The Crystal Forms of Diamond and Their Significance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phase Behavior of a Family of Truncated Hard Cubes Anjan P
THE JOURNAL OF CHEMICAL PHYSICS 142, 054904 (2015) Phase behavior of a family of truncated hard cubes Anjan P. Gantapara,1,a) Joost de Graaf,2 René van Roij,3 and Marjolein Dijkstra1,b) 1Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands 2Institute for Computational Physics, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany 3Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands (Received 8 December 2014; accepted 5 January 2015; published online 5 February 2015; corrected 9 February 2015) In continuation of our work in Gantapara et al., [Phys. Rev. Lett. 111, 015501 (2013)], we inves- tigate here the thermodynamic phase behavior of a family of truncated hard cubes, for which the shape evolves smoothly from a cube via a cuboctahedron to an octahedron. We used Monte Carlo simulations and free-energy calculations to establish the full phase diagram. This phase diagram exhibits a remarkable richness in crystal and mesophase structures, depending sensitively on the precise particle shape. In addition, we examined in detail the nature of the plastic crystal (rotator) phases that appear for intermediate densities and levels of truncation. Our results allow us to probe the relation between phase behavior and building-block shape and to further the understanding of rotator phases. Furthermore, the phase diagram presented here should prove instrumental for guiding future experimental studies on similarly shaped nanoparticles and the creation of new materials. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906753] I. INTRODUCTION pressures, i.e., at densities below close packing. -
Smooth & Fractal Polyhedra Ergun Akleman, Paul Edmundson And
Smooth & Fractal Polyhedra Ergun Akleman, Paul Edmundson and Ozan Ozener Visualization Sciences Program, Department of Architecture, 216 Langford Center, College Station, Texas 77843-3137, USA. email: [email protected]. Abstract In this paper, we present a new class of semi-regular polyhedra. All the faces of these polyhedra are bounded by smooth (quadratic B-spline) curves and the face boundaries are C1 discontinues every- where. These semi-regular polyhedral shapes are limit surfaces of a simple vertex truncation subdivision scheme. We obtain an approximation of these smooth fractal polyhedra by iteratively applying a new vertex truncation scheme to an initial manifold mesh. Our vertex truncation scheme is based on Chaikin’s construction. If the initial manifold mesh is a polyhedra only with planar faces and 3-valence vertices, in each iteration we construct polyhedral meshes in which all faces are planar and every vertex is 3-valence, 1 Introduction One of the most exciting aspects of shape modeling and sculpting is the development of new algorithms and methods to create unusual, interesting and aesthetically pleasing shapes. Recent advances in computer graphics, shape modeling and mathematics help the imagination of contemporary mathematicians, artists and architects to design new and unusual 3D forms [11]. In this paper, we present such a unusual class of semi-regular polyhedra that are contradictorily interesting, i.e. they are smooth but yet C1 discontinuous. To create these shapes we apply a polyhedral truncation algorithm based on Chaikin’s scheme to any initial manifold mesh. Figure 1 shows two shapes that are created by using our approach. -
Archimedean Solids
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat). -
A Congruence Problem for Polyhedra
A congruence problem for polyhedra Alexander Borisov, Mark Dickinson, Stuart Hastings April 18, 2007 Abstract It is well known that to determine a triangle up to congruence requires 3 measurements: three sides, two sides and the included angle, or one side and two angles. We consider various generalizations of this fact to two and three dimensions. In particular we consider the following question: given a convex polyhedron P , how many measurements are required to determine P up to congruence? We show that in general the answer is that the number of measurements required is equal to the number of edges of the polyhedron. However, for many polyhedra fewer measurements suffice; in the case of the cube we show that nine carefully chosen measurements are enough. We also prove a number of analogous results for planar polygons. In particular we describe a variety of quadrilaterals, including all rhombi and all rectangles, that can be determined up to congruence with only four measurements, and we prove the existence of n-gons requiring only n measurements. Finally, we show that one cannot do better: for any ordered set of n distinct points in the plane one needs at least n measurements to determine this set up to congruence. An appendix by David Allwright shows that the set of twelve face-diagonals of the cube fails to determine the cube up to conjugacy. Allwright gives a classification of all hexahedra with all face- diagonals of equal length. 1 Introduction We discuss a class of problems about the congruence or similarity of three dimensional polyhedra. -
Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces
Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces Pablo F. Damasceno1*, Michael Engel2*, Sharon C. Glotzer1,2,3† 1Applied Physics Program, 2Department of Chemical Engineering, and 3Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA. * These authors contributed equally. † Corresponding author: [email protected] Dec 1, 2011 arXiv: 1109.1323v2 ACS Nano DOI: 10.1021/nn204012y ABSTRACT Polyhedra and their arrangements have intrigued humankind since the ancient Greeks and are today important motifs in condensed matter, with application to many classes of liquids and solids. Yet, little is known about the thermodynamically stable phases of polyhedrally-shaped building blocks, such as faceted nanoparticles and colloids. Although hard particles are known to organize due to entropy alone, and some unusual phases are reported in the literature, the role of entropic forces in connection with polyhedral shape is not well understood. Here, we study thermodynamic self-assembly of a family of truncated tetrahedra and report several atomic crystal isostructures, including diamond, β-tin, and high- pressure lithium, as the polyhedron shape varies from tetrahedral to octahedral. We compare our findings with the densest packings of the truncated tetrahedron family obtained by numerical compression and report a new space filling polyhedron, which has been overlooked in previous searches. Interestingly, the self-assembled structures differ from the densest packings. We show that the self-assembled crystal structures can be understood as a tendency for polyhedra to maximize face-to-face alignment, which can be generalized as directional entropic forces. -
BY S. RAMASESHAN Number of Diffaent Kinds of Planes Permitted By
BY S. RAMASESHAN (From thy Department ef Physics, Indian Institute of Science, Bangalore) Received for publication June 20, 1916 (Communicated by Sir C. V. Raman, ~t.,F. R.s., N.L.) number of diffaent kinds of planes permitted by the law of rational indices to appear as faces on a crystal is practically unlimited. The number of "forms " actually observed, however, is limited and there is a decided preference for a few amongst them. This is one of the most striking facts of geometric crystallography and its explanation is obviously of importance. Pierre Curie (1885) stressed the role played by the surface energy of the faces in determining the " forms " of the crystal. According to him, the different faces of a crystal have different surface energies and the form of the crystal as a whole is determined by the condition that the total surface energy of the crystal should be a minimum. According to W. Gibbs (1877), on the other hand, it is the velocity of growth in different directions which is the determining factor, while the surface energy of the crystal plays a subordi- nate role and is only effective in the case of crystals of submicroscopic size, We have little direct knowledge as to how diamond is actually formed in nature. It is necessary, therefore, to rely upon the indications furnished by the observed forms of the crystals. One of the most remarkable facts about diamond is the curvature of the faces which is a very common and marked feature. This is particularly noticeable in the case of the diamonds found in the State of Panna in Central India. -
A Tourist Guide to the RCSR
A tourist guide to the RCSR Some of the sights, curiosities, and little-visited by-ways Michael O'Keeffe, Arizona State University RCSR is a Reticular Chemistry Structure Resource available at http://rcsr.net. It is open every day of the year, 24 hours a day, and admission is free. It consists of data for polyhedra and 2-periodic and 3-periodic structures (nets). Visitors unfamiliar with the resource are urged to read the "about" link first. This guide assumes you have. The guide is designed to draw attention to some of the attractions therein. If they sound particularly attractive please visit them. It can be a nice way to spend a rainy Sunday afternoon. OKH refers to M. O'Keeffe & B. G. Hyde. Crystal Structures I: Patterns and Symmetry. Mineral. Soc. Am. 1966. This is out of print but due as a Dover reprint 2019. POLYHEDRA Read the "about" for hints on how to use the polyhedron data to make accurate drawings of polyhedra using crystal drawing programs such as CrystalMaker (see "links" for that program). Note that they are Cartesian coordinates for (roughly) equal edge. To make the drawing with unit edge set the unit cell edges to all 10 and divide the coordinates given by 10. There seems to be no generally-agreed best embedding for complex polyhedra. It is generally not possible to have equal edge, vertices on a sphere and planar faces. Keywords used in the search include: Simple. Each vertex is trivalent (three edges meet at each vertex) Simplicial. Each face is a triangle. -
Fundamental Principles Governing the Patterning of Polyhedra
FUNDAMENTAL PRINCIPLES GOVERNING THE PATTERNING OF POLYHEDRA B.G. Thomas and M.A. Hann School of Design, University of Leeds, Leeds LS2 9JT, UK. [email protected] ABSTRACT: This paper is concerned with the regular patterning (or tiling) of the five regular polyhedra (known as the Platonic solids). The symmetries of the seventeen classes of regularly repeating patterns are considered, and those pattern classes that are capable of tiling each solid are identified. Based largely on considering the symmetry characteristics of both the pattern and the solid, a first step is made towards generating a series of rules governing the regular tiling of three-dimensional objects. Key words: symmetry, tilings, polyhedra 1. INTRODUCTION A polyhedron has been defined by Coxeter as “a finite, connected set of plane polygons, such that every side of each polygon belongs also to just one other polygon, with the provision that the polygons surrounding each vertex form a single circuit” (Coxeter, 1948, p.4). The polygons that join to form polyhedra are called faces, 1 these faces meet at edges, and edges come together at vertices. The polyhedron forms a single closed surface, dissecting space into two regions, the interior, which is finite, and the exterior that is infinite (Coxeter, 1948, p.5). The regularity of polyhedra involves regular faces, equally surrounded vertices and equal solid angles (Coxeter, 1948, p.16). Under these conditions, there are nine regular polyhedra, five being the convex Platonic solids and four being the concave Kepler-Poinsot solids. The term regular polyhedron is often used to refer only to the Platonic solids (Cromwell, 1997, p.53). -
Icosahedral Polyhedra from 6 Lattice and Danzer's ABCK Tiling
Icosahedral Polyhedra from 퐷6 lattice and Danzer’s ABCK tiling Abeer Al-Siyabi, a Nazife Ozdes Koca, a* and Mehmet Kocab aDepartment of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoud, 123 Muscat, Sultanate of Oman, bDepartment of Physics, Cukurova University, Adana, Turkey, retired, *Correspondence e-mail: [email protected] ABSTRACT It is well known that the point group of the root lattice 퐷6 admits the icosahedral group as a maximal subgroup. The generators of the icosahedral group 퐻3 , its roots and weights are determined in terms of those of 퐷6 . Platonic and Archimedean solids possessing icosahedral symmetry have been obtained by projections of the sets of lattice vectors of 퐷6 determined by a pair of integers (푚1, 푚2 ) in most cases, either both even or both odd. Vertices of the Danzer’s ABCK tetrahedra are determined as the fundamental weights of 퐻3 and it is shown that the inflation of the tiles can be obtained as projections of the lattice vectors characterized by the pair of integers which are linear combinations of the integers (푚1, 푚2 ) with coefficients from Fibonacci sequence. Tiling procedure both for the ABCK tetrahedral and the < 퐴퐵퐶퐾 > octahedral tilings in 3D space with icosahedral symmetry 퐻3 and those related transformations in 6D space with 퐷6 symmetry are specified by determining the rotations and translations in 3D and the corresponding group elements in 퐷6 .The tetrahedron K constitutes the fundamental region of the icosahedral group and generates the rhombic triacontahedron upon the group action. Properties of “K-polyhedron”, “B-polyhedron” and “C-polyhedron” generated by the icosahedral group have been discussed. -
Bridges Conference Proceedings Guidelines Word
Bridges 2019 Conference Proceedings Helixation Rinus Roelofs Lansinkweg 28, Hengelo, the Netherlands; [email protected] Abstract In the list of names of the regular and semi-regular polyhedra we find many names that refer to a process. Examples are ‘truncated’ cube and ‘stellated’ dodecahedron. And Luca Pacioli named some of his polyhedral objects ‘elevations’. This kind of name-giving makes it easier to understand these polyhedra. We can imagine the model as a result of a transformation. And nowadays we are able to visualize this process by using the technique of animation. Here I will to introduce ‘helixation’ as a process to get a better understanding of the Poinsot polyhedra. In this paper I will limit myself to uniform polyhedra. Introduction Most of the Archimedean solids can be derived by cutting away parts of a Platonic solid. This operation , with which we can generate most of the semi-regular solids, is called truncation. Figure 1: Truncation of the cube. We can truncate the vertices of a polyhedron until the original faces of the polyhedron become regular again. In Figure 1 this process is shown starting with a cube. In the third object in the row, the vertices are truncated in such a way that the square faces of the cube are transformed to regular octagons. The resulting object is the Archimedean solid, the truncated cube. We can continue the process until we reach the fifth object in the row, which again is an Archimedean solid, the cuboctahedron. The whole process or can be represented as an animation. Also elevation and stellation can be described as processes. -
Tetrahedral Decompositions of Hexahedral Meshes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Europ. J. Combinatorics (1989) 10, 435-443 Tetrahedral Decompositions of Hexahedral Meshes DEREK HACON AND CARLOS TOMEI A hexahedral mesh is a partition of a region in 3-space 1R3 into (not necessarily regular) hexahedra which fit together face to face. We are concerned here with the question of how the hexahedra may be decomposed into tetrahedra without introducing any new vertices. We consider two possible decompositions, in which each hexahedron breaks into five or six tetrahedra in a prescribed fashion. In both cases, we obtain simple verifiable criteria for the existence of a decomposition, by making use of elementary facts of graph theory and algebraic. topology. 1. INTRODUcnON A hexahedral mesh is a partition of a region in 3-space ~3 into (not necessarily regular) hexahedra which fit together face to face. We are concerned here with the question of how the hexahedra may be decomposed into tetrahedra without introduc ing any new vertices. There is one well known [1] way of decomposing a hexahedral mesh into non-overlapping tetrahedra which always works. Start by labelling the vertices 1,2,3, .... Then divide each face into two triangles by the diagonal containing the first vertex of the face. Next consider a hexahedron H with first vertex V. The three faces of H not containing V have already been divided up into a total of six triangles, so take each of these to be the base of a tetrahedron with apex V. -
Dodecahedron
Dodecahedron Figure 1 Regular Dodecahedron vertex labeling using “120 Polyhedron” vertex labels. COPYRIGHT 2007, Robert W. Gray Page 1 of 9 Encyclopedia Polyhedra: Last Revision: July 8, 2007 DODECAHEDRON Topology: Vertices = 20 Edges = 30 Faces = 12 pentagons Lengths: 15+ ϕ = 1.618 033 989 2 EL ≡ Edge length of regular Dodecahedron. 43ϕ + FA = EL 1.538 841 769 EL ≡ Face altitude. 2 ϕ DFV = EL ≅ 0.850 650 808 EL 5 15+ 20 ϕ DFE = EL ≅ 0.688 190 960 EL 10 3 DVV = ϕ EL ≅ 1.401 258 538 EL 2 1 DVE = ϕ 2 EL ≅ 1.309 016 994 EL 2 711+ ϕ DVF = EL ≅ 1.113 516 364 EL 20 COPYRIGHT 2007, Robert W. Gray Page 2 of 9 Encyclopedia Polyhedra: Last Revision: July 8, 2007 DODECAHEDRON Areas: 15+ 20 ϕ 2 2 Area of one pentagonal face = EL ≅ 1.720 477 401 EL 4 2 2 Total face area = 31520+ ϕ EL ≅ 20.645 728 807 EL Volume: 47+ ϕ 3 3 Cubic measure volume equation = EL ≅ 7.663 118 961 EL 2 38( + 14ϕ) 3 3 Synergetics' Tetra-volume equation = EL ≅ 65.023 720 585 EL 2 Angles: Face Angles: All face angles are 108°. Sum of face angles = 6480° Central Angles: ⎛⎞35− All central angles are = 2arcsin ⎜⎟ ≅ 41.810 314 896° ⎜⎟6 ⎝⎠ Dihedral Angles: ⎛⎞2 ϕ 2 All dihedral angles are = 2arcsin ⎜⎟ ≅ 116.565 051 177° ⎝⎠43ϕ + COPYRIGHT 2007, Robert W. Gray Page 3 of 9 Encyclopedia Polyhedra: Last Revision: July 8, 2007 DODECAHEDRON Additional Angle Information: Note that Central Angle(Dodecahedron) + Dihedral Angle(Icosahedron) = 180° Central Angle(Icosahedron) + Dihedral Angle(Dodecahedron) = 180° which is the case for dual polyhedra.