Covered Stratovolcano in the Cordillera Ampato, Peru, Using Remote Sensing Data (1986–2014)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Freshwater Diatoms in the Sajama, Quelccaya, and Coropuna Glaciers of the South American Andes
Diatom Research ISSN: 0269-249X (Print) 2159-8347 (Online) Journal homepage: http://www.tandfonline.com/loi/tdia20 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups To cite this article: D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups (2017): Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes, Diatom Research, DOI: 10.1080/0269249X.2017.1335240 To link to this article: http://dx.doi.org/10.1080/0269249X.2017.1335240 Published online: 17 Jul 2017. Submit your article to this journal Article views: 6 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tdia20 Download by: [Lund University Libraries] Date: 19 July 2017, At: 08:18 Diatom Research,2017 https://doi.org/10.1080/0269249X.2017.1335240 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes 1 1 2 3 D. MARIE WEIDE ∗,SHERILYNC.FRITZ,BRUCEE.BRINSON, LONNIE G. THOMPSON & W. EDWARD BILLUPS2 1Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA 2Department of Chemistry, Rice University, Houston, TX, USA 3School of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA Diatoms in ice cores have been used to infer regional and global climatic events. These archives offer high-resolution records of past climate events, often providing annual resolution of environmental variability during the Late Holocene. -
Jürgen Reinmüller
JÜRGEN REINMÜLLER KLIMAVERHÄLTNISSE IN EXTREMEN HOCHGEBIRGEN DER ERDE Ergebnisse eines Sonderklimamessnetzes Diplomarbeit zur Erlangung des akademischen Grades „Magister der Naturwissenschaften“ an der Naturwissenschaftlichen Fakultät der Karl-Franzens-Universität Graz Betreuung durch: Ao. UNIV. PROF. DR. REINHOLD LAZAR Institut für Geographie und Raumforschung 2010 Eidesstattliche Erklärung 2 Eidesstattliche Erklärung Ich, Jürgen Reinmüller, erkläre hiermit, dass die vorliegende Diplomarbeit von mir selbst und ohne unerlaubte Beihilfe verfasst wurde. Die von mir benutzten Hilfsmittel sind im Literaturverzeichnis am Ende dieser Arbeit aufgelistet und wörtlich oder inhaltlich entnommene Stellen wurden als solche kenntlich gemacht. Admont, im März 2010 Jürgen Reinmüller Vorwort 3 Vorwort Die höchstgelegenen Bereiche der Hochgebirge der Erde weisen bis dato eine außerordentlich geringe Dichte an Klimastationen und damit ein Defizit an verfügbaren Klimadaten auf. Aussagen zu den thermischen Aspekten in den Gipfellagen extremer Hochgebirge jenseits der 6000 m Grenze konnten bis dato nur unbefriedigend erörtert werden. Als staatlich geprüfter Berg- und Schiführer und begeisterter Höhenbergsteiger liegen die beeindruckenden, hochgelegenen Gipfel seit Jahren in meinem Interessensbereich. Zudem sehe ich mich in meinem bergführerischen Arbeitsbereich zunehmend mit den Zeichen des aktuellen Klimawandels konfrontiert. Schmelzende Gletscher oder auftauender Permafrost stellen für Bergsteiger ein nicht unwesentliches Gefahrenpotential dar. Die durch das von Univ. Prof. Dr. Reinhold Lazar ins Leben gerufene Projekt HAMS.net (High Altitude Meteorological Station Network) gewonnenen Daten können künftig bei der Tourenplanung diverser Expeditionen miteinbezogen werden und stellen eine wichtige Grundlage für klimatologische Hochgebirgsforschung in großen Höhen dar. Ich selbst durfte dieses interessante Projekt durch den Data-Logger-Tausch am Aconcagua im Februar 2007 ein wenig unterstützen und werde dem Projekt auch in Zukunft mit Rat und Tat zur Seite stehen. -
Rapid Magma Ascent and Generation of Th Excesses in the Lower Crust At
Earth and Planetary Science Letters 255 (2007) 229–242 www.elsevier.com/locate/epsl Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue–Cordón Caulle, Southern Volcanic Zone, Chile ⁎ Brian R. Jicha a, , Brad S. Singer a, Brian L. Beard a, Clark M. Johnson a, Hugo Moreno-Roa b,c, José Antonio Naranjo b a Department of Geology and Geophysics, University of Wisconsin—Madison, 1215 West Dayton Street, Madison WI 53706, USA b Servicio Nacional de Geología y Minería (SERNAGEOMIN), Avenida Santa María, 0104 Santiago, Chile c Observatorio Volcanologico de los Andes del Sur (OVDAS), Cerro Ñielol-Sector Antenas, Temuco, Chile Received 28 July 2006; received in revised form 7 December 2006; accepted 8 December 2006 Available online 30 January 2007 Editor: R.W. Carlson Abstract Basaltic to rhyolitic lavas and tephras erupted over the last 70 kyr at the Puyehue–Cordón Caulle volcanic complex in the Andean Southern Volcanic Zone (SVZ) were analyzed for major and trace element, Sr isotope, and U–Th isotope compositions to constrain the timescales of magmatic processes and identify the subducted and crustal components involved in magma genesis. Internal U–Th mineral isochrons from five lavas and three tephra fall deposits are indistinguishable from their eruption ages, indicating a short period (b1000 yr) of crystal residence in the magma prior to eruption. The (230Th/232Th) ratios define a narrow range (0.80–0.83) compared to that of all SVZ lavas (0.72–0.97), suggesting that Puyehue basalt was derived from a relatively uniform mantle source. Dacites and rhyolites have the largest U excesses and likely evolved via fractional crystallization of a plagioclase-dominated mineral assemblage. -
Multiple Sources for Tephra from AD 1259 Volcanic Signal in Antarctic Ice
Multiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino To cite this version: Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino. Mul- tiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores. Quaternary Science Reviews, Elsevier, 2019, 210, pp.164-174. 10.1016/j.quascirev.2019.03.005. hal-02350371 HAL Id: hal-02350371 https://hal.archives-ouvertes.fr/hal-02350371 Submitted on 25 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Details Manuscript number JQSR_2019_21 Title MULTIPLE SOURCES FOR TEPHRA FROM AD 1259 VOLCANIC SIGNAL IN ANTARCTIC ICE CORES Abstract Strong volcanic signals simultaneously recorded in polar ice sheets are commonly assigned to major low-latitude eruptions that dispersed large quantities of aerosols in the global atmosphere with the potential of inducing climate perturbations. Parent eruptions responsible for specific events are typically deduced from matching to a known volcanic eruption having coincidental date. However, more robust source linkage can be achieved only through geochemical characterisation of the airborne volcanic glass products (tephra) sometimes preserved in the polar strata. -
Possible Causes for the Seismic Activity Observed in Cotopaxi Volcano, Ecuador
GEOPHYSICALRESEARCH LETTERS, VOL. 25, NO.13, PAGES2305-2308, JULY 1, 1998 Possible causes for the seismic activity observed in Cotopaxi volcano, Ecuador MarioRuiz 1, Bertrand Guillierl, 2, Jean-LucChatelain l, 2, 3, HugoYepes l Minard Hall •, and PatricioRamon 4 Abstract. Continuous monitoring of Cotopaxi volcano probability of having an explosive eruption similar or greater from January 1989 to September 1997 shows that it is subject than that of 1877 in 50, 100 and 200 years is respectivelyof to a steady shallow Long Period (LP) activity. LP events are 0.35, 0.57 and 0.82. concentrated in a column with a diameter of about 3 km and a Given this very active eruptive history and associated height of about 12 km, between an elevation of 4 km and 8 km volcanic hazards (pyroclastic flows, lahars, tephra falls, lava depth. They do not occur in swarms, nor have there been flows) that could affect populatedareas, the Instituto Geofisico periods of complete calm. High frequency volcano-tectonic (IG) of Quito start6d continuous monitoring of the seismic (VT) events are mostly located on the northeasternside of the activity of Cotopaxi in 1989. The goal of this paper is to LP column, with the maximum activity of both types of events describe the characteristicsof the Cotopaxi seismic activity, coinciding in depth. LP activity cannot be related to unrest of usingthe recordingsof the IG array from January1989 up to the volcano. The most likely explanation for the continuous September 1997. occurrence of LP events beneath Cotopaxi is that they are produced by the interaction of glacier thaw water and hot material at shallow depths. -
Area Changes of Glaciers on Active Volcanoes in Latin America Between 1986 and 2015 Observed from Multi-Temporal Satellite Imagery
Journal of Glaciology (2019), 65(252) 542–556 doi: 10.1017/jog.2019.30 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Area changes of glaciers on active volcanoes in Latin America between 1986 and 2015 observed from multi-temporal satellite imagery JOHANNES REINTHALER,1,2 FRANK PAUL,1 HUGO DELGADO GRANADOS,3 ANDRÉS RIVERA,2,4 CHRISTIAN HUGGEL1 1Department of Geography, University of Zurich, Zurich, Switzerland 2Centro de Estudios Científicos, Valdivia, Chile 3Instituto de Geofisica, Universidad Nacional Autónoma de México, Mexico City, Mexico 4Departamento de Geografía, Universidad de Chile, Chile Correspondence: Johannes Reinthaler <[email protected]> ABSTRACT. Glaciers on active volcanoes are subject to changes in both climate fluctuations and vol- canic activity. Whereas many studies analysed changes on individual volcanoes, this study presents for the first time a comparison of glacier changes on active volcanoes on a continental scale. Glacier areas were mapped for 59 volcanoes across Latin America around 1986, 1999 and 2015 using a semi- automated band ratio method combined with manual editing using satellite images from Landsat 4/5/ 7/8 and Sentinel-2. Area changes were compared with the Smithsonian volcano database to analyse pos- sible glacier–volcano interactions. Over the full period, the mapped area changed from 1399.3 ± 80 km2 − to 1016.1 ± 34 km2 (−383.2 km2)or−27.4% (−0.92% a 1) in relative terms. -
Outlook on Climate Change Adaptation in the Tropical Andes Mountains
MOUNTAIN ADAPTATION OUTLOOK SERIES Outlook on climate change adaptation in the Tropical Andes mountains 1 Southern Bogota, Colombia photo: cover Front DISCLAIMER The development of this publication has been supported by the United Nations Environment Programme (UNEP) in the context of its inter-regional project “Climate change action in developing countries with fragile mountainous ecosystems from a sub-regional perspective”, which is financially co-supported by the Government Production Team of Austria (Austrian Federal Ministry of Agriculture, Forestry, Tina Schoolmeester, GRID-Arendal Environment and Water Management). Miguel Saravia, CONDESAN Magnus Andresen, GRID-Arendal Julio Postigo, CONDESAN, Universidad del Pacífico Alejandra Valverde, CONDESAN, Pontificia Universidad Católica del Perú Matthias Jurek, GRID-Arendal Björn Alfthan, GRID-Arendal Silvia Giada, UNEP This synthesis publication builds on the main findings and results available on projects and activities that have been conducted. Contributors It is based on available information, such as respective national Angela Soriano, CONDESAN communications by countries to the United Nations Framework Bert de Bievre, CONDESAN Convention on Climate Change (UNFCCC) and peer-reviewed Boris Orlowsky, University of Zurich, Switzerland literature. It is based on review of existing literature and not on new Clever Mafuta, GRID-Arendal scientific results generated through the project. Dirk Hoffmann, Instituto Boliviano de la Montana - BMI Edith Fernandez-Baca, UNDP The contents of this publication do not necessarily reflect the Eva Costas, Ministry of Environment, Ecuador views or policies of UNEP, contributory organizations or any Gabriela Maldonado, CONDESAN governmental authority or institution with which its authors or Harald Egerer, UNEP contributors are affiliated, nor do they imply any endorsement. -
Antisana Volcano: a Representative Andesitic Volcano of the Eastern Cordillera of Ecuador: Petrography, Chemistry, Tephra and Glacial Stratigraphy
Journal of South American Earth Sciences 73 (2017) 50e64 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames Antisana volcano: A representative andesitic volcano of the eastern cordillera of Ecuador: Petrography, chemistry, tephra and glacial stratigraphy * Minard L. Hall a, , Patricia A. Mothes a, Pablo Samaniego b, Annemarie Militzer d, Bernardo Beate c, Patricio Ramon a, Claude Robin b a Instituto Geofísico, Escuela Politecnica Nacional, Casilla 1701-2759, Quito, Ecuador b Laboratoire Magmas et Volcans, Universite Blaise Pascal - CNRS - IRD, Campus Universitaire des Cezeaux, 6 Avenue Blaise Pascal, 63178, Aubiere, France c Dept. Geología, Escuela Politecnica Nacional, Casilla 1701-2759, Quito, Ecuador d Institute for Geosciences, Johannes Gutenberg Universitat€ Mainz, Germany article info abstract Article history: Antisana volcano is representative of many active andesitic strato-volcanoes of Pleistocene age in Received 28 May 2016 Ecuador's Eastern Cordillera. This study represents the first modern geological and volcanological Received in revised form investigation of Antisana since the late 1890's; it also summarizes the present geochemical under- 2 November 2016 standing of its genesis. The volcano's development includes the formation and destruction of two older Accepted 26 November 2016 edifices (Antisana I and II) during some 400 þ ka. Antisana II suffered a sector collapse about 15,000 Available online 29 November 2016 years ago which was followed by the birth and growth of Antisana III. During its short life Antisana III has generated 50 eruptions of small to medium intensity, often associated with andesitic to dacitic lava Keywords: fl Long-lived evolving andesitic volcanism ows and tephra, as well as with late Pleistocene and Holocene glacial advances. -
An Ice-Core Pollen Record Showing Vegetation Response to Late-Glacial and Holocene Climate Changes at Nevado Sajama, Bolivia
The University of Southern Mississippi The Aquila Digital Community Faculty Publications 2013 An Ice-Core Pollen Record Showing Vegetation Response to Late- Glacial and Holocene Climate Changes at Nevado Sajama, Bolivia C. A. Reese University of Southern Mississippi K. B. Liu L. G. Thompson Follow this and additional works at: https://aquila.usm.edu/fac_pubs Part of the Geography Commons Recommended Citation Reese, C., Liu, K., Thompson, L. (2013). An Ice-Core Pollen Record Showing Vegetation Response to Late- Glacial and Holocene Climate Changes at Nevado Sajama, Bolivia. Annals of Glaciology, 54(63), 183-190. Available at: https://aquila.usm.edu/fac_pubs/7807 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. Annals of Glaciology 54(63) 2013 doi:10.3189/2013AoG63A375 183 An ice-core pollen record showing vegetation response to Late-glacial and Holocene climate changes at Nevado Sajama, Bolivia C.A. REESE,1 K.B. LIU,2 L.G. THOMPSON3 1Department of Geography and Geology, University of Southern Mississippi, Hattiesburg, MS, USA E-mail: [email protected] 2Department of Oceanography and Coastal Sciences, School of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA 3School of Earth Sciences, The Ohio State University, Columbus, OH, USA ABSTRACT. We present the results of pollen analysis performed on an ice core recovered from Nevado Sajama, Bolivia, dated to 25 ka BP. Low pollen concentrations from 25 to 15 ka BP are consistent with the scenario of an expanded ice cap surrounded by sparse vegetation and cold conditions on the Altiplano during the Last Glacial Maximum. -
Simulación De Lahares Del Volcán Cotopaxi En Sus Drenajes Del Lado Norte Con El Uso Del Programa Hec-Ras
SIMULACIÓN DE LAHARES DEL VOLCÁN COTOPAXI EN SUS DRENAJES DEL LADO NORTE CON EL USO DEL PROGRAMA HEC-RAS Lenin Rodrigo Carrillo Gallegos Carrera de Ingeniería Civil de la Escuela Politécnica del Ejército – Av. Progreso S/N, Sangolquí Ecuador RESUMEN El volcán Cotopaxi con 5897 m.s.n.m., es uno de los volcanes activos más altos del mudo y debido a sus características geológicas, es además, uno de los más peligrosos. El presente trabajo de investigación pretende demostrar el latente peligro en el cual se encuentran los moradores de las ciudades de San Rafael, Sangolquí y demás poblados ubicados a lo largo de la cuenca norte del volcán, debido principalmente, a los lahares producidos por el mismo al momento de generarse una erupción volcánica. Es por eso que, mediante la utilización del software para análisis hidráulicos HEC-RAS, especializado en calcular alturas de inundación y desbordamiento, se determinará los potenciales sectores en riesgo, con la finalidad de influir en la conciencia de los ciudadanos y de los Gobiernos Autónomos Descentralizados que los representan. De esta manera se podrán tomar medidas urgentes, mismas que permitirán mitigar la vulnerabilidad existente, del tal forma que, en caso de ocurrir un nuevo episodio eruptivo, exista la preparación suficiente para poder salvar la mayor cantidad de vidas humanas . ____________________________________________________________________________________ ABSTRACT: The Cotopaxi volcano with 5897 meters, is one of the highest active volcanoes, and because of the geological characteristics, is also one of the most dangerous. This research aims to demonstrate the latent danger in which they are the inhabitants of the cities of San Rafael, Sangolquí and other villages located along the northern basin of the volcano, due mainly to lahars produced at the moment when it generates a volcanic eruption. -
Cayambe to Cotopaxi, Ecuador
Cayambe to Cotopaxi, Ecuador DAY 2: Head out on horseback to explore the sleepy Itinerary Zuleta Valley (c. 6 hours), with a saddlebag picnic Day 1: The meeting point is Quito city or Quito airport. packed for lunch. Perhaps catch sight of local ladies in their brightly coloured skirts, watching over their From Quito, begin the journey north by road (c. 2 sheep and pigs as they work at their embroidery. hours). There may be time to stop as you cross the equator line. Continue your journey and visit the market at Cayambe. As well as local crafts, there are stalls bursting with exotic fruit and vegetables. Local men and women, in traditional dress, come down from their farms in the mountains to sell their produce and buy weekly supplies. Traverse a picturesque landscape with dramatic views across to the hanging valleys and rocky ridges. You might stop along the way to see the ancient tumuli and earth pyramids erected by the pre-Inca population of the area. You might also spot the mighty Andean condor overhead, as well as other species such as hummingbirds and bright scarlet flycatchers. Meet the horses at the entrance to the Zuleta Valley and set off on an introductory ride (c. 3-4 hours). Ride over a ridge affording wide-ranging views of verdant hills. Lunch will be a picnic out on the trail. Later, descend into the valley below and reach the first overnight stop – a working dairy farm and Andalucian stud. Dinner and overnight at Hacienda La Merced, (or similar). DAY 3: You may be woken by sounds of the cows being milked, or the Andalucian stallions heading out to their fields. -
Mount Fuji Stromboli Is Located Mount Fuji Is Located in Italy
Stromboli Mount Fuji Stromboli is located Mount Fuji is located in Italy. in Japan. Its highest point is Its highest point is 924m high. Volcanoes Volcanoes 3776m high. The volcano has erupted Fuji last erupted in 1707. throughout the 20th century. This volcano is the highest volcano, it has the highest As long as there are peak in Japan and is historical records, considered one of the three Stromboli has been holy mountains. constantly active. Mount Fuji is an important It is famous for its element in Japanese art. normally small, but regular explosions. At night its eruptions Did You Know...? are visible from far More than 200 000 away so it is known as Did You Know...? Stromboli has an people climb to the the "Lighthouse of the eruption cycle of 20 top of the Mount Mediterranean". to 30 minutes. Fuji every year. Photo courtesy of giopuo, flrnt, island of volcanoes (@flickr.com) - granted under creative commons licence - attribution Photo courtesy of Manish Prabhune, midorisyu (@flickr.com) - granted under creative commons licence - attribution visit twinkl.com visit twinkl.com Ojos del Mauna Loa Mauna Loa is one of five Salado volcanoes that form the Ojos del Salado Island of Hawaii (the US Volcanoes is located on the Volcanoes state) in the Pacific Ocean. Argentina-Chile border. Its highest point is Its highest point is 4170m high. 6893m high. Mauna Loa rises from Nevados Ojos del Salado is the sea floor, and its the world's highest active height from its base to its volcano. summit is 9170m. This is greater than the height of It has two summit peaks of Mount Everest.