Redalyc.Functional Characteristics of the Arborescent Genus Polylepis Along a Latitudinal Gradient in the High Andes

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Functional Characteristics of the Arborescent Genus Polylepis Along a Latitudinal Gradient in the High Andes Interciencia ISSN: 0378-1844 [email protected] Asociación Interciencia Venezuela Azócar, Aura; Rada, Fermín; García-Núñez, Carlos Functional characteristics of the arborescent genus polylepis along a latitudinal gradient in the high andes Interciencia, vol. 32, núm. 10, octubre, 2007, pp. 663-668 Asociación Interciencia Caracas, Venezuela Available in: http://www.redalyc.org/articulo.oa?id=33901003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative FUNCTIONAL CHARACTERISTICS OF THE ARBORESCENT GENUS Polylepis ALONG A LATITUDINAL GRADIENT IN THE HIGH ANDES Aura AZÓcar, FermÍN Rada and Carlos GarcÍA-NÚÑEZ SUMMARY Polylepis is a genus restricted to the Andean Mountain cea avoids the less harsh conditions of its habitat through os‑ Range, naturally occurring above the upper continuous forest motic adjustments and cell wall elasticity changes. Mean CO2 limit. The purpose of this work was to integrate and compare assimilation rates were higher in P. australis (9µmol·m‑2·s‑1) functional characteristics in terms of water and carbon rela‑ campared to P. sericea (5µmol·m‑2·s‑1) and P. tarapacana tions and low temperature resistance mechanisms in different (3·µmol·m‑2·s‑1). Mean night leaf respiration rates were similar Polylepis species along a latitudinal gradient. The studied for all species (1‑2·µmol·m‑2·s‑1). In terms of low temperature species were P. sericea in Venezuela, P. tarapacana in Bolivia resistance, P. sericea shows daily osmotic adjustments and a and P. australis in Argentina. Seasonal measurements of leaf moderate supercooling capacity (‑9ºC). The other two spe‑ water and osmotic potentials, stomatal conductance, CO2 as‑ cies rely on freezing tolerance in order to survive the more similation and respiration rates, and injury and freezing tem‑ extreme low temperature conditions. The functional attributes peratures were compared. There is a gradient, in terms of described in this study for the different species in a wide en‑ functional attributes, along the environmental range. P. tarapa- vironmental range may explain some aspects of their success cana is the most tolerant species to water stress, while P. seri- along the latitudinal and altitudinal gradients. limate is an impor- Thus, minimum absolute temperatures unhn (2006) reported 26 species, with tant factor for plant become an important variable in or- the highest diversity found in Peru (14 growth; it governs dis- der to establish the distribution limits species, 3 endemic) and Bolivia (13 tribution and sets limits for survival. of the major vegetation types (Wood- species, 4 endemic); only one species One important characteristic of high ward and Williams, 1987; Prentice et was recorded for Venezuela, 3 in Co- mountain environments is the low air al., 1992). In spite of this, the genus lombia (1 endemic), 7 in Ecuador (2 temperature, which limits plant growth Polylepis does not seem to respond endemic), 2 in Chile and 4 in Argen- and survival in these habitats (Sakai in their distribution to this regime of tina (1 endemic). and Larcher, 1987). On the other hand, low temperatures, since it presents a Regional forest distribu- tropical high mountain environments unique altitudinal distribution reaching tion seems to be related to areas where present large daily variations and much higher elevations than those of solar irradiance is controlled by the small seasonal changes in temperature, any other angiosperm tree in the world slope aspect (direction) and inclination and freezing temperatures occur al- (Liberman-Cruz, 1986). Additionally, (angle), and sun elevation influences lo- most every day of the year (Hedberg, it is an endemic genus in the Andean cal distribution (Braun, 1997). The ge- 1961; Azócar and Monasterio, 1980). Mountain Range, found from Vene- nus creates a natural treeline well above Temperature and frost occurrence vary zuela in the north to Central Argentina the timberline (continuous forest line), with latitude, altitude and topography. in the south. Kessler and Schmidt-Leb- in some cases forming forest patches KEY WORDS / Andean Mountain Range / Carbon Relations / Gas Exchange / Low Temperature Resistance / Photosynthesis / Water Relations / Received: 05/02/2005. Modified: 09/14/2007. Accepted 09/20/2007. Aura Azócar. Biologist, Universidad Central de Venezuela (UCV). Dr. in Ecology, University of Montpellier, France. Professor, Universidad de Los Andes (ULA), Venezuela. Dirección: Laboratorio de Ecofisiología, Instituto de Ciencias Ambientales y Ecológicas (ICAE), ULA, Mérida, Venezuela. e-mail: [email protected] Fermín Rada. Biologist, University of Maryland, USA. Dr. in Tropical Ecology, ULA, Vene- zuela. Professor, ULA, Venezuela. e-mail: [email protected] Carlos García-Núñez. Forestry Engineer and Dr. in Tropical Ecology, Professor, ULA, Venezue- la. e-mail: [email protected] OCT 2007, VOL. 32 Nº 10 0378-1844/07/10/663-06 $ 3.00/0 663 between 4000 and 5200masl. In gen- Table I eral, Polylepis forests are restricted to Environmental characteristics and coordinates steep slopes in mid to low topographic of the studY sites positions, although some species are Study site Species Coordinates Altitude Mean Mean also found on flat terrains. Polylepis (masl) annual annual dominates the upper strata of woodlands temperature precipitation and shrublands, together with other less (°C) (mm) abundant woody species of the genera Berberis, Gaultheria, Valeriana, among Piedras Blancas, P. sericea 9°N - 70°W 4200 3.7 800 others. These woody species occasion- Venezuela ally form dense stands that cover most Nevado Sajama, P. tarapacana 18°S - 68°W 4300 3.4 347 of the surface, often called forests, that Bolivia are usually intermingled with patches of tussock grasslands, ferns or rock out- Los Gigantes, P. australis 32° S - 66°W 2100 8.0 854 Argentina crops (Kessler, 2006). Despite their relatively small area cover, these forests represent unique ecological islands of biodiver- life form (Simpson, 1979), character- man-Cruz et al., 1997). The study site sity that are vanishing rapidly; Fjeldsa ized by twisted shapes, a thick, dense- is located at Nevado Sajama Nation- and Kessler (1996) indicate that only ly laminated and flaky bark with red- al Park, where P. tarapacana forms 2% of the original Polylepis forests re- dish color (Simpson, 1986), and small the world’s highest woody plant forest main in Perú and 10% in Bolivia, sug- green-gray leaves. The trees are 1-6m (Liberman-Cruz, 1986; Braun, 1997) gesting that human occupation in the in height and have crown diameters around the Sajama Volcano. Although Andean highlands has led to consider- of 3-5m. With respect to their distri- the study site is considered a semiarid able destruction of these forests. bution, the species occur in different tropical high mountain environment, its All species of the ge- ecological habitats associated with el- latitudinal position determines a marked nus are exposed to very harsh climatic evation and humidity. seasonal pattern in temperature and pre- conditions in both their altitudinal and Three species were com- cipitation regimes, with a cold dry sea- latitudinal distribution, indicating that pared a latitudinal distribution gradient: son during the austral winter (May-Oct) their survival depends on very special P. sericea Wedd, in Venezuela, P. tara‑ and a wet warmer season (Nov-Apr; adaptive characteristics that allow them pacana Philippi, in Bolivia and P. aus‑ Liberman-Cruz et al., 1997). Absolute to sustain freezing temperatures and a tralis Bitter, in Argentina. Table I shows maximum and minimum temperatures distinct water stress due to precipita- the environmental characteristics and registered at 4200m are 21 and -19ºC, tion regimes and drying winds. Nor- geographic coordinates for the different respectively (Liberman-Cruz, 1986). mally, these conditions would prevent study sites. P. australis is found tree growth; however, the presence of P. sericea, in the Ven- at the north extreme of Sierra Grande many Polylepis species above the tim- ezuelan Andes, may reach an altitude in Córdoba, Argentina, mainly associ- berline, forming forest islands along of 4600m (Arnal, 1983), well above ated with rock outcrops. This species broad temperature and water availability the treeline (3200masl) in this tropi- has to cope with altitude conditions in gradients, suggests a high diversity of cal area (Monasterio, 1980). Its dis- a temperate environment. Most (83%) functional attributes, which in turn play tribution is always associated to more rainfall occurs in the summer (Renison a fundamental role in their survival. favorable thermal conditions in areas et al., 2002). Absolute daily maximum In this work, some where large boulders accumulate to- and minimum temperatures of 27.1 and functional attributes of three Polylepis wards the base of glacial cirques (Wal- -12.8ºC were registered during this species along a wide latitudinal gra- ter and Medina, 1969; Azócar and study. dient are integrated and compared, in Monasterio 1980). This species has the order to establish functional responses widest latitudinal distribution, from Field and laboratory studies that help explain their wide geographi- Venezuela to northern Bolivia. Appar- cal distribution. Functional charac- ently, this species has spread through Mean air temperature teristics are compared
Recommended publications
  • Freshwater Diatoms in the Sajama, Quelccaya, and Coropuna Glaciers of the South American Andes
    Diatom Research ISSN: 0269-249X (Print) 2159-8347 (Online) Journal homepage: http://www.tandfonline.com/loi/tdia20 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups To cite this article: D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups (2017): Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes, Diatom Research, DOI: 10.1080/0269249X.2017.1335240 To link to this article: http://dx.doi.org/10.1080/0269249X.2017.1335240 Published online: 17 Jul 2017. Submit your article to this journal Article views: 6 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tdia20 Download by: [Lund University Libraries] Date: 19 July 2017, At: 08:18 Diatom Research,2017 https://doi.org/10.1080/0269249X.2017.1335240 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes 1 1 2 3 D. MARIE WEIDE ∗,SHERILYNC.FRITZ,BRUCEE.BRINSON, LONNIE G. THOMPSON & W. EDWARD BILLUPS2 1Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA 2Department of Chemistry, Rice University, Houston, TX, USA 3School of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA Diatoms in ice cores have been used to infer regional and global climatic events. These archives offer high-resolution records of past climate events, often providing annual resolution of environmental variability during the Late Holocene.
    [Show full text]
  • Jürgen Reinmüller
    JÜRGEN REINMÜLLER KLIMAVERHÄLTNISSE IN EXTREMEN HOCHGEBIRGEN DER ERDE Ergebnisse eines Sonderklimamessnetzes Diplomarbeit zur Erlangung des akademischen Grades „Magister der Naturwissenschaften“ an der Naturwissenschaftlichen Fakultät der Karl-Franzens-Universität Graz Betreuung durch: Ao. UNIV. PROF. DR. REINHOLD LAZAR Institut für Geographie und Raumforschung 2010 Eidesstattliche Erklärung 2 Eidesstattliche Erklärung Ich, Jürgen Reinmüller, erkläre hiermit, dass die vorliegende Diplomarbeit von mir selbst und ohne unerlaubte Beihilfe verfasst wurde. Die von mir benutzten Hilfsmittel sind im Literaturverzeichnis am Ende dieser Arbeit aufgelistet und wörtlich oder inhaltlich entnommene Stellen wurden als solche kenntlich gemacht. Admont, im März 2010 Jürgen Reinmüller Vorwort 3 Vorwort Die höchstgelegenen Bereiche der Hochgebirge der Erde weisen bis dato eine außerordentlich geringe Dichte an Klimastationen und damit ein Defizit an verfügbaren Klimadaten auf. Aussagen zu den thermischen Aspekten in den Gipfellagen extremer Hochgebirge jenseits der 6000 m Grenze konnten bis dato nur unbefriedigend erörtert werden. Als staatlich geprüfter Berg- und Schiführer und begeisterter Höhenbergsteiger liegen die beeindruckenden, hochgelegenen Gipfel seit Jahren in meinem Interessensbereich. Zudem sehe ich mich in meinem bergführerischen Arbeitsbereich zunehmend mit den Zeichen des aktuellen Klimawandels konfrontiert. Schmelzende Gletscher oder auftauender Permafrost stellen für Bergsteiger ein nicht unwesentliches Gefahrenpotential dar. Die durch das von Univ. Prof. Dr. Reinhold Lazar ins Leben gerufene Projekt HAMS.net (High Altitude Meteorological Station Network) gewonnenen Daten können künftig bei der Tourenplanung diverser Expeditionen miteinbezogen werden und stellen eine wichtige Grundlage für klimatologische Hochgebirgsforschung in großen Höhen dar. Ich selbst durfte dieses interessante Projekt durch den Data-Logger-Tausch am Aconcagua im Februar 2007 ein wenig unterstützen und werde dem Projekt auch in Zukunft mit Rat und Tat zur Seite stehen.
    [Show full text]
  • Polylepis En El Peru
    INFORMACION PRELIMINAR DE LA ECOLOGIA, DENDROLOGIA Y DISTRIBUCION GEOGRAFICA DE LAS ESPECIES DEL GENERO POLYLEPIS EN EL PERU Rafael Lao Magin1 Percy Zevallos Pollito2 Horacio de la Cruz Silva3 l. Ingeniero Forestal, Facultad de Ciencias Forestales, UNA. 2. Ingeniero Forestal, Facultad de Ciencias Forestales, UNA. 3. Biólogo, Pontificia Universidad Católica del Perú PRESENT ACION Al presentar esta nota técnica deseo hacer un homenaje a la memoria de quien en vida fue Ing. Rafael Lao Magin, co-autor, quien siempre estuvo preo­ cupado en ubicar rodales semilleros de las especies de Polylepis con la finalidad de usarlos en la reforestación de nuestra sierra peruana. Estamos seguros que él hubiera querido que esta nota sea la más completa, sin embargo hemos procurado terminar sólo hasta donde se avanzó bajo su dirección. INTRODUCCION El presente documento viene a ser más que todo una breve revisión de las especies del género Polylepis, realizado a través de recopilación de información bibliográfica, trabajo de observación de especímenes de herbario (Universidad Nacional Agraria La Molina y Universidad Nacional Mayor de San Marcos), con la finalidad de usarlos en la reforestación de la Sierra del Pero. Las especies de dicho género tienen una gran importancia para la población andina por la utilidad que tienen en sus vidas cotidianas; leña, construcción, he­ rramientas, agricultura, etc.; lamentablemente, la mayoría de los bosques donde se la ubicaba fueron talados para utilizarlos como leña principalmente; además de ser una de las especies forestales adaptadas a las condiciones climáticas adversas que se le presentan encima de los 2,800 msnm. Finalmente, estamos presentando la descripción de 10 especies considera­ das en el estudio de Simpson (1979), tres figuras de las especies más importantes: Polylepis incana, P.
    [Show full text]
  • ECUADOR: the ANDES INTROTOUR 18Th – 25Th June 2016 And
    Tropical Birding Trip Report ECUADOR: THE ANDES: INTROTOUR June 2016 A Tropical Birding SET DEPARTURE tour ECUADOR: The ANDES INTROTOUR 18th – 25th June 2016 and HIGH ANDES EXTENSION 25th - 27th June 2016 The regular Choco Toucans at Milpe have become very accustomed to people. This is a regional endemic species confined to the Choco bioregion of northwest Ecuador and western Colombia. Tour Leader: Jose Illanes Report and all photos by Jose Illanes. 1 www.tropicalbirding.com +1-409-515-9110 [email protected] Page Tropical Birding Trip Report ECUADOR: THE ANDES: INTROTOUR June 2016 INTRODUCTION MAIN TOUR This tour has been designed as an introduction to the wonders of birding the tropics, which it does very well, but also allows us to see some regional specialties confined to this Choco bioregion, (shared with western Colombia). The tour starts at Yanacocha, a high elevation, temperate reserve, where we kicked off with Barred Fruiteater, Andean Pygmy-Owl, Hooded, Black-chested and Scarlet-bellied Mountain-Tanagers, as well as Andean Guan, Rufous Antpitta and the incredible Sword-billed Hummingbird. Later the same day, our journey to Tandayapa was interrupted by White-capped Dipper. The next day we explored the surrounds of the marvelous Tandayapa Bird Lodge. This cloudforest location is famed for hummingbirds, and after seeing 14 species in less than 10 minutes it was easy to appreciate why! Among the species preset were: Booted-Racket-tail, Western Emerald, Purple-bibbed White-tip, Violet-tailed Sylph and Purple-throated Woodstar. Other stellar birds on the lodge property included a Scaled Antpitta coming in to a worm feeder, and a nesting Beautiful Jay.
    [Show full text]
  • An Ice-Core Pollen Record Showing Vegetation Response to Late-Glacial and Holocene Climate Changes at Nevado Sajama, Bolivia
    The University of Southern Mississippi The Aquila Digital Community Faculty Publications 2013 An Ice-Core Pollen Record Showing Vegetation Response to Late- Glacial and Holocene Climate Changes at Nevado Sajama, Bolivia C. A. Reese University of Southern Mississippi K. B. Liu L. G. Thompson Follow this and additional works at: https://aquila.usm.edu/fac_pubs Part of the Geography Commons Recommended Citation Reese, C., Liu, K., Thompson, L. (2013). An Ice-Core Pollen Record Showing Vegetation Response to Late- Glacial and Holocene Climate Changes at Nevado Sajama, Bolivia. Annals of Glaciology, 54(63), 183-190. Available at: https://aquila.usm.edu/fac_pubs/7807 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. Annals of Glaciology 54(63) 2013 doi:10.3189/2013AoG63A375 183 An ice-core pollen record showing vegetation response to Late-glacial and Holocene climate changes at Nevado Sajama, Bolivia C.A. REESE,1 K.B. LIU,2 L.G. THOMPSON3 1Department of Geography and Geology, University of Southern Mississippi, Hattiesburg, MS, USA E-mail: [email protected] 2Department of Oceanography and Coastal Sciences, School of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA 3School of Earth Sciences, The Ohio State University, Columbus, OH, USA ABSTRACT. We present the results of pollen analysis performed on an ice core recovered from Nevado Sajama, Bolivia, dated to 25 ka BP. Low pollen concentrations from 25 to 15 ka BP are consistent with the scenario of an expanded ice cap surrounded by sparse vegetation and cold conditions on the Altiplano during the Last Glacial Maximum.
    [Show full text]
  • Polylepis Rugulosa (Rosaceae) from Peru
    International Journal of Modern Agriculture, Volume 10, No.2, 2021 ISSN: 2305-7246 POPULATION STRUCTURE AND ECOLOGY OF A HIGH ANDEAN FOREST: POLYLEPIS RUGULOSA (ROSACEAE) FROM PERU Morales-Aranibar Luis1*, Rivera Campano Milko2, Flores Roque Mario3, Morales Aranibar Carlos4, Costa Taborga Juan5 1 Director of the Office of Innovation, Technology Transfer and Intellectual Property at the National Intercultural University of Quillabamba – Cusco 2 Director of the Professional School of Environmental Engineering, National University of Moquegua 3 Teacher of the Professional School of Environmental Engineering, National University of Moquegua 4 Research collaborator, Jorge Basadre Grohmann National University of Tacna 5 Research collaborator, National University of San Antonio Abad of Cusco Email: [email protected] Abstract Thirteen plots of 500m2 were established in the forest of quenoa at Muylaque, district of San Cristóbal (Moquegua), southern of Peru. The population structure showed a predominance of saplings (239 individuals), followed by adults (217 individuals), and seedlings (164 individuals). The average of individuals per plot was higher for the seedlings (18.4 ± 3.6), followed by adults (16.7 ± 4.3) and saplings (12.6 ± 4.5). It was estimated 334 adult individuals per hectare. P. rugulosa yielded floral buds during the wet season (December to February), while in the dry season (July to September) individuals in a vegetative stage predominate. The fruiting stage predominated at the end of the wet season (February to April). The plants affected by anthropogenic activities were accounted up to 13% of the plants evaluated. The associated flora to the P. rugulosa forest is composed of 72 species of herbaceous and shrubby plants distributed in 28 families.
    [Show full text]
  • GRID-Arendal Annual Report 2018
    29 and counting GRID-Arendal Annual Report 2018 Established in 1989 as a non-profit foundation under Norwegian law, GRID-Arendal’s mission is to create environmental knowledge that encourages positive change. We do this by organising and transforming available environmental data into credible, science-based information products, delivered through innovative communication tools and capacity building services targeting relevant stakeholders. GRID-Arendal works closely with United Nations Environment, other UN agencies and partners around the world to connect science to policy. Our goal is to shorten the distance between the emergence of new science and policy actions. We seek to influence thinking and action at the level of the global community on issues that require collective efforts because many problems cannot be solved at the national level alone. Acknowledgements GRID-Arendal would like to acknowledge the support of the Government of Norway and its other funders, partners and supporters. Contents Foreword 3 From the desk of the Managing Director 5 Stories 6 Action to make mine waste dams safer 8 Participatory mapping in Vietnam 9 On the coast of West Africa 10 Helping Vanuatu and France hold historic meeting 11 Blue Carbon 12 Success in the Caspian Sea 13 And Caspian sturgeon better protected 14 Marine plastic pollution in the Arctic 15 © GRID-Arendal, 2018 Marine litter – research, not talking trash 16 Publication: GRID-Arendal 2018 Annual Report Sanitation and wastewater in Africa 17 ISBN: 978-82-7701-188-2 IW:LEARN 18 This publication may be reproduced in whole or in part and in any form Moving mountains (onto the agenda) 19 for educational or non-profit purposes without special permission from the copyright holder provided acknowledgement of the source is made.
    [Show full text]
  • Northern Argentina Tour Report 2016
    The enigmatic Diademed Sandpiper-Plover in a remote valley was the bird of the trip (Mark Pearman) NORTHERN ARGENTINA 21 OCTOBER – 12 NOVEMBER 2016 TOUR REPORT LEADER: MARK PEARMAN Northern Argentina 2016 was another hugely successful chapter in a long line of Birdquest tours to this region with some 524 species seen although, importantly, more speciality diamond birds were seen than on all previous tours. Highlights in the north-west included Huayco Tinamou, Puna Tinamou, Diademed Sandpiper-Plover, Black-and-chestnut Eagle, Red-faced Guan, Black-legged Seriema, Wedge-tailed Hilstar, Slender-tailed Woodstar, Black-banded Owl, Lyre-tailed Nightjar, Black-bodied Woodpecker, White-throated Antpitta, Zimmer’s Tapaculo, Scribble-tailed Canastero, Rufous-throated Dipper, Red-backed Sierra Finch, Tucuman Mountain Finch, Short-tailed Finch, Rufous-bellied Mountain Tanager and a clean sweep on all the available endemcs. The north-east produced such highly sought-after species as Black-fronted Piping- Guan, Long-trained Nightjar, Vinaceous-breasted Amazon, Spotted Bamboowren, Canebrake Groundcreeper, Black-and-white Monjita, Strange-tailed Tyrant, Ochre-breasted Pipit, Chestnut, Rufous-rumped, Marsh and Ibera Seedeaters and Yellow Cardinal. We also saw twenty-fve species of mammal, among which Greater 1 BirdQuest Tour Report: Northern Argentina 2016 www.birdquest-tours.com Naked-tailed Armadillo stole the top slot. As usual, our itinerary covered a journey of 6000 km during which we familiarised ourselves with each of the highly varied ecosystems from Yungas cloud forest, monte and badland cactus deserts, high puna and altiplano, dry and humid chaco, the Iberá marsh sytem (Argentina’s secret pantanal) and fnally a week of rainforest birding in Misiones culminating at the mind-blowing Iguazú falls.
    [Show full text]
  • Late Holocene Volcanic and Anthropogenic Mercury Deposition in the Western Central Andes (Lake Chungará, Chile)
    Science of the Total Environment 662 (2019) 903–914 Late Holocene volcanic and anthropogenic mercury deposition in the western Central Andes (Lake Chungará, Chile) S. Guédron a,b,⁎,J.Toluc,d, E. Brisset a,e,f,P.Sabatierg,V.Perrota,S.Boucheth,d,A.L.Develleg,R.Bindlerc, D. Cossa a, S.C. Fritz i,P.A.Bakerj a Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France b Laboratorio de Hidroquímica, Instituto de Investigaciones Químicas, Universidad Mayor de San Andres, Campus Universitario de Cota Cota, casilla 3161, La Paz, Bolivia c Department of Ecology and Environmental Science, Umeå University, Sweden d Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland and ETH Zürich, Universitätstrasse 16, CH-8092 Zürich, Switzerland e IPHES, Institut Català de Paleoecologia Humana i Evolució Social, Tarragona, Spain f Àrea de Prehistòria, Universitat Rovira i Virgili, Tarragona, Spain g Environnement, Dynamique et Territoires de Montagne (EDYTEM), Université Savoie Mont Blanc, CNRS, 73373 Le Bourget du Lac, France h LCABIE — Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM UMR 5254, CNRS et Université de Pau et des Pays de l'Adour, Hélioparc, F-64053 Pau, France i Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA j Division of Earth and Ocean Sciences, Duke University, Durham, NC, USA HIGHLIGHTS GRAPHICAL ABSTRACT • We studied mercury deposition in Lake Chungará (18°S) over the last ~2700 years. • Parinacota volcano produced 20 tephra layers recorded in lake sediments. • Lake primary production was the main, not limiting, carrier of Hg to the sedi- ment.
    [Show full text]
  • Climate Change and Tropical Andean Glaciers: Past, Present and Future
    Earth-Science Reviews 89 (2008) 79–96 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Climate change and tropical Andean glaciers: Past, present and future Mathias Vuille a,b,⁎, Bernard Francou c, Patrick Wagnon c, Irmgard Juen d, Georg Kaser d, Bryan G. Mark e, Raymond S. Bradley b a Department of Earth and Atmospheric Science, University at Albany, State University of New York, Albany, USA b Climate System Research Center, Department of Geosciences, University of Massachusetts, Amherst, USA c IRD-Great Ice, Laboratoire de Glaciologie et de Géophysique, BP 96 38402 Saint Martin d'Hères Cedex, France d Tropical Glaciology Group, Institute of Geography, University of Innsbruck, Austria e Department of Geography and Byrd Polar Research Center, Ohio State University, Columbus, USA ARTICLE INFO ABSTRACT Article history: Observations on glacier extent from Ecuador, Peru and Bolivia give a detailed and unequivocal account of Received 30 May 2007 rapid shrinkage of tropical Andean glaciers since the Little Ice Age (LIA). This retreat however, was not Accepted 8 April 2008 continuous but interrupted by several periods of stagnant or even advancing glaciers, most recently around Available online 24 April 2008 the end of the 20th century. New data from mass balance networks established on over a dozen glaciers allows comparison of the glacier behavior in the inner and outer tropics. It appears that glacier variations are Keywords: Andes quite coherent throughout the region, despite different sensitivities to climatic forcing such as temperature, glaciers precipitation, humidity, etc. In parallel with the glacier retreat, climate in the tropical Andes has changed climate change significantly over the past 50–60 years.
    [Show full text]
  • Covered Stratovolcano in the Cordillera Ampato, Peru, Using Remote Sensing Data (1986–2014)
    Geocarto International ISSN: 1010-6049 (Print) 1752-0762 (Online) Journal homepage: http://www.tandfonline.com/loi/tgei20 Variations in annual snowline and area of an ice- covered stratovolcano in the Cordillera Ampato, Peru, using remote sensing data (1986–2014) Bijeesh Kozhikkodan Veettil, Ulisses Franz Bremer, Sergio Florêncio de Souza, Éder Leandro Bayer Maier & Jefferson Cardia Simões To cite this article: Bijeesh Kozhikkodan Veettil, Ulisses Franz Bremer, Sergio Florêncio de Souza, Éder Leandro Bayer Maier & Jefferson Cardia Simões (2015): Variations in annual snowline and area of an ice-covered stratovolcano in the Cordillera Ampato, Peru, using remote sensing data (1986–2014), Geocarto International, DOI: 10.1080/10106049.2015.1059902 To link to this article: http://dx.doi.org/10.1080/10106049.2015.1059902 Accepted author version posted online: 08 Jun 2015. Published online: 25 Jun 2015. Submit your article to this journal Article views: 21 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tgei20 Download by: [University of Sherbrooke] Date: 19 October 2015, At: 20:56 Geocarto International, 2015 http://dx.doi.org/10.1080/10106049.2015.1059902 Variations in annual snowline and area of an ice-covered stratovolcano in the Cordillera Ampato, Peru, using remote sensing data (1986–2014) Bijeesh Kozhikkodan Veettila,b*, Ulisses Franz Bremera,b, Sergio Florêncio de Souzaa, Éder Leandro Bayer Maierc and Jefferson Cardia Simõesb
    [Show full text]
  • Prospecting Glacial Ages and Paleoclimatic Reconstructions Northeastward of Nevado Coropuna (16◦ S, 73◦ W, 6377 M), Arid Tropical Andes
    geosciences Article Prospecting Glacial Ages and Paleoclimatic Reconstructions Northeastward of Nevado Coropuna (16◦ S, 73◦ W, 6377 m), Arid Tropical Andes Jose Úbeda 1,2,3,* ID , Martí Bonshoms 2, Joshua Iparraguirre 1, Lucía Sáez 3, Ramón de la Fuente 3, Lila Janssen 3, Ronald Concha 1, Pool Vásquez 1 and Pablo Masías 1 1 Instituto Geológico Minero y Metalúrgico, Av. Canadá 1470, San Borja 15034, Peru; [email protected] (J.I.); [email protected] (R.C.); [email protected] (P.V.); [email protected] (P.M.) 2 Grupo de Investigación en Geografía Física de Alta Montaña, Departamento de Geografía, Universidad Complutense de Madrid, 28040 Madrid, Spain; [email protected] 3 Guías de Espeleología y Montaña (Speleology and Mountain Guides), Casilla del Mortero, Torremocha de Jarama, 28189 Madrid, Spain; [email protected] (L.S.); [email protected] (R.d.l.F.); [email protected] (L.J.) * Correspondence: [email protected]; Tel.: +34-656408790 Received: 19 July 2018; Accepted: 15 August 2018; Published: 20 August 2018 Abstract: This work investigates the timing, paleoclimatic framework and inter-hemispheric teleconnections inferred from the glaciers last maximum extension and the deglaciation onset in the Arid Tropical Andes. A study area was selected to the northeastward of the Nevado Coropuna, the volcano currently covered by the largest tropical glacier on Earth. The current glacier extent, the moraines deposited in the past and paleoglaciers at their maximum extension have been mapped. The present and past Equilibrium Line Altitudes (ELA and paleoELA) have been reconstructed and the chlorine-36 ages have been calculated, for preliminary absolute dating of glacial and volcanic processes.
    [Show full text]