Regular and Irregular Chiral Polyhedra from Coxeter Diagrams Via Quaternions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chirality in the Plane
Chirality in the plane Christian G. B¨ohmer1 and Yongjo Lee2 and Patrizio Neff3 October 15, 2019 Abstract It is well-known that many three-dimensional chiral material models become non-chiral when reduced to two dimensions. Chiral properties of the two-dimensional model can then be restored by adding appropriate two-dimensional chiral terms. In this paper we show how to construct a three-dimensional chiral energy function which can achieve two-dimensional chirality induced already by a chiral three-dimensional model. The key ingredient to this approach is the consideration of a nonlinear chiral energy containing only rotational parts. After formulating an appropriate energy functional, we study the equations of motion and find explicit soliton solutions displaying two-dimensional chiral properties. Keywords: chiral materials, planar models, Cosserat continuum, isotropy, hemitropy, centro- symmetry AMS 2010 subject classification: 74J35, 74A35, 74J30, 74A30 1 Introduction 1.1 Background A group of geometric symmetries which keeps at least one point fixed is called a point group. A point group in d-dimensional Euclidean space is a subgroup of the orthogonal group O(d). Naturally this leads to the distinction of rotations and improper rotations. Centrosymmetry corresponds to a point group which contains an inversion centre as one of its symmetry elements. Chiral symmetry is one example of non-centrosymmetry which is characterised by the fact that a geometric figure cannot be mapped into its mirror image by an element of the Euclidean group, proper rotations SO(d) and translations. This non-superimposability (or chirality) to its mirror image is best illustrated by the left and right hands: there is no way to map the left hand onto the right by simply rotating the left hand in the plane. -
Symmetry of Fulleroids Stanislav Jendrol’, František Kardoš
Symmetry of Fulleroids Stanislav Jendrol’, František Kardoš To cite this version: Stanislav Jendrol’, František Kardoš. Symmetry of Fulleroids. Klaus D. Sattler. Handbook of Nanophysics: Clusters and Fullerenes, CRC Press, pp.28-1 - 28-13, 2010, 9781420075557. hal- 00966781 HAL Id: hal-00966781 https://hal.archives-ouvertes.fr/hal-00966781 Submitted on 27 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Symmetry of Fulleroids Stanislav Jendrol’ and Frantiˇsek Kardoˇs Institute of Mathematics, Faculty of Science, P. J. Saf´arikˇ University, Koˇsice Jesenn´a5, 041 54 Koˇsice, Slovakia +421 908 175 621; +421 904 321 185 [email protected]; [email protected] Contents 1 Symmetry of Fulleroids 2 1.1 Convexpolyhedraandplanargraphs . .... 3 1.2 Polyhedral symmetries and graph automorphisms . ........ 4 1.3 Pointsymmetrygroups. 5 1.4 Localrestrictions ............................... .. 10 1.5 Symmetryoffullerenes . .. 11 1.6 Icosahedralfulleroids . .... 12 1.7 Subgroups of Ih ................................. 15 1.8 Fulleroids with multi-pentagonal faces . ......... 16 1.9 Fulleroids with octahedral, prismatic, or pyramidal symmetry ........ 19 1.10 (5, 7)-fulleroids .................................. 20 1 Chapter 1 Symmetry of Fulleroids One of the important features of the structure of molecules is the presence of symmetry elements. -
E8 Physics and Quasicrystals Icosidodecahedron and Rhombic Triacontahedron Vixra 1301.0150 Frank Dodd (Tony) Smith Jr
E8 Physics and Quasicrystals Icosidodecahedron and Rhombic Triacontahedron vixra 1301.0150 Frank Dodd (Tony) Smith Jr. - 2013 The E8 Physics Model (viXra 1108.0027) is based on the Lie Algebra E8. 240 E8 vertices = 112 D8 vertices + 128 D8 half-spinors where D8 is the bivector Lie Algebra of the Real Clifford Algebra Cl(16) = Cl(8)xCl(8). 112 D8 vertices = (24 D4 + 24 D4) = 48 vertices from the D4xD4 subalgebra of D8 plus 64 = 8x8 vertices from the coset space D8 / D4xD4. 128 D8 half-spinor vertices = 64 ++half-half-spinors + 64 --half-half-spinors. An 8-dim Octonionic Spacetime comes from the Cl(8) factors of Cl(16) and a 4+4 = 8-dim Kaluza-Klein M4 x CP2 Spacetime emerges due to the freezing out of a preferred Quaternionic Subspace. Interpreting World-Lines as Strings leads to 26-dim Bosonic String Theory in which 10 dimensions reduce to 4-dim CP2 and a 6-dim Conformal Spacetime from which 4-dim M4 Physical Spacetime emerges. Although the high-dimensional E8 structures are fundamental to the E8 Physics Model it may be useful to see the structures from the point of view of the familiar 3-dim Space where we live. To do that, start by looking the the E8 Root Vector lattice. Algebraically, an E8 lattice corresponds to an Octonion Integral Domain. There are 7 Independent E8 Lattice Octonion Integral Domains corresponding to the 7 Octonion Imaginaries, as described by H. S. M. Coxeter in "Integral Cayley Numbers" (Duke Math. J. 13 (1946) 561-578 and in "Regular and Semi-Regular Polytopes III" (Math. -
Archimedean Solids
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat). -
Chirality and Projective Linear Groups
DISCRETE MATHEMATICS Discrete Mathematics 131 (1994) 221-261 Chirality and projective linear groups Egon Schultea,l, Asia IviC Weissb**,’ “Depurtment qf Mathematics, Northeastern Uniwrsity, Boston, MA 02115, USA bDepartment qf Mathematics and Statistics, York University, North York, Ontario, M3JIP3, Camda Received 24 October 1991; revised 14 September 1992 Abstract In recent years the term ‘chiral’ has been used for geometric and combinatorial figures which are symmetrical by rotation but not by reflection. The correspondence of groups and polytopes is used to construct infinite series of chiral and regular polytopes whose facets or vertex-figures are chiral or regular toroidal maps. In particular, the groups PSL,(Z,) are used to construct chiral polytopes, while PSL,(Z,[I]) and PSL,(Z,[w]) are used to construct regular polytopes. 1. Introduction Abstract polytopes are combinatorial structures that generalize the classical poly- topes. We are particularly interested in those that possess a high degree of symmetry. In this section, we briefly outline some definitions and basic results from the theory of abstract polytopes. For details we refer to [9,22,25,27]. An (abstract) polytope 9 ofrank n, or an n-polytope, is a partially ordered set with a strictly monotone rank function rank( .) with range { - 1, 0, . , n}. The elements of 9 with rankj are called j-faces of 8. The maximal chains (totally ordered subsets) of .P are calledJags. We require that 6P have a smallest (- 1)-face F_ 1, a greatest n-face F,, and that each flag contains exactly n+2 faces. Furthermore, we require that .Y be strongly flag-connected and that .P have the following homogeneity property: when- ever F<G, rank(F)=j- 1 and rank(G)=j+l, then there are exactly two j-faces H with FcH-cG. -
Systematics of Atomic Orbital Hybridization of Coordination Polyhedra: Role of F Orbitals
molecules Article Systematics of Atomic Orbital Hybridization of Coordination Polyhedra: Role of f Orbitals R. Bruce King Department of Chemistry, University of Georgia, Athens, GA 30602, USA; [email protected] Academic Editor: Vito Lippolis Received: 4 June 2020; Accepted: 29 June 2020; Published: 8 July 2020 Abstract: The combination of atomic orbitals to form hybrid orbitals of special symmetries can be related to the individual orbital polynomials. Using this approach, 8-orbital cubic hybridization can be shown to be sp3d3f requiring an f orbital, and 12-orbital hexagonal prismatic hybridization can be shown to be sp3d5f2g requiring a g orbital. The twists to convert a cube to a square antiprism and a hexagonal prism to a hexagonal antiprism eliminate the need for the highest nodality orbitals in the resulting hybrids. A trigonal twist of an Oh octahedron into a D3h trigonal prism can involve a gradual change of the pair of d orbitals in the corresponding sp3d2 hybrids. A similar trigonal twist of an Oh cuboctahedron into a D3h anticuboctahedron can likewise involve a gradual change in the three f orbitals in the corresponding sp3d5f3 hybrids. Keywords: coordination polyhedra; hybridization; atomic orbitals; f-block elements 1. Introduction In a series of papers in the 1990s, the author focused on the most favorable coordination polyhedra for sp3dn hybrids, such as those found in transition metal complexes. Such studies included an investigation of distortions from ideal symmetries in relatively symmetrical systems with molecular orbital degeneracies [1] In the ensuing quarter century, interest in actinide chemistry has generated an increasing interest in the involvement of f orbitals in coordination chemistry [2–7]. -
COXETER GROUPS (Unfinished and Comments Are Welcome)
COXETER GROUPS (Unfinished and comments are welcome) Gert Heckman Radboud University Nijmegen [email protected] October 10, 2018 1 2 Contents Preface 4 1 Regular Polytopes 7 1.1 ConvexSets............................ 7 1.2 Examples of Regular Polytopes . 12 1.3 Classification of Regular Polytopes . 16 2 Finite Reflection Groups 21 2.1 NormalizedRootSystems . 21 2.2 The Dihedral Normalized Root System . 24 2.3 TheBasisofSimpleRoots. 25 2.4 The Classification of Elliptic Coxeter Diagrams . 27 2.5 TheCoxeterElement. 35 2.6 A Dihedral Subgroup of W ................... 39 2.7 IntegralRootSystems . 42 2.8 The Poincar´eDodecahedral Space . 46 3 Invariant Theory for Reflection Groups 53 3.1 Polynomial Invariant Theory . 53 3.2 TheChevalleyTheorem . 56 3.3 Exponential Invariant Theory . 60 4 Coxeter Groups 65 4.1 Generators and Relations . 65 4.2 TheTitsTheorem ........................ 69 4.3 The Dual Geometric Representation . 74 4.4 The Classification of Some Coxeter Diagrams . 77 4.5 AffineReflectionGroups. 86 4.6 Crystallography. .. .. .. .. .. .. .. 92 5 Hyperbolic Reflection Groups 97 5.1 HyperbolicSpace......................... 97 5.2 Hyperbolic Coxeter Groups . 100 5.3 Examples of Hyperbolic Coxeter Diagrams . 108 5.4 Hyperbolic reflection groups . 114 5.5 Lorentzian Lattices . 116 3 6 The Leech Lattice 125 6.1 ModularForms ..........................125 6.2 ATheoremofVenkov . 129 6.3 The Classification of Niemeier Lattices . 132 6.4 The Existence of the Leech Lattice . 133 6.5 ATheoremofConway . 135 6.6 TheCoveringRadiusofΛ . 137 6.7 Uniqueness of the Leech Lattice . 140 4 Preface Finite reflection groups are a central subject in mathematics with a long and rich history. The group of symmetries of a regular m-gon in the plane, that is the convex hull in the complex plane of the mth roots of unity, is the dihedral group of order 2m, which is the simplest example of a reflection Dm group. -
Binary Icosahedral Group and 600-Cell
Article Binary Icosahedral Group and 600-Cell Jihyun Choi and Jae-Hyouk Lee * Department of Mathematics, Ewha Womans University 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3277-3346 Received: 10 July 2018; Accepted: 26 July 2018; Published: 7 August 2018 Abstract: In this article, we have an explicit description of the binary isosahedral group as a 600-cell. We introduce a method to construct binary polyhedral groups as a subset of quaternions H via spin map of SO(3). In addition, we show that the binary icosahedral group in H is the set of vertices of a 600-cell by applying the Coxeter–Dynkin diagram of H4. Keywords: binary polyhedral group; icosahedron; dodecahedron; 600-cell MSC: 52B10, 52B11, 52B15 1. Introduction The classification of finite subgroups in SLn(C) derives attention from various research areas in mathematics. Especially when n = 2, it is related to McKay correspondence and ADE singularity theory [1]. The list of finite subgroups of SL2(C) consists of cyclic groups (Zn), binary dihedral groups corresponded to the symmetry group of regular 2n-gons, and binary polyhedral groups related to regular polyhedra. These are related to the classification of regular polyhedrons known as Platonic solids. There are five platonic solids (tetrahedron, cubic, octahedron, dodecahedron, icosahedron), but, as a regular polyhedron and its dual polyhedron are associated with the same symmetry groups, there are only three binary polyhedral groups(binary tetrahedral group 2T, binary octahedral group 2O, binary icosahedral group 2I) related to regular polyhedrons. -
Chiral Polyhedra Derived from Coxeter Diagrams and Quaternions
SQU Journal for Science, 16 (2011) 82-101 © 2011 Sultan Qaboos University Chiral Polyhedra Derived from Coxeter Diagrams and Quaternions Mehmet Koca, Nazife Ozdes Koca* and Muna Al-Shueili Department of Physics, College of Science, Sultan Qaboos University, P.O.Box 36, Al- Khoud, 123 Muscat, Sultanate of Oman, *Email: [email protected]. متعددات السطوح اليدوية المستمدة من أشكال كوكزتر والرباعيات مهمت كوجا، نزيفة كوجا و منى الشعيلي ملخص: هناك متعددات أسطح ٌدوٌان أرخمٌدٌان: المكعب المسطوح والثنعشري اﻷسطح المسطوح مع أشكالها الكتﻻنٌة المزدوجة: رباعٌات السطوح العشرونٌة الخماسٌة مع رباعٌات السطوح السداسٌة الخماسٌة. فً هذا البحث نقوم برسم متعددات السطوح الٌدوٌة مع مزدوجاتها بطرٌقة منظمة. نقوم باستخدام المجموعة الجزئٌة الدورانٌة الحقٌقٌة لمجموعات كوكستر ( WAAAWAWB(1 1 1 ), ( 3 ), ( 3 و WH()3 ﻻشتقاق المدارات الممثلة لﻷشكال. هذه الطرٌقة تقودنا إلى رسم المتعددات اﻷسطح التالٌة: رباعً الوجوه وعشرونً الوجوه و المكعب المسطوح و الثنعشري السطوح المسطوح على التوالً. لقد أثبتنا أنه بإمكان رباعً الوجوه وعشرونً الوجوه التحول إلى صورتها المرآتٌة بالمجموعة الثمانٌة الدورانٌة الحقٌقٌة WBC()/32. لذلك ﻻ ٌمكن تصنٌفها كمتعددات أسطح ٌدوٌة. من المﻻحظ أٌضا أن رؤوس المكعب المسطوح ورؤوس الثنعشري السطوح المسطوح ٌمكن اشتقاقها من المتجهات المجموعة خطٌا من الجذور البسٌطة وذلك باستخدام مجموعة الدوران الحقٌقٌة WBC()/32 و WHC()/32 على التوالً. من الممكن رسم مزدوجاتها بجمع ثﻻثة مدارات من المجموعة قٌد اﻻهتمام. أٌضا نقوم بإنشاء متعددات اﻷسطح الشبه منتظمة بشكل عام بربط متعددات اﻷسطح الٌدوٌة مع صورها المرآتٌة. كنتٌجة لذلك نحصل على مجموعة البٌروهٌدرال كمجموعة جزئٌة من مجموعة الكوكزتر WH()3 ونناقشها فً البحث. الطرٌقة التً نستخدمها تعتمد على الرباعٌات. ABSTRACT: There are two chiral Archimedean polyhedra, the snub cube and snub dodecahedron together with their dual Catalan solids, pentagonal icositetrahedron and pentagonal hexacontahedron. -
Computing Invariants of Hyperbolic Coxeter Groups
LMS J. Comput. Math. 18 (1) (2015) 754{773 C 2015 Author doi:10.1112/S1461157015000273 CoxIter { Computing invariants of hyperbolic Coxeter groups R. Guglielmetti Abstract CoxIter is a computer program designed to compute invariants of hyperbolic Coxeter groups. Given such a group, the program determines whether it is cocompact or of finite covolume, whether it is arithmetic in the non-cocompact case, and whether it provides the Euler characteristic and the combinatorial structure of the associated fundamental polyhedron. The aim of this paper is to present the theoretical background for the program. The source code is available online as supplementary material with the published article and on the author's website (http://coxiter.rgug.ch). Supplementarymaterialsareavailablewiththisarticle. Introduction Let Hn be the hyperbolic n-space, and let Isom Hn be the group of isometries of Hn. For a given discrete hyperbolic Coxeter group Γ < Isom Hn and its associated fundamental polyhedron P ⊂ Hn, we are interested in geometrical and combinatorial properties of P . We want to know whether P is compact, has finite volume and, if the answer is yes, what its volume is. We also want to find the combinatorial structure of P , namely, the number of vertices, edges, 2-faces, and so on. Finally, it is interesting to find out whether Γ is arithmetic, that is, if Γ is commensurable to the reflection group of the automorphism group of a quadratic form of signature (n; 1). Most of these questions can be answered by studying finite and affine subgroups of Γ, but this involves a huge number of computations. -
How Platonic and Archimedean Solids Define Natural Equilibria of Forces for Tensegrity
How Platonic and Archimedean Solids Define Natural Equilibria of Forces for Tensegrity Martin Friedrich Eichenauer The Platonic and Archimedean solids are a well-known vehicle to describe Research Assistant certain phenomena of our surrounding world. It can be stated that they Technical University Dresden define natural equilibria of forces, which can be clarified particularly Faculty of Mathematics Institute of Geometry through the packing of spheres. [1][2] To solve the problem of the densest Germany packing, both geometrical and mechanical approach can be exploited. The mechanical approach works on the principle of minimal potential energy Daniel Lordick whereas the geometrical approach searches for the minimal distances of Professor centers of mass. The vertices of the solids are given by the centers of the Technical University Dresden spheres. Faculty of Geometry Institute of Geometry If we expand this idea by a contrary force, which pushes outwards, we Germany obtain the principle of tensegrity. We can show that we can build up regular and half-regular polyhedra by the interaction of physical forces. Every platonic and Archimedean solid can be converted into a tensegrity structure. Following this, a vast variety of shapes defined by multiple solids can also be obtained. Keywords: Platonic Solids, Archimedean Solids, Tensegrity, Force Density Method, Packing of Spheres, Modularization 1. PLATONIC AND ARCHIMEDEAN SOLIDS called “kissing number” problem. The kissing number problem is asking for the maximum possible number of Platonic and Archimedean solids have systematically congruent spheres, which touch another sphere of the been described in the antiquity. They denominate all same size without overlapping. In three dimensions the convex polyhedra with regular faces and uniform vertices kissing number is 12. -
Arxiv:1705.01294V1
Branes and Polytopes Luca Romano email address: [email protected] ABSTRACT We investigate the hierarchies of half-supersymmetric branes in maximal supergravity theories. By studying the action of the Weyl group of the U-duality group of maximal supergravities we discover a set of universal algebraic rules describing the number of independent 1/2-BPS p-branes, rank by rank, in any dimension. We show that these relations describe the symmetries of certain families of uniform polytopes. This induces a correspondence between half-supersymmetric branes and vertices of opportune uniform polytopes. We show that half-supersymmetric 0-, 1- and 2-branes are in correspondence with the vertices of the k21, 2k1 and 1k2 families of uniform polytopes, respectively, while 3-branes correspond to the vertices of the rectified version of the 2k1 family. For 4-branes and higher rank solutions we find a general behavior. The interpretation of half- supersymmetric solutions as vertices of uniform polytopes reveals some intriguing aspects. One of the most relevant is a triality relation between 0-, 1- and 2-branes. arXiv:1705.01294v1 [hep-th] 3 May 2017 Contents Introduction 2 1 Coxeter Group and Weyl Group 3 1.1 WeylGroup........................................ 6 2 Branes in E11 7 3 Algebraic Structures Behind Half-Supersymmetric Branes 12 4 Branes ad Polytopes 15 Conclusions 27 A Polytopes 30 B Petrie Polygons 30 1 Introduction Since their discovery branes gained a prominent role in the analysis of M-theories and du- alities [1]. One of the most important class of branes consists in Dirichlet branes, or D-branes. D-branes appear in string theory as boundary terms for open strings with mixed Dirichlet-Neumann boundary conditions and, due to their tension, scaling with a negative power of the string cou- pling constant, they are non-perturbative objects [2].