-Core Pollen Record Showing Vegetation Response to Late- Glacial and Holocene Climate Changes at Nevado Sajama, Bolivia. Annals of Glaciology, 54(63), 183-190. Available at: https://aquila.usm.edu/fac_pubs/7807 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. Annals of Glaciology 54(63) 2013 doi:10.3189/2013AoG63A375 183 An ice-core pollen record showing vegetation response to Late-glacial and Holocene climate changes at Nevado Sajama, Bolivia C.A. REESE,1 K.B. LIU,2 L.G. THOMPSON3 1Department of Geography and Geology, University of Southern Mississippi, Hattiesburg, MS, USA E-mail: [email protected] 2Department of Oceanography and Coastal Sciences, School of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA 3School of Earth Sciences, The Ohio State University, Columbus, OH, USA ABSTRACT. We present the results of pollen analysis performed on an ice core recovered from Nevado Sajama, Bolivia, dated to 25 ka BP. Low pollen concentrations from 25 to 15 ka BP are consistent with the scenario of an expanded ice cap surrounded by sparse vegetation and cold conditions on the Altiplano during the Last Glacial Maximum.
    [Show full text]
  • The Origin and Emplacement of Domo Tinto, Guallatiri Volcano, Northern Chile Andean Geology, Vol
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Watts, Robert B.; Clavero Ribes, Jorge; J. Sparks, R. Stephen The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Andean Geology, vol. 41, núm. 3, septiembre, 2014, pp. 558-588 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173932124004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (3): 558-588. September, 2014 Andean Geology doi: 10.5027/andgeoV41n3-a0410.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Robert B. Watts1, Jorge Clavero Ribes2, R. Stephen J. Sparks3 1 Office of Disaster Management, Jimmit, Roseau, Commonwealth of Dominica. [email protected] 2 Escuela de Geología, Universidad Mayor, Manuel Montt 367, Providencia, Santiago, Chile. [email protected] 3 Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol. BS8 1RJ. United Kingdom. [email protected] ABSTRACT. Guallatiri Volcano (18°25’S, 69°05’W) is a large edifice located on the Chilean Altiplano near the Bo- livia/Chile border. This Pleistocene-Holocene construct, situated at the southern end of the Nevados de Quimsachata chain, is an andesitic/dacitic complex formed of early stage lava flows and later stage coulées and lava domes.
    [Show full text]
  • The Temple of Blindness: an Investigation of the Inca Shrine of Ancocagua
    Andean Past Volume 5 Article 9 1998 The eT mple of Blindness: An Investigation of the Inca Shrine of Ancocagua Johan Reinhard The Mountain Institute, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/andean_past Part of the Archaeological Anthropology Commons Recommended Citation Reinhard, Johan (1998) "The eT mple of Blindness: An Investigation of the Inca Shrine of Ancocagua," Andean Past: Vol. 5 , Article 9. Available at: https://digitalcommons.library.umaine.edu/andean_past/vol5/iss1/9 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Andean Past by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. THE TEMPLE OF BLINDNESS: AN INVESTIGATION OF THE INCA SHRINE OF ANCOCAGUA Johan Reinhard The Mountain Institute, Franklin, West Virginia and The Field Museum o/Natural.History, Chicago "In the district of Canas there was a temple which they When I first began searching for clues to called Ancocagua: there they made sacrifices according to their blindness." the location of Ancocagua in the historical ac- Pedro Cieza de Le6n1 counts, I did not find its name directly associ- ated with a temple. However, it does appear in historical records from the province of Ancocagua must be one of the most enig- Canas. In a list of communities dating to 1575 matic Inca sites mentioned in early colonial one called Ancocaua3 is listed next to Copo- documents. The renowned Spanish chroni- raque and Yauri (in Hatun Canas), as it was in cler, Cieza de Leon (1977 [1554]:107), listed it as the fourth most important temple in the lists prepared in 1583, 1599, and 1812 (Glave Inca empire.
    [Show full text]
  • GRID-Arendal Annual Report 2018
    29 and counting GRID-Arendal Annual Report 2018 Established in 1989 as a non-profit foundation under Norwegian law, GRID-Arendal’s mission is to create environmental knowledge that encourages positive change. We do this by organising and transforming available environmental data into credible, science-based information products, delivered through innovative communication tools and capacity building services targeting relevant stakeholders. GRID-Arendal works closely with United Nations Environment, other UN agencies and partners around the world to connect science to policy. Our goal is to shorten the distance between the emergence of new science and policy actions. We seek to influence thinking and action at the level of the global community on issues that require collective efforts because many problems cannot be solved at the national level alone. Acknowledgements GRID-Arendal would like to acknowledge the support of the Government of Norway and its other funders, partners and supporters. Contents Foreword 3 From the desk of the Managing Director 5 Stories 6 Action to make mine waste dams safer 8 Participatory mapping in Vietnam 9 On the coast of West Africa 10 Helping Vanuatu and France hold historic meeting 11 Blue Carbon 12 Success in the Caspian Sea 13 And Caspian sturgeon better protected 14 Marine plastic pollution in the Arctic 15 © GRID-Arendal, 2018 Marine litter – research, not talking trash 16 Publication: GRID-Arendal 2018 Annual Report Sanitation and wastewater in Africa 17 ISBN: 978-82-7701-188-2 IW:LEARN 18 This publication may be reproduced in whole or in part and in any form Moving mountains (onto the agenda) 19 for educational or non-profit purposes without special permission from the copyright holder provided acknowledgement of the source is made.
    [Show full text]
  • Final Geología Del Volcán Parinacota.Indd 2 24-10-2012 10:36:57 CONTENIDO
    28356 TAPA PARINACOTA.pdf 1 05-11-12 15:28 ISSN 0717-7283 S U B D I R E C C I Ó N N A C I O N A L D E G E O L O G Í A SITUACIÓN DE CARTAS VECINAS 70º45' 30' 15' 45' VILLA COSA INDUSTRIAL PILLA 18º00' CERRO GEOLOGÍA DEL VOLCÁN PARINACOTA PUTRE VOLCÁN LARANCAGUA PARINACOTA 15' REGIÓN DE ARICA Y PARINACOTA (Versión corregida) TERRITORIO CHILENO Jorge Clavero R. ANTÁRTICO 90° 53° R. Steve J. Sparks Edmundo Polanco V. CARTA GEOLÓGICA DE CHILE POLO SUR SERIE GEOLOGÍA BÁSICA No. 132 Escala 1:50.000 "ACUERDO ENTRE LA REPÚBLICA DE CHILE Y LA REPÚBLICA ARGENTINA PARA PRECISAR EL RECORRIDO DEL LÍMITE DESDE EL MONTE FITZ ROY 2012 HASTA EL CERRO DAUDET". (Buenos Aires, 16 de diciembre de 1998). 28356 TAPA PARINACOTA.pdf 2 05-11-12 15:28 CARTA GEOLÓGICA DE CHILE SERIE GEOLOGÍA BÁSICA No. 110 Geología del Área Queule-Toltén, Regiones de La Araucanía y de Los Ríos. 2008. D. Quiroz y P. Duhart. Texto y 1 mapa escala 1:100.000. No. 111 Geología del Área Carrizal Bajo-Chacritas, Región de Atacama. 2008. C. Arévalo y D. Welkner. Texto y 1 mapa escala 1:100.000. No. 112 Geología del Área de Chile Chico-Río de Las Nieves, Región Aisén del General Carlos Ibáñez del Campo. 2008. R. de la Cruz y M. Suárez. Texto y 1 mapa escala 1:100.000. No. 113 Geología de las ciudades de Iquique y Alto Hospicio, Región de Tarapacá. 2008. C. Marquardt, N.
    [Show full text]
  • Upper Crustal Differentiation Processes and Their Role in 238U-230Th
    Journal of South American Earth Sciences 102 (2020) 102672 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames Upper crustal differentiation processes and their role in 238U-230Th disequilibria at the San Pedro-Linzor volcanic chain (Central Andes) T ∗ Benigno Godoya, , Lucy McGeeb,1, Osvaldo González-Maurelc,d, Inés Rodrígueze, Petrus le Rouxd, Diego Morataa, Andrew Menziesf a Centro de Excelencia en Geotermia de los Andes (CEGA) y Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile b Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW, 2109, Australia c Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos, 0610, Antofagasta, Chile d Department of Geological Sciences, University of Cape Town, Rondebosch, 7700, South Africa e Departamento de Obras Civiles y Geología, Facultad de Ingeniería, Universidad Católica de Temuco, Rudecindo Ortega, 02950, Chile f Bruker Nano GmbH, Am Studio 2D, Berlin 12489, Germany ARTICLE INFO ABSTRACT Keywords: U-series data are combined with major and trace element constraints to construct a detailed view of the mag- U-series disequilibria matic system feeding the San Pedro-Linzor volcanic chain, aiding the understanding of how stratovolcanoes in San Pedro – Linzor volcanic chain extremely thick arc crust evolve. Lavas from the Quaternary San Pedro-Linzor volcanic chain (Central Andes) 238 U excess 238 230 238 have ( U/ Th) ranging from 1.015 to 1.072, with U excess even in the less evolved (~57 wt% SiO2) Subduction zone magmatism analyzed lavas. Contrary to well-established trends between fluid mobile elements and 238U excess, Amphibole fractionation 238 230 ( U/ Th)0 shows no systematic correlation with ratios indicative of fluid-driven melting (e.g.
    [Show full text]
  • Late Holocene Volcanic and Anthropogenic Mercury Deposition in the Western Central Andes (Lake Chungará, Chile)
    Science of the Total Environment 662 (2019) 903–914 Late Holocene volcanic and anthropogenic mercury deposition in the western Central Andes (Lake Chungará, Chile) S. Guédron a,b,⁎,J.Toluc,d, E. Brisset a,e,f,P.Sabatierg,V.Perrota,S.Boucheth,d,A.L.Develleg,R.Bindlerc, D. Cossa a, S.C. Fritz i,P.A.Bakerj a Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France b Laboratorio de Hidroquímica, Instituto de Investigaciones Químicas, Universidad Mayor de San Andres, Campus Universitario de Cota Cota, casilla 3161, La Paz, Bolivia c Department of Ecology and Environmental Science, Umeå University, Sweden d Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland and ETH Zürich, Universitätstrasse 16, CH-8092 Zürich, Switzerland e IPHES, Institut Català de Paleoecologia Humana i Evolució Social, Tarragona, Spain f Àrea de Prehistòria, Universitat Rovira i Virgili, Tarragona, Spain g Environnement, Dynamique et Territoires de Montagne (EDYTEM), Université Savoie Mont Blanc, CNRS, 73373 Le Bourget du Lac, France h LCABIE — Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM UMR 5254, CNRS et Université de Pau et des Pays de l'Adour, Hélioparc, F-64053 Pau, France i Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA j Division of Earth and Ocean Sciences, Duke University, Durham, NC, USA HIGHLIGHTS GRAPHICAL ABSTRACT • We studied mercury deposition in Lake Chungará (18°S) over the last ~2700 years. • Parinacota volcano produced 20 tephra layers recorded in lake sediments. • Lake primary production was the main, not limiting, carrier of Hg to the sedi- ment.
    [Show full text]
  • Climate Change and Tropical Andean Glaciers: Past, Present and Future
    Earth-Science Reviews 89 (2008) 79–96 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Climate change and tropical Andean glaciers: Past, present and future Mathias Vuille a,b,⁎, Bernard Francou c, Patrick Wagnon c, Irmgard Juen d, Georg Kaser d, Bryan G. Mark e, Raymond S. Bradley b a Department of Earth and Atmospheric Science, University at Albany, State University of New York, Albany, USA b Climate System Research Center, Department of Geosciences, University of Massachusetts, Amherst, USA c IRD-Great Ice, Laboratoire de Glaciologie et de Géophysique, BP 96 38402 Saint Martin d'Hères Cedex, France d Tropical Glaciology Group, Institute of Geography, University of Innsbruck, Austria e Department of Geography and Byrd Polar Research Center, Ohio State University, Columbus, USA ARTICLE INFO ABSTRACT Article history: Observations on glacier extent from Ecuador, Peru and Bolivia give a detailed and unequivocal account of Received 30 May 2007 rapid shrinkage of tropical Andean glaciers since the Little Ice Age (LIA). This retreat however, was not Accepted 8 April 2008 continuous but interrupted by several periods of stagnant or even advancing glaciers, most recently around Available online 24 April 2008 the end of the 20th century. New data from mass balance networks established on over a dozen glaciers allows comparison of the glacier behavior in the inner and outer tropics. It appears that glacier variations are Keywords: Andes quite coherent throughout the region, despite different sensitivities to climatic forcing such as temperature, glaciers precipitation, humidity, etc. In parallel with the glacier retreat, climate in the tropical Andes has changed climate change significantly over the past 50–60 years.
    [Show full text]
  • Lista Anotada De Nuevas Adiciones Para La Flora Andina De Moquegua, Perú
    Rev. peru. biol. 19(3): 307 - 316 (Diciembre 2012) © Facultad de Ciencias Biológicas UNMSM Lista anotada de nuevas adiciones para la flora andinaISSN de Moquegua1561-0837 Lista anotada de nuevas adiciones para la flora andina de Moquegua, Perú Annotated checklist of new additions to the Andean flora of Moquegua, Peru Daniel B. Montesinos Tubée Resumen Nature Conservation and Plant Ecology Group. Wageningen Uni- Se presentan nuevos registros de 103 especies reunidas en 79 géneros y 33 familias para la flora del norte de versity, Netherlands. Droevendaal- sesteeg 3a, 6708PB Wageningen, la cuenca alta del Río Tambo-Ichuña, en la Provincia General Sánchez Cerro en el Departamento de Moque- The Netherlands gua. Con esto la flora de la región andina del norte de Moquegua se eleva a 507 especies, contenidas en 271 [email protected] géneros y 75 familias. El número de especies endémicas se incrementó en comparación con los resultados [email protected] obtenidos el 2011 por el autor. Este porcentaje de endemismo es uno de los más altos documentados para el departamento de Moquegua. Además, se señalan algunos comentarios de nomenclatura para las especies documentadas, así como colecciones de herbario revisadas y la zona geográfica donde se identificó. Esta nueva contribución al conocimiento de la flora del país es el resultado del trabajo de campo y de herbario realizados desde el año 2009 hasta el 2012, mencionando también, elementos de flora que no fueron iden- tificadas anteriormente al nivel de especies (Montesinos, 2011). Las revisiones y comparaciones botánicas fueron realizadas en los herbarios nacionales USM y HUSA, y herbarios virtuales F y MO.
    [Show full text]