Geometry Your Textbook and Is for Classroom Or Individual Use Only

Total Page:16

File Type:pdf, Size:1020Kb

Geometry Your Textbook and Is for Classroom Or Individual Use Only Geometry POLYHEDRA Study Guides Big Picture The 2-dimensional shapes of a polygon can be applied in a 3-dimensional figure. Such characteristics define polyhedra. Polyhedron is a very general terms and can include some very complex shapes. Key Terms Polyhedron (plural, polyhedra): A three-dimensional figure made up with polygon faces. Face: A polygon in a polyhedron. Lateral Face: A face that is not the base. Edge: The line segment where two faces intersect. Lateral Edge: The line segment where two lateral faces intersect. Vertex (plural, vertices): The point where two edges intersect. Regular Polyhedron: A polyhedron where all the faces are congruent regular polygons. Classifying Polyhedra A polyhedron has these properties: 1. 3-dimensional 2. Made of only flat polygons, called thefaces of the polyhedron 3. Polygon faces join together along segments called edges 4. Each edge joins exactly two faces 5. Edges meet in points called vertices; each edge joins exactly two vertices 6. There are no gaps between edges or vertices 7. Can be convex or concave Two common types of polyhedra include prisms and pyramids. Prisms and pyramids are named by their bases. • Prism: A polyhedron with two parallel, congruent bases. The other faces, also called lateral faces, are formed by connecting the corresponding vertices of the bases. • Left: triangular prism Right: octagonal prism your textbook and is for classroom or individual use only. your Disclaimer: this study guide was not created to replace Disclaimer: this study guide was • Pyramid: A polyhedron with one base and triangular sides meeting at a common vertex. • Left: hexagonal pyramid Right: square pyramid Image Credit: Blue figures on this page copyright rtguest, 2014, modified by CK- 12 Foundation. Used under license from Shutterstock.com. This guide was created by Nicole Crawford, Jane Li, Amy Shen, and Zachary Page 1 of 2 Wilson. To learn more about the student authors, http://www.ck12.org/ about/ck-12-interns/. v1.10.31.2011 POLYHEDRA CONT. Euler’s Formula for Polyhedra This formula can be used to find the number of vertices V( ), faces (F), or edges (E) on a polyhedron: F + V = E + 2 If a figure does not satisfy Euler’s formula, the figure is not a polyhedron. Geometry Regular Polyhedra A regular polyhedron has the following characteristics: 1. All faces are congruent regular polygons 2. Satisfies Euler’s formula for the number of vertices, faces, and edges 3. The figure has no gaps or holes 4. The figure is convex (has no indentations) Platonic Solids Named after the Greek philosopher Plato, the five regular polyhedra are: 1. regular tetrahedron: 4-faced polyhedron where all the faces are equilateral triangles 2. cube: 6-faced polyhedron where all the faces are squares 3. regular octahedron: 8-faced polyhedron where all the faces are equilateral triangles 4. regular dodecahedron: 12-faced polyhedron where all the faces are regular pentagons 5. regular icosahedron: 20-faced polyhedron where all the faces are equilateral triangles Semi-Regular Polyhedra A polyhedron is semi-regular if all of its faces are regular polygons and satisfies Euler’s formula. • Semi-regular polyhedra often have two different kinds of faces, both of which are regular polygons. • Prisms with a regular polygon base are one example of semi-regular polyhedron. Notes Page 2 of 2.
Recommended publications
  • On the Archimedean Or Semiregular Polyhedra
    ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA Mark B. Villarino Depto. de Matem´atica, Universidad de Costa Rica, 2060 San Jos´e, Costa Rica May 11, 2005 Abstract We prove that there are thirteen Archimedean/semiregular polyhedra by using Euler’s polyhedral formula. Contents 1 Introduction 2 1.1 RegularPolyhedra .............................. 2 1.2 Archimedean/semiregular polyhedra . ..... 2 2 Proof techniques 3 2.1 Euclid’s proof for regular polyhedra . ..... 3 2.2 Euler’s polyhedral formula for regular polyhedra . ......... 4 2.3 ProofsofArchimedes’theorem. .. 4 3 Three lemmas 5 3.1 Lemma1.................................... 5 3.2 Lemma2.................................... 6 3.3 Lemma3.................................... 7 4 Topological Proof of Archimedes’ theorem 8 arXiv:math/0505488v1 [math.GT] 24 May 2005 4.1 Case1: fivefacesmeetatavertex: r=5. .. 8 4.1.1 At least one face is a triangle: p1 =3................ 8 4.1.2 All faces have at least four sides: p1 > 4 .............. 9 4.2 Case2: fourfacesmeetatavertex: r=4 . .. 10 4.2.1 At least one face is a triangle: p1 =3................ 10 4.2.2 All faces have at least four sides: p1 > 4 .............. 11 4.3 Case3: threefacesmeetatavertes: r=3 . ... 11 4.3.1 At least one face is a triangle: p1 =3................ 11 4.3.2 All faces have at least four sides and one exactly four sides: p1 =4 6 p2 6 p3. 12 4.3.3 All faces have at least five sides and one exactly five sides: p1 =5 6 p2 6 p3 13 1 5 Summary of our results 13 6 Final remarks 14 1 Introduction 1.1 Regular Polyhedra A polyhedron may be intuitively conceived as a “solid figure” bounded by plane faces and straight line edges so arranged that every edge joins exactly two (no more, no less) vertices and is a common side of two faces.
    [Show full text]
  • Binary Icosahedral Group and 600-Cell
    Article Binary Icosahedral Group and 600-Cell Jihyun Choi and Jae-Hyouk Lee * Department of Mathematics, Ewha Womans University 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3277-3346 Received: 10 July 2018; Accepted: 26 July 2018; Published: 7 August 2018 Abstract: In this article, we have an explicit description of the binary isosahedral group as a 600-cell. We introduce a method to construct binary polyhedral groups as a subset of quaternions H via spin map of SO(3). In addition, we show that the binary icosahedral group in H is the set of vertices of a 600-cell by applying the Coxeter–Dynkin diagram of H4. Keywords: binary polyhedral group; icosahedron; dodecahedron; 600-cell MSC: 52B10, 52B11, 52B15 1. Introduction The classification of finite subgroups in SLn(C) derives attention from various research areas in mathematics. Especially when n = 2, it is related to McKay correspondence and ADE singularity theory [1]. The list of finite subgroups of SL2(C) consists of cyclic groups (Zn), binary dihedral groups corresponded to the symmetry group of regular 2n-gons, and binary polyhedral groups related to regular polyhedra. These are related to the classification of regular polyhedrons known as Platonic solids. There are five platonic solids (tetrahedron, cubic, octahedron, dodecahedron, icosahedron), but, as a regular polyhedron and its dual polyhedron are associated with the same symmetry groups, there are only three binary polyhedral groups(binary tetrahedral group 2T, binary octahedral group 2O, binary icosahedral group 2I) related to regular polyhedrons.
    [Show full text]
  • Can Every Face of a Polyhedron Have Many Sides ?
    Can Every Face of a Polyhedron Have Many Sides ? Branko Grünbaum Dedicated to Joe Malkevitch, an old friend and colleague, who was always partial to polyhedra Abstract. The simple question of the title has many different answers, depending on the kinds of faces we are willing to consider, on the types of polyhedra we admit, and on the symmetries we require. Known results and open problems about this topic are presented. The main classes of objects considered here are the following, listed in increasing generality: Faces: convex n-gons, starshaped n-gons, simple n-gons –– for n ≥ 3. Polyhedra (in Euclidean 3-dimensional space): convex polyhedra, starshaped polyhedra, acoptic polyhedra, polyhedra with selfintersections. Symmetry properties of polyhedra P: Isohedron –– all faces of P in one orbit under the group of symmetries of P; monohedron –– all faces of P are mutually congru- ent; ekahedron –– all faces have of P the same number of sides (eka –– Sanskrit for "one"). If the number of sides is k, we shall use (k)-isohedron, (k)-monohedron, and (k)- ekahedron, as appropriate. We shall first describe the results that either can be found in the literature, or ob- tained by slight modifications of these. Then we shall show how two systematic ap- proaches can be used to obtain results that are better –– although in some cases less visu- ally attractive than the old ones. There are many possible combinations of these classes of faces, polyhedra and symmetries, but considerable reductions in their number are possible; we start with one of these, which is well known even if it is hard to give specific references for precisely the assertion of Theorem 1.
    [Show full text]
  • Fundamental Principles Governing the Patterning of Polyhedra
    FUNDAMENTAL PRINCIPLES GOVERNING THE PATTERNING OF POLYHEDRA B.G. Thomas and M.A. Hann School of Design, University of Leeds, Leeds LS2 9JT, UK. [email protected] ABSTRACT: This paper is concerned with the regular patterning (or tiling) of the five regular polyhedra (known as the Platonic solids). The symmetries of the seventeen classes of regularly repeating patterns are considered, and those pattern classes that are capable of tiling each solid are identified. Based largely on considering the symmetry characteristics of both the pattern and the solid, a first step is made towards generating a series of rules governing the regular tiling of three-dimensional objects. Key words: symmetry, tilings, polyhedra 1. INTRODUCTION A polyhedron has been defined by Coxeter as “a finite, connected set of plane polygons, such that every side of each polygon belongs also to just one other polygon, with the provision that the polygons surrounding each vertex form a single circuit” (Coxeter, 1948, p.4). The polygons that join to form polyhedra are called faces, 1 these faces meet at edges, and edges come together at vertices. The polyhedron forms a single closed surface, dissecting space into two regions, the interior, which is finite, and the exterior that is infinite (Coxeter, 1948, p.5). The regularity of polyhedra involves regular faces, equally surrounded vertices and equal solid angles (Coxeter, 1948, p.16). Under these conditions, there are nine regular polyhedra, five being the convex Platonic solids and four being the concave Kepler-Poinsot solids. The term regular polyhedron is often used to refer only to the Platonic solids (Cromwell, 1997, p.53).
    [Show full text]
  • Putting the Icosahedron Into the Octahedron
    Forum Geometricorum Volume 17 (2017) 63–71. FORUM GEOM ISSN 1534-1178 Putting the Icosahedron into the Octahedron Paris Pamfilos Abstract. We compute the dimensions of a regular tetragonal pyramid, which allows a cut by a plane along a regular pentagon. In addition, we relate this construction to a simple construction of the icosahedron and make a conjecture on the impossibility to generalize such sections of regular pyramids. 1. Pentagonal sections The present discussion could be entitled Organizing calculations with Menelaos, and originates from a problem from the book of Sharygin [2, p. 147], in which it is required to construct a pentagonal section of a regular pyramid with quadrangular F J I D T L C K H E M a x A G B U V Figure 1. Pentagonal section of quadrangular pyramid basis. The basis of the pyramid is a square of side-length a and the pyramid is assumed to be regular, i.e. its apex F is located on the orthogonal at the center E of the square at a distance h = |EF| from it (See Figure 1). The exercise asks for the determination of the height h if we know that there is a section GHIJK of the pyramid by a plane which is a regular pentagon. The section is tacitly assumed to be symmetric with respect to the diagonal symmetry plane AF C of the pyramid and defined by a plane through the three points K, G, I. The first two, K and G, lying symmetric with respect to the diagonal AC of the square.
    [Show full text]
  • Section 1000.00 Omnitopology
    Table of Contents ● 1000.00 OMNITOPOLOGY ● 1001.00 Inherent Rationality of Omnidirectional Epistemology ■ 1001.10 Spherical Reference ❍ 1001.20 Field of Geodesic Event Relationships ❍ 1002.10 Omnidirectional Nucleus ❍ 1003.10 Isotropic-Vector-Matrix Reference ❍ 1004.10 An Omnisynergetic Coordinate System ❍ 1005.10 Inventory of Omnidirectional Intersystem Precessional Effects ❍ 1005.15 Volume and Area Progressions ■ 1005.20 Biospherical Patterns ■ 1005.30 Poisson Effect ■ 1005.40 Genetic Intercomplexity ■ 1005.50 Truth and Love: Linear and Embracing ■ 1005.60 Generalization and Polarization ■ 1005.611 Metabolic Generalizations ❍ 1006.10 Omnitopology Defined ■ 1006.20 Omnitopological Domains ■ 1006.30 Vector Equilibrium Involvement Domain ■ 1006.40 Cosmic System Eight-dimensionality ❍ 1007.10 Omnitopology Compared with Euler's Topology ❍ 1007.20 Invalidity of Plane Geometry ❍ 1008.10 Geodesic Spheres in Closest Packing ❍ 1009.00 Critical Proximity ■ 1009.10 Interference: You Really Can t Get There from Here ■ 1009.20 Magnitude of Independent Orbiting ■ 1009.30 Symmetrical Conformation of Flying-Star Teams ■ 1009.40 Models and Divinity ■ 1009.50 Acceleration ■ 1009.60 Hammer-Thrower ■ 1009.69 Comet ■ 1009.70 Orbital Escape from Earth s Critical-Proximity Programmability ■ 1009.80 Pea-Shooter Sling-Thrower. and Gyroscope: Gravity and Mass- Attraction ● 1010.00 Prime Volumes ■ 1010.10 Domain and Quantum ■ 1010.20 Nonnuclear Prime Structural Systems ❍ 1011.00 Omnitopology of Prime Volumes ■ 1011.10 Prime Enclosure ■ 1011.20 Hierarchy of Nuclear
    [Show full text]
  • Are Your Polyhedra the Same As My Polyhedra?
    Are Your Polyhedra the Same as My Polyhedra? Branko Gr¨unbaum 1 Introduction “Polyhedron” means different things to different people. There is very little in common between the meaning of the word in topology and in geometry. But even if we confine attention to geometry of the 3-dimensional Euclidean space – as we shall do from now on – “polyhedron” can mean either a solid (as in “Platonic solids”, convex polyhedron, and other contexts), or a surface (such as the polyhedral models constructed from cardboard using “nets”, which were introduced by Albrecht D¨urer [17] in 1525, or, in a more mod- ern version, by Aleksandrov [1]), or the 1-dimensional complex consisting of points (“vertices”) and line-segments (“edges”) organized in a suitable way into polygons (“faces”) subject to certain restrictions (“skeletal polyhedra”, diagrams of which have been presented first by Luca Pacioli [44] in 1498 and attributed to Leonardo da Vinci). The last alternative is the least usual one – but it is close to what seems to be the most useful approach to the theory of general polyhedra. Indeed, it does not restrict faces to be planar, and it makes possible to retrieve the other characterizations in circumstances in which they reasonably apply: If the faces of a “surface” polyhedron are sim- ple polygons, in most cases the polyhedron is unambiguously determined by the boundary circuits of the faces. And if the polyhedron itself is without selfintersections, then the “solid” can be found from the faces. These reasons, as well as some others, seem to warrant the choice of our approach.
    [Show full text]
  • Icosahedron Is the Most Complicated of the Five Regular Platonic Solids
    PROPERTIES AND CONSTRUCTION OF ICOSAHEDRA The icosahedron is the most complicated of the five regular platonic solids. It consists of twenty equilateral triangle faces (F=20), a total of twelve vertices (V=12), and thirty edges (E=30). That is, it satisfies the Euler Formula that F+V-E=2. To construct this 3D figure one needs to first locate the coordinates of its vertices and thern can tile the structure with simple equilateral triangles. We will do this in the present article using a somewhat different than usual approach via cylindrical coordinates. As a starting point we look at the following schematic of an icosahedron- We draw a polar axis through the figure passing through the top and bottom vertex point. Also we notice that the top and bottom of the figure consists of a pentagonal pyramid of height c. the height of the girth of the figure is taken as d so that the circumscribing sphere has diameter D=2R=2c+d. All twelve vertices of the icosahedron lie on this sphere. Looking at the pentagon base of the upper cap, we take the length of each side of the pentagon to be one. This means that the distance from each of the pentagon vertex points to the polar axis is – 1 2 b 0.8506508... 2sin( / 5) 5 5 5 Here =[1+sqrt(5)]/2=1.61803398.. is the well known Golden Ratio The distance from the middle of one of the pentagon edges to the polar axis is- 1 1 1 3 4 a 0.68819096..
    [Show full text]
  • Wythoffian Skeletal Polyhedra
    Wythoffian Skeletal Polyhedra by Abigail Williams B.S. in Mathematics, Bates College M.S. in Mathematics, Northeastern University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy April 14, 2015 Dissertation directed by Egon Schulte Professor of Mathematics Dedication I would like to dedicate this dissertation to my Meme. She has always been my loudest cheerleader and has supported me in all that I have done. Thank you, Meme. ii Abstract of Dissertation Wythoff's construction can be used to generate new polyhedra from the symmetry groups of the regular polyhedra. In this dissertation we examine all polyhedra that can be generated through this construction from the 48 regular polyhedra. We also examine when the construction produces uniform polyhedra and then discuss other methods for finding uniform polyhedra. iii Acknowledgements I would like to start by thanking Professor Schulte for all of the guidance he has provided me over the last few years. He has given me interesting articles to read, provided invaluable commentary on this thesis, had many helpful and insightful discussions with me about my work, and invited me to wonderful conferences. I truly cannot thank him enough for all of his help. I am also very thankful to my committee members for their time and attention. Additionally, I want to thank my family and friends who, for years, have supported me and pretended to care everytime I start talking about math. Finally, I want to thank my husband, Keith.
    [Show full text]
  • From the Icosahedron to E8
    From the Icosahedron to E8 John C. Baez Department of Mathematics University of California Riverside, California 92521, USA and Centre for Quantum Technologies National University of Singapore Singapore 117543 [email protected] December 15, 2017 Abstract The regular icosahedron is connected to many exceptional objects in mathematics. Here we describe two constructions of the E8 lattice from the icosahedron. One uses a subring of the quaternions called the \icosians", while the other uses du Val's work on the resolution of Kleinian singularities. Together they link the golden ratio, the quaternions, the quintic equation, the 600- cell, and the Poincar´ehomology 3-sphere. We leave it as a challenge to the reader to find the connection between these two constructions. In mathematics, every sufficiently beautiful object is connected to all others. Many exciting adven- tures, of various levels of difficulty, can be had by following these connections. Take, for example, the icosahedron|that is, the regular icosahedron, one of the five Platonic solids. Starting from this it is just a hop, skip and a jump to the E8 lattice, a wonderful pattern of points in 8 dimensions! As we explore this connection we shall see that it also ties together many other remarkable entities: the golden ratio, the quaternions, the quintic equation, a highly symmetrical 4-dimensional shape called the 600-cell, and a manifold called the Poincar´ehomology 3-sphere. Indeed, the main problem with these adventures is knowing where to stop. The story we shall tell is just a snippet of a longer one involving the McKay correspondence and quiver representations.
    [Show full text]
  • Physical Proof of Only Five Regular Solids
    A Physical Proof for Five and Only Five Regular Solids Robert McDermott Center for High Performance Computing University of Utah Salt Lake City, Utah, 84112, USA E-mail: [email protected] Abstract Physical models are invaluable aids for conveying concepts in geometry, particularly concepts about polyhedra. In this paper physical polygons, polygon corners, polygon flat regions, polygon cylinders, polygon nets and polyhedra are all used to show a physical proof that there are five, and only five regular solids. Students from grade school, high school, undergraduate and graduate levels have been presented with this physical proof, and all of them have taken away something worthwhile related to their existing level of knowledge. 1. Introduction The Regular or Platonic solids can serve as a substantive foundation for the study of three- dimensional space. The better a student understands Regular solids, the better that student is able to understand more sophisticated concepts about space. Additional understanding of these solids is achieved by adding the sense of touch to the sense of vision and students who are able to handle Platonic solids reinforce the knowledge gained through their vision. The size of the models is also important. A model that fills the hands of a student gains her or his attention more than a considerably smaller or a considerably larger model. Regular polygons are simple shapes with straight and equal length edges, as well as, equal angles between each adjacent pair of those edges. An equilateral triangle, a square, a regular pentagon, and a regular hexagon as seen in Figure 1, are four regular polygons that we see in our everyday lives.
    [Show full text]
  • Description: Regular Dodecahedron a Regular Dodecahedron Or
    Description: Regular Dodecahedron A regular dodecahedron or pentagonal dodecahedron is a dodecahedron that is regular, which is composed of twelve regular pentagonal faces, three meeting at each vertex. It is one of the five Platonic solids. It has 12 faces, 20 vertices, 30 edges, and 160 diagonals. It is represented by the Schläfli symbol {5,3}. (WikipediaFaces by sides): 12Dihedral angle: 116.56505° = arccos(−1/√5) Face configuration: V3.3.3.3.35.5.5 (Vertex figure): Regular icosahedron; (dual polyhedron) Rotation group: I,+, (532) Properties: regular, convex Symmetry: Ih, H3,, (*532) Mathematical equations of a Dodecahedron: (http://mathworld.wolfram.com/RegularDodecahedron.html) The polyhedron vertices of a dodecahedron can be given in a simple form for a dodecahedron of side length a=sqrt(5)-1 by (0, +/-phi^(-1), +/-phi), (+/-phi, 0, +/-phi^(-1)), (+/-phi^(-1), +/-phi, 0), and (+/-1, +/-1, +/-1). For a dodecahedron of unit edge length a=1, the circumradius R^’ and inradius r^’ of a pentagonal face are R^’ = 1/(10)sqrt(50+10sqrt(5)) (3) r^’ = 1/(10)sqrt(25+10sqrt(5)). (4) The sagitta x is then given by x=R^’-r^’=1/(10)sqrt(125-10sqrt(5)). (5) Now consider the following figure. DodecahedronTrig Using the Pythagorean theorem on the figure then gives z_1^2+m^2 = (R^’+r^’)^2 (6) z_2^2+(m-x)^2 = 1 (7) ((z_1+z_2)/2)^2+R^(‘2) = ((z_1-z_2)/2)^2+(m+r^’)^2. (8) Equation (8) can be written z_1z_2+r^2=(m+r^’)^2. (9) Solving (6), (7), and (9) simultaneously gives m = r^’=1/(10)sqrt(25+10sqrt(5)) (10) z_1 = 2r^’=1/5sqrt(25+10sqrt(5)) (11) z_2 = R^’=1/(10)sqrt(50+10sqrt(5)).
    [Show full text]