Quellen und Literaturhinweise

1 Klein, aber oho!

Allgemeine Bücher zu Ameisen

Bellmann H., Bienen, Wespen, Ameisen. Staatenbildende Insekten Mitteleuropas, Franckh Kosmos Verlag, 2017.

Bourke A.F.G., Franks N. R., Social Evolution in , Princeton University Press, 1995.

Fisher B. L., Cover S. P., Ants of North America. A guide to the genera, University of California Press, 2007.

Gordon D, Ants at Work. How an Society Is Organized, Free Press, 2010.

Grätz C., Die fabelhafte Welt der Ameisen. Eine Ameisenumsiedlerin erzählt, Gütersloher Verlagshaus, 2019.

Hölldobler B., Wilson E. O., Ameisen. Die Entdeckung einer faszinierenden Welt, Birkhäuser, 2014.

Hölldobler B., Wilson E. O., Auf den Spuren der Ameisen. Die Entdeckung einer faszinierenden Welt, in: Springer Spektrum, 2015.

Hölldobler B., Wilson E. O., Der Superorganismus. Der Erfolg von Ameisen, Bienen, Wespen und Termiten, in: Springer Spektrum, 2015.

Kegel B., Die Ameise als Tramp. Von biologischen Invasionen, DuMont, 2013.

Keller L., Gordon E., The Lives of Ants, Oxford University Press, 2009.

Kirchner W., Die Ameisen. Biologie und Verhalten, C. H. Beck, 2007.

Lebas C., Die Ameisen Europas. Der Bestimmungsführer, Haupt 2019.

Ohl M., Stachel und Staat. Eine leidenschaftliche Naturgeschichte von Bienen, Wespen und Ameisen, Droemer, 2018.

Seifert B., Die Ameisen Mittel- und Nordeuropas, Lutra, 2007.

Es gibt schätzungsweise 10 Billiarden Ameisen

Fittkau E. J., Klinge H., On biomass and trophic structure of the central Amazonian rain forest ecosystem, in: Biotropica (5), 1973, S. 2–14.

Rice E. S. u. a., Dr. Eleanor’s book of common ants, University of Chicago Press, 2017.

Wilson E. O. Hölldobler B., The rise of the ants. A phylogenetic and ecological explanation, in: Proceedings of the National Academy of Sciences USA 102, 2005, S. 7411–7414.

Ameisen gibt es seit mindestens 100 Millionen Jahren

Barden P., Grimaldi D. A., Adaptive Radiation in Socially Advanced Stem-Group Ants from the Cretaceous, in: Current Biology 26, 2016, S. 515–521.

Rabeling C. u. a., Newly discovered sister lineage sheds light on early evolution. Proceedings of the Na- tional Academy of Sciences USA 105, 2008, S.14913–14917.

Die Erde kann auf den Menschen verzichten

Holmes B., Earth without humans, New Scientist 192, 2006, S. 36–41.

Weisman A., The world without us, Thomas Dunne Books, 2007.

Ameisen sind wichtig für Ökosysteme

Del Toro I. u. a., The little things that run the world revisited. A review of ant-mediated ecosystem services and disservices (: Formicidae), in: Myrmecological News 17, 2012, S. 133–146

Lach L. u. a. (eds), Ant ecology, Oxford University Press, 2010.

Parr C. L. u. a., Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes, Ecology 97, 2016, S. 1611–1617.

Philpott S. M., Armbrecht I., Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function, in: Ecological Entomology 31, 2006, S. 369–377.

Way M. J., Khoo K. C., Role of ants in pest management, in: Annual Review of Entomology 37, 1992, S. 479–503.

2 Bring mich zu deiner Chefin!

Weltweit gibt es über 16.000 Ameisenarten, von denen viele noch nicht beschrieben sind

Lau M. K. u. a., Draft Aphaenogaster genomes expand our view of ant genome size variation across climate gradients, in: PeerJ 7, e6447.

Mora C. u. a., How many species are there on earth and in the ocean?, in: PLoS Biology 9, 2011, e1001127.

Larsen B. B. u. a., Inordinate fondness multiplied and redistributed. The number of species on earth and the new pie of life, The Quarterly Review of Biology 92, 2017, S. 229–265.

Wilson E. O., The insect societies, Belknap Press, 2007.

Ameisenkolonien gliedern sich in Kasten

Bourke A.F.G., Franks N. R., Social evolution in ants. Princeton University Press, 1995.

Rajakumar R. u. a., Social regulation of a rudimentary organ generates complex worker-caste systems in ants, in: Nature 562, 2018, 574–577.

Weitekamp C. A. u. a., Genetics and evolution of social behavior in . Annual Review of Genetics 51, 2017, S. 219–239.

Wheeler D.E., The developmental basis of worker caste polymorphism in ants, in: American Naturalist 138, 1991, S. 1218–1238.

Wilson E. O., Caste and ecology in the social insects, Princeton University Press, 1978.

Das Geschlecht von Tieren wird auf mannigfache Weise bestimmt

Beukeboon L. W., Perrin N., The Evolution of Sex Determination, Oxford University Press, 2014.

Bachtrog D. u. a., Sex determination. Why so many ways of doing it?, in: PLoS Biology 12, 2014, e1001899.

Shapiro D. Y., Sex‐changing fish as a manipulable system for the study of the determination, differentiation, and stability of sex in vertebrates, in: Journal of Experimental Zoology 256, 1990, S. 132–136.

Viets B. E. u. a., Sex-determining mechanisms in squamate reptiles, in: Journal of Experimental Zoology 270, 1994, S. 45–56.

Weeks A. R. u. a., A mite species that consists entirely of haploid females,in: Science 292, 1994, S. 2479– 2482.

Weibliche Ameisen schlüpfen aus befruchteten Eiern, männliche aus unbefruchteten

Bourke A. F. G., Franks N. R., Social evolution in ants, Princeton University Press, 1995.

Kureck I. u. a., Similar performance of diploid and haploid males in an ant species without inbreeding avoidance, in: Ethology 119, 2013, S. 360–367.

Miyakawa M. O. u. a., The doublesex gene integrates multi-locus complementary sex determination signals in the Japanese ant, Vollenhovia emeryi, in: Insect Biochemistry and Molecular Biology 94, 2018, S. 42–49.

Queller D. C., Theory of genomic imprinting conflict in social insects, in: BMC Evolutionary Biology 3, 2003, S. 15. Trivers R. L., Hare H., Haploidiploidy and the evolution of the social insect, in: Science 191, 1976, S. 249- 63.

Ameisenköniginnen bewahren Spermien in einer Spermientasche auf

Baer B. u. a., Sperm storage induces an immunity cost in ants, in: Nature 44, 2006, S. 872–875.

Chérasse, S., Aron, S., Impact of immune activation on stored sperm viability in ant queens. Proceedings of the Royal Society, B 285:20182248, 2016.

Gotoh A. u. a., Evolution of specialized spermatheca morphology in ant queens: Insight from comparative developmental biology between ants and polistine wasps, in: Structure & Development 38, 2009, S. 521-525.

Hölldobler B., Wilson E. O., The Ants, Belknap Press, 1990. den Boer S. P. A. u. a., Prudent sperm use by leaf-cutter ant queens, in: Proceedings of the Royal Society B 276, 2009, S. 3945–3953.

Ameisenköniginnen können bis zu 30 Jahre alt werden

Keller L., Genoud M., Extraordinary lifespans in ants. A test of evolutionary theories of ageing, in: Nature 389, 1997, S. 958–960.

Kramer B. H., Schaible R., Colony size explains the lifespan differences between queens and workers in eusocial Hymenoptera, in: Biological Journal of the Linnean Society 109, 2013, S. 710–724.

Tschinkel, W. R., Lifespan, age, size-specific mortality and dispersion of colonies of the Florida harvester ant, Pogonomyrmex badius, in: Insectes Sociaux 64, 2017, S. 285–296.

Ameisen entwickeln sich vom Ei über die Larve und Puppe zur adulten Ameise

Hölldobler B., Wilson E. O., The Ants, Belknap Press, 1990.

Schultner E. u. a., The role of brood in eusocial Hymenoptera, in: The Quarterly Review of Biology 92(1), 2017, S. 39–78.

Verza S. S. u. a., Oviposition, life cycle, and longevity of the leaf-cutting ant Acromyrmex rugosus rugosus, in: Insects 8, 2017, S. 80.

Junge Arbeiterinnen übernehmen die Brutpflege, ältere die risikoreicheren Tätigkeiten außerhalb des Nestes

Besher S. N., Fewell J. H., Models of division of labor in social insects, in: Annual Review of Entomolo- gy 46, 2001, S. 413–440.

Kohlmeier, P. u. a., Vitellogenin-like A. Associated shifts in social cue responsiveness regulate behavioral task specialization in an ant, in: Plos Biology 16:e2005747, 2017.

Hölldobler B., Wilson E. O., Ecology and behavior of the primitive cryptobiotic ant Prionopelta amabilis, in: Insectes Sociaux 33, 1986, S. 45–58.

Robinson, G. E., Regulation of division of labor in insect societies, in: Annual Review of Entomology 37, 1992, S. 637–665.

Masuko K., Temporal division of labor among worker in the ponerine ant Amblyopone silvestrii, in: Sociobi- ology 28, 1966, S. 131–151.

Manche Ameisenköniginnen ernähren sich von einem Sekret der Larven

Børgesen L. W., Jensen P. V., Influence of larvae and workers on egg production of queens of the pharaoh’s ant, Monomorium pharaonis (L.), in: Insectes Sociaux 42, 1995, S. 103–112.

Cassill, D. L., Vinson S. B., Effects of larval secretions on queen fecundity in the fire ant, in: Annals of the Entomological Society of America 100, 2007, S. 327–33.

Eder J., Rembold H. (eds), Chemistry and biology of social insects, Peperny, 2007.

Warner, M. R. u. a., Late-instar ant worker larvae play a prominent role in colony-level caste regulation, in: Insectes Sociaux 63, 2016, S. 575–583.

Die Königin von Stigmatomma silvestrii saugt die Hämolymphe ihrer Larven

Masuko K., Larval hemolymph feeding. A nondestructive parental cannibalism in the primitive ant Amblyopone silvestrii, in: Behavioral Ecology and Sociobiology 19, 1986, S. 249–255.

Masuko K., Larval hemolymph feeding and hemolymph taps in the ant Proceratium itoi (Hymenoptera: Formicidae), in: Myrmecological News 29, 2019, S. 21–34.

Saux C. u. a., Dracula ant phylogeny as inferred by nuclear 28S rDNA sequences and implications for ant systematics (Hymenoptera: Formicidae: Amblyoponinae), in: Molecular Phylogenetics and Evolution 33, 2019, S. 457–468.

Von Arbeiterinnen gelegte, trophische Eier werden von der Königin gefressen oder an Larven verfüt- tert

Dijkstra M. B. u. a., Self-restraint and sterility in workers of Acromyrmex and Atta leafcutter ants, in: Insec- tes Sociaux 52, 2005, S. 67–76.

Khila A., Abouheif E., Reproductive constraint is a developmental mechanism that maintains social harmony in advanced ant societies, Proceedings of the National Academy of Sciences USA 105:17884-17889, 2008.

Bei vielen Ameisenarten werden Arbeiterinnen weniger als ein Jahr alt

Chapuisat M., Keller L., Division of labour influences the rate of ageing in weaver ant workers, in: Procee- dings of the Royal Society B 269, 2002, S. 909–913.

Giraldo Y. M. u. a., Lifespan behavioural and neural resilience in a social insect. Proc R Soc 283:20152603, 2016.

Kohlmeier P. u. a., Intrinsic worker mortality depends on behavioural caste and the queens' presence in a social insect, in: The Science of Nature 104, 2017, S. 34.

Kramer B. H., Schaible R., Colony size explains the lifespan differences between queens and workers in eusocial Hymenoptera, in: Biological Journal of the Linnean Society 109, 2013, S. 710–72.

Die meisten Ameisenarten haben einen Giftstachel, nur die Waldameisenartigen nicht

Blanchard B. D., Moreau C. S., Defensive traits exhibit an evolutionary trade-off and drive diversification in ants, in: Evolution 71, 2013, S. 315–328.

Kazuma K. u. a., Combined venom gland transcriptomic and venom peptidomic analysis of the predato- ry ant Odontomachus monticola, in: Toxins 9, 2013, S. 23.

Der Schmidt-Sting-Pain-Index gibt an, wie schmerzhaft Insektenstiche sind

Schmidt J. O. u. a., Hemolytic activities of stinging insect venoms, Archives of Insect Biochemistry and Physiology 1, 1983, S. 155–160.

Evans D. L., Schmidt, J. O., Insect Defenses. Adaptive Mechanisms and Strategies of Prey and Predators, State University of New York Press, 1990.

Manche Ameisenarten haben kleinere Minor- und größere Major Arbeiterinnen

Holley, J. A. C. u. a., Subcaste-specific evolution of head size in the ant genus Pheidole, in: Biological Jour- nal of the Linnean Society 118, 2016, S. 472–485.

Simola D. F. u. a., Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus, in: Science 351, 2006, aac6633.

Wheeler D. E., Nijhout H. F., Soldier determination in ants. New role for juvenile hormone, in: Science 213, 1981, in: 361–363.

Wheeler D. E., The developmental basis of worker caste polymorphism in ants, in: Am Nat 138(5), 1991, S. 1218–1238.

3 Die Geburt eines Volkes

Wer Königin wird, entscheidet vorwiegend die Ernährung im Larvenstadium

Bono J. M., Herbers J. M., Proximate and ultimate control of sex ratios in Myrmica brevispinosa colonies, in: Proceedings of the Royal Society B 270, 2003, S. 811–817.

Buschinger A. (1990) in Social Insects – an Evolutionary Approach to Castes and Reproduction (ed. Engels, W.), Springer, S. 37–57.

Schwander T. u. a., Nature versus nurture in social insect caste differentiation, in: Trends in Ecology & Evo- lution 25, 2010, S. 275–282.

Wheeler D. E., Developmental and physiological determinants of caste in social Hymenoptera – evolutionary implications, in: American Naturalist 128, 1986, S. 13–34.

Ameisenmännchen und Jungköniginnen paaren sich auf dem Hochzeitsflug

Helms J. A., The flight ecology of ants (Hymenoptera: Formicidae), in: Myrmecological News 26, 2006, S. 19–30.

Hakala S. M. u. a., Evolution of dispersal in ants (Hymenoptera: Formicidae): A review on the dispersal strategies of sessile superorganisms, in: Myrmecological News 29, 2019, S. 35–55.

Hart A. G. u. a., The spatial distribution and environmental triggers of ant mating flights. Using citizen- science data to reveal national patterns, in: Ecography 41, 2018, S. 877–888.

Ameisenköniginnen paaren sich nur während eines Hochzeitsfluges und da meist nur einmal

Baer B., Proximate and ultimate consequences of polyandry in ants (Hymenoptera: Formicidae), in: Myrmecological News 22, 2016, S. 1–9.

Boomsma J. J., Ratnieks F. L. W., Paternity in eusocial Hymenoptera. Philosophical Transactions of the Royal Society B 351, 1996, S. 947–975.

Boomsma J. J., Lifetime monogamy and the evolution of eusociality, in: Philosophical Transactions of the Royal Society of London Series B 364, 2009, S. 3191–3207.

Männchen arbeiten nie – sie sind nur für den Sex, also den Genaustausch, nötig

Boomsma J. J. u. a., The evolution of male traits in social insects, in: Annual Review of Entomology 50, . 2005, S. 395–420.

Heinze J., The male has done his work – the male may go, in: Current Opinion in Insect Science 16, 2016, S. 22–27.

Die Kämpfermännchen von Cardiocondyla bleiben im Nest und haben mehrfach Sex

Anderson C. u. a., Live and let die. Why fighter males of the ant Cardiocondyla kill each other, but tolerate their winged rivals, in: Behavioral Ecology 14, 2003, S. 54–62.

Frohschammer S., Heinze J., Male fighting and "territoriality" within colonies of the ant Cardiocondyla venustula, in: Naturwissenschaften 96, 2009, S. 159–163.

Heinze J, Hölldobler B., Fighting for a harem of queens. Physiology of reproduction in Cardiocondyla male ants, in: Proceedings of the National Academy of Sciences USA 90, 1993, S. 8412–8414.

Nach der Paarung gründen Königinnen monogyner Ameisenarten eine Kolonie eigenständig

Cahan S. u. a., An abrupt transition in colony founding behaviour in the ant Messor pergandei, in: Behavior 55, 1998, S. 1583–1594.

Jeanson R., Fewell, J. H., Influence of the social context on division of labor in ant foundress associations. Behavioral Ecology 19, 2008, S. 567–574.

Johnson R. A., Capital and income breeding and the evolution of colony founding strategies in ants., in: In- sectes Sociaux 53, 2006, S. 316–322.

Tsuji K., Tsuji N., Evolution of life history strategies in ants. Variation in queen number and mode of co- lony founding, Oikos 76, 1996, S. 83–92.

Bei polygynen Völkern kehrt die begattete Jungkönigin ins Heimatnest zurück

Boulay R. u. a., The ecological benefits of larger colony size may promote polygyny in ants, in: Journal of evolutionary biology 27, 2004, S. 2856–2863.

Gill R. J. , Arce A., Polymorphic social organization in an ant, in: Proceedings of the Royal Society B 276. 2009, S. 4423–4431.

Einige Jungköniginnen dringen in Kolonien fremder Arten an und übernehmen diese

Buschinger A., Social parasitism among ants. A review (Hymenoptera: Formicidae), in: Myrmecological News 12, 2009, S. 219–235.

D'Ettorre P. u. a., Blending in with the crowd. Social parasites integrate into their host colonies using a fle- xible chemical signature, in: Proceedings of the Royal Society B 269, 2002, S. 1911–1918.

Chernenko A. u. a., Colony take-over and brood survival in temporary social parasites of the ant genus For- mica, in: Behavioral Ecology and Sociobiology 67, 2013, S. 727–735.

4 Anarchisch und effektiv

Die Arbeiterinnen entscheiden, wann und wohin ein Volk umzieht

Burns D. D. R. u. a., The effect of social information on the collective choices of ant colonies, in: Behavioral Ecology 27, 2016, S. 1033–1040.

Franks N. R. u. a., Speed versus accuracy in decision-making ants: Expediting politics and policy implemen- tation, in: Proceedings of the Royal Society B 364, 2016, S. 845–852.

McGlynn T. P., The ecology of nest movement in social insects, in: Annual Review of Entomology 57, 2016, S. 291–308.

Pratt S. C. u. a., Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis, in: Behavioral Ecology and Sociobiology 52, 1992, S. 117–127.

Das Gehirn der Königin verkümmert nach der Nestgründung

Julian G. E., Gronenberg W., Reduction of brain volume correlates with behavioral changes in queen ants, in: Brain Behavior and Evolution 60, 2002, S. 152–164.

Gronenberg W., Liebig J., Smaller brains and optic lobes in reproductive workers of the ant Harpegnathos, in: Naturwissenschaften 86, 199, S. 343–345.

Die Aktivität der Gene und ihre Erfahrungen bestimmen Charakter und Verhalten einer Ameise

Gospocic J. u. a., The neuropeptide corazonin controls social behavior and caste identity in ants, in: Cell 170, 2017, S. 748.

Jandt J. M. u. a., Behavioural syndromes and social insects. Personality at multiple levels, in: Biological Reviews 89, 2014, S. 48–67.

Jongepier E., Foitzik S., Fitness costs of worker specialisation for ant societies, in: Proceedings of the Royal Society B 283, 2016, S. 1822.

Kohlmeier P. u. a., Gene expression is more strongly associated with behavioural specialisation than with age or fertility in ant workers, in: Molecular Ecology 28, 2019, S. 658–670.

Ravary F. u. a., Individual experience alone can generate lasting division of labor in ants, in: Current Biology 17, 2007, S. 1308–1312.

Arbeiterinnen sind enger mit ihren Schwestern verwandt als mit der Königin

Bourke A. F. G., Franks N. R., Social evolution in ants, Princeton University Press, 1995.

Sundström L, Sex ratio bias, relatedness asymmetry and queen mating frequency in ants. Nature 367, 1994, S. 266–267.

Eusozialität belohnt selbstloses Verhalten

Pernu T. K., Helantera H., Genetic relatedness and its causal role in the evolution of insect societies, in: Journal of Bioscience 44, 2019, S. 107.

Abbot P. u. a., Inclusive fitness theory and eusociality, in: Nature 471, 2011, E1–E4.

Bourke A. F. G., Hamilton's rule and the causes of social evolution, in: Philosophical Transactions of the Royal Society B 369, 2014, 20130362.

Wilson E. O., Hölldobler B., Eusociality. Origin and consequences. Proceedings of the National Academy of Sciences USA 102, 2005, S. 13367–13371.

Eusozialität entwickelte sich durch Kooperation von Schwestern oder Mutter und Töchtern

Bourke A. F. G., Franks N. R., Social evolution in ants, Princeton University Press, 1995.

Linksvayer T. A., Wade M. J., The evolutionary origin and elaboration of sociality in the aculeate Hymenop- tera. Maternal effects, sib-social effects, and heterochrony, in: The Quarterly Review of Biology 80, 2005, S. 317–336.

Johnstone, RA Cant, MA Field, J., Sex-biased dispersal, haplodiploidy and the evolution of helping in social insects, in: Proceedings of the Royal Society B 279, 2012, S. 787–793.

5 Kommunikative Sinnlichkeit

Königinnen von Neoponera inversa erkennen einander chemisch individuell

D'Ettorre P., Heinze J., Individual recognition in ant queens, in: Current Biology 15, 2012, S. 2170–2174.

Ameisen verlassen sich meist mehr auf den Geruchs- als auf den Sehsinn

Gronenberg W., Modality-specific segregation of input to ant mushroom bodies, in: Brain Behavior and Evolution 54, 1999, S. 85–95.

Knaden M., Graham P., The sensory ecology of ant navigation: From natural environments to neural mecha- nisms, in: Annual Review of Entomology 61, 2014, S. 63–76.

Ameisen riechen und schmecken mit den Fühlern

Boroczky K. u. a., Insects groom their antennae to enhance olfactory acuity, in: Proceedings of the National Academy of Sciences USA 110, 2013, S. 3615–3620.

Draft R. W. u. a., Carpenter ants use diverse antennae sampling strategies to track odor trails, in: Journal of Experimental Biology 221, 2018, UNSP jeb185124.

Guerrieri F. J., d′Ettorre P., Associative learning in ants. Conditioning of the maxilla-labium extension response in Camponotus aethiops, in: Journal of Insect Physiology 56, 2010, S. 88–92.

Drüsen wie die Dufourdrüse produzieren Signalstoffe für eine komplexe chemische Kommunikation

Jackson B. D., Morgan E. D., Insect chemical communication. Pheromones and exocrine glands in ants, in: Chemoecology 4, 1993, 125e144.

Jongepier E. u. a., The ecological success of a social parasite increases with manipulation of collective host behaviour, in: Journal of Evolutionary Biology 28, 2015, S. 2152–2162.

Mitra A., Function of the Dufour's gland in solitary and social Hymenoptera, in: Journal of Hymenopteran Research 35, 2013, S. 33–58.

Jede Ameisenkolonie hat durch kutikulären Kohlenwasserstoffe einen nesttypischen Geruch

Krasnec M. O., Breed M. D., Colony-specific cuticular hydrocarbon profile in Formica argentea ants, in: Journal of Chemical Ecology 39, 2013, S. 59–66.

Sturgis S. J., Gordon D. M., Nestmate recognition in ants (Hymenoptera: Formicidae). A review, in: Myrmecological News 16, 2012, S. 101–110.

Ameisen jeder Kaste und Aufgabe haben einen spezifischen Geruch

Kleeberg I. u. a., The influence of slavemaking lifestyle, caste and sex on chemical profiles in Temnothorax ants. Insights into the evolution of cuticular hydrocarbons, in: Proceedings of the Royal Society B 284, 2017, S. 1850.

Greene M. J., Gordon D.M., Cuticular hydrocarbons inform task decisions, in: Nature 423, 2003, S. 32.

Arbeiterinnen legen Duftspuren zu Nahrungsquellen

Czaczkes T. J. u. a., Trail pheromones. An integrative view of their role in social insect colony organization, Annual Review of Entomology 60, 2015, S. 581–599.

Wilson E. O., Chemical communication among workers of the fire ant Solenopsis saevissima, in: Animal Behaviour 10, 1962, S. 134–164.

Ameisen führen im Tandemlauf Nestgenossinnen zu neuen Nistgelegenheiten und Futterquellen

Alleman A. u. a., Tandem-running and scouting behavior is characterized by up-regulation of learning and memory formation genes within the ant brain, in: Molecular Ecology 28, 2019, S. 2342–2359.

Franklin E. L., The journey of tandem running. The twists, turns and what we have learned, in: Insectes Sociaux 61, 2014, S. 1-8.

Franks N. R., Richardson T., Teaching in tandem-running ants, in: Nature 439, 2006, S. 153.

Arbeiterinnen tauschen durch Berühren mit den Fühlern Informationen aus

Gordon D. M., Mehdiabadi N. J., Encounter rate and task allocation in harvester ants, in: Behavioral Ecology and Sociobiology 45, 1999, S. 370–377.

Gill K. P. u. a., Density of antennal sensilla influences efficacy of communication in a social insect, in: Ame- rican Naturalist 182, 2013, S. 834–840.

Verschüttete Blattschneiderameisen rufen mit Vibrationen um Hilfe

Markl H., Stridulation in Leaf-Cutting Ants, in: Science 149, 1965, S. 1392–1393.

Pielstrom S., Roces F., Vibrational communication in the spatial organization of collective digging in the leaf-cutting ant Atta vollenweideri, in: Animal Behaviour 84, 2012, S. 743–752.

6 Navigation vom Feinsten

Innerhalb des Nestes orientieren sich Ameisen an Gerüchen, Temperatur und Luftfeuchtigkeit

Heyman Y. u. a., Ants use multiple spatial memories and chemical pointers to navigate their nest, in: iS- cience 14, 2019, S. 264–276.

Roemer D. u. a., Carbon dioxide sensing in the social context. Leaf-cutting ants prefer elevated CO2 levels to tend their brood, in: Journal of Insect Physiology 108, 2018, S. 40–47.

Ameisen errichten Straßen mit Duftleitsystemen

Gordon D. M., Local regulation of trail networks of the arboreal Turtle Ant, goniodontus, in: American Naturalist 190, 2019, E156–E169.

Wilson E. O., Source and possible nature of the odor trail of fire ants, in: Science 129, 1959, S. 643–644.

Steck K., Just follow your nose: Homing by olfactory cues in ants, in: Current Opinion in Neurobiology 22, 2012, S. 231–235.

Die afrikanische Stachelameise Pachycondyla tarsata orientiert sich optisch an der Umgebung

Baader A. P., The significance of visual landmarks for navigation of the tropical ant Paraponera clavata, in: Insectes Sociaux 43, 1996, S. 435–450.

Hölldobler B., Canopy orientation. A new kind of orientation in ants, in: Science 210, 1980, S. 86–88.

Oliveira P. S., Hölldobler B., Orientation and communication in the Neotropical ant Odontomachus bauri Emery, in: Ethology 83, 1989, S. 154–166.

Der Sonnenstand gibt die Richtung vor

Schwarz S. u. a., How Ants Use Vision When Homing Backward, in: Current Biology 27, 2017, S. 401–407.

Die Polarisationsrichtung des Lichts verrät auch bei bedecktem Himmel den Sonnenstand

Lehrer M. (ed), Orientation and communication in , Birkhäuser, 1997.

Wehner R., Desert ant navigation. How miniature brains solve complex tasks, in: Journal of Comparative Physiology A 189, 2003, S. 579–588.

Wehner R., Müller M., The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation, in: Proceedings of the National Academy of Sciences USA 103, 2006, S. 12575–12579.

Zeil J. u. a., Polarisation Vision in Ants, Bees and Wasps, Springer, 2014.

Die Wüstenameisen Cataglyphis haben ein internes Navigationssystem mit Home-Funktion

Knaden M., Wehner R., Ant navigation: Resetting the path integrator, in: Journal of Experimental Biology 209, 2006, S. 26–31.

Wittlinger M. u. a., The ant odometer: Stepping on stilts and stumps, in: Science 312, 2006, S. 1965–1967.

Ameisen merken sich den Weg auch als filmähnlichen optischen Fluss

Pfeffer S. E., Wittlinger M., Optic flow odometry operates independently of stride integration in carried ants, in: Science 353, 2016, S. 1155–1157

Ronacher B., Wehner R., Desert ants Cataglyphis fortis use self-induced optic flow to measure distances travelled, in: Journal of Comparative Physiology A 177, 1995, S. 21–27.

Seidl T. u. a., Desert ants. Is active locomotion a prerequisite for path integration?, in: Journal of Comparati- ve Physiology A 192, 2006, S. 1125–1131.

Zollikofer C. u. a., Optical scaling in conspecific Cataglyphis ant, in: Journal of Experimental Biology 198, 1995, S. 1637–1646.

Einige Ameisen besitzen einen Magnetkompass

Banks A. N., Srygley R. B., Orientation by magnetic field in leaf‐cutter ants, Atta colombica (Hymenoptera: Formicidae), in: Ethology 109, 2003, S. 835–846.

Fleischmann P. N., The geomagnetic field is a compass cue in Cataglyphis ant navigation, in: Current Biolo- gy 28, 2018, S. 1440–1444.

7 Die wilden Horden

Treiberameisen jagen in großen Heerzügen

Chadab R., Rettenmeyer C. W., Mass recruitment by army ants, in: Science 188, 1975, S. 1124–1125.

Couzin I. D., Franks N. R., Self-organized lane formation and optimized traffic flow in army ants, in: Pro- ceedings of the Royal Society B 270, 2003, S. 139–146.

Peters M. K. u. a., Spatial variation in army ant swarm raiding and its potential effect on biodiversity, in: Biotropica 45, 2013, S. 54–62.

Das Biwaknest der Treiberameisen besteht aus den Körpern der Arbeiterinnen

Baudier K. M. u. a., Plastic collective endothermy in a complex animal society (Army ant bivouacs: Eciton burchellii parvispinum), in: Ecography 42, 2019, S. 730–739.

Berghoff S. M. u. a., Nesting habits and colony composition of the hypogaeic army ant Dorylus (Dichthadia) laevigatus Fr. Smith, in: Insectes Sociaux 49, 2002, S. 380–387.

Franks N. R., Thermoregulation in army ant bivouacs, in: Physiological Entomology 14, 1989, S. 397–404.

Jackson W. B., Microclimatic patterns in the army ant bivouac, in: Ecology 38, 1957, S. 276–285.

Schneirla T. C. u. a., The bivouac or temporary nest as an adaptive factor in certain terrestrial species of army ants, in: Ecological Monographs 24, 1954, S. 269–296.

In den Nestern der Treiberameisen leben zahlreiche Ameisengäste

Rettenmeyer C. W. u. a., The largest animal association centered on one species. The army ant Eciton burchellii and its more than 300 associates, in: Insectes Sociaux 58, 2011, S. 281–292. von Beeren C. u. a., Chemical and behavioral integration of army ant-associated rove beetles – a comparison between specialists and generalists, in: Frontiers in Zoology 15, 2018, S. 8.

Witte V. u. a., Symbiont microcosm in an ant society and the diversity of interspecific interactions, in: Ani- mal Behaviour 76, 2008, S. 1477–1486.

Bei Flut treiben Ameisenflöße über das Wasser

Mlot N. J. u. a., Fire ants self-assemble into waterproof rafts to survive floods, in: Proceedings of the Natio- nal Academy of Sciences USA 108, 2011, S. 7669–7673.

Purcell J. u. a., Ant brood function as life preservers during floods, Plos One 9, e89211, 2014.

Reid C. R. u. a., Army ants dynamically adjust living bridges in response to a cost–benefit trade-off, in: Pro- ceedings of the National Academy of Sciences USA 112, 2015, S. 15113–15118.

Das Leben der Treiberameisen verläuft abwechselnd vagabundierend und sesshaft

O’Donnel S. u. a., Species and site differences in Neotropical army ant emigration behaviour, in: Ecological Entomology 34, 2009, S. 476–482.

Garnier S., Kronauer D. J. C., The adaptive significance of phasic colony cycles in army ants, in: Journal of Theoretical Biology 428, 2017, S. 43–47.

Willson S. K. u. a., Spatial movement optimization in Amazonian Eciton burchellii army ants, in: Insectes Sociaux 58, 2001, S. 325–334.

Die Paarung der Treiberameisen erfolgt im Nest

Kronauer D. J. C. u. a., A reassessment of the mating system characteristics of the army ant Eciton burchel- lii. Naturwissenschaften 93, 2006, S. 402–406.

Kronauer D. J. C. u. a., The evolution of multiple mating in army ants, in: Evolution 61, 2007, S. 413–422.

Kronauer D. J. C., Recent advances in army ant biology (Hymenoptera: Formicidae), in: Myrmecological News 12, 2009, S. 51–56.

Wird das Volk zu groß, teilt es sich

Franks N. R., Hölldobler B., Sexual competition during colony reproduction in army ants, in: Biological Journal of the Linnean Society 30, 1987, S. 229–243.

Kronauer D. J. C. u. a., Extreme queen‐mating frequency and colony fission in African army ants, in: Molecular Ecology 13, 2004, S. 2381–2388.

Naturvölker nutzen beißende Ameisen als Wundverschluss

Boswell G. P. u. a., Arms races and the evolution of big fierce societies, in: Proceedings of the Royal Society B 268, 2001, S. 1723–1730.

Davies H. E., Leaf-cutter ants in wound closure, in: Wilderness & Environmental Medicine 30 (4), 2019.

Schiappa J., Van Hee R., From ants to staples. History and ideas concerning suturing techniques, in: Acta Chirurgica Belgica 112, 2016, S. 395–402.

Die Mofu in Kamerun bekämpfen Termiten mit Treiberameisen

Seignobos C. u. a., Les Mofus et leur insectes, in: Journal d'agriculture traditionnelle et de botanique appli- quée 38, 1996, S. 125–187.

Seignobos C., Jaglavak, prince of insects, unter: www.pbs.org/wgbh/nova/article/jaglavak-prince-of-insects/, abgerufen am: 17.01.2020.

8 Ein Garten fürs Millionenvolk

Jungköniginnen nehmen als Mitgift etwas vom Pilzgewebe ihres Mutternestes mit

Green A. M., Extensive exchange of fungal cultivars between sympatric species of fungus‐growing ants, in: Molecular Ecology 11, 2002, S. 191–195.

Marti H. E. u. a.,Foundress queen mortality and early colony growth of the leafcutter ant, Atta texana (For- micidae, Hymenoptera), in: Insectes Sociaux 62, 2016, S. 357–363.

Meirelles L. A. u. a., Bacterial microbiomes from vertically transmitted fungal inocula of the leaf‐cutting ant Atta texana, in: Environmental Microbiology Reports 8, 2016, S. 630–640.

In Kolonien von Blattschneiderameisen gibt es unterschiedlich große Arbeiterinnen mit speziellen Aufgaben

Burd M., Body size effects on locomotion and load carriage in the highly polymorphic leaf-cutting ants Atta colombica and Atta cephalotes, in: Behavioral Ecology 11, 2000, S. 125–131.

Constant N. u. a., The effects of genotype, caste, and age on foraging performance in leaf-cutting ants, in: Behavioral Ecology 23, 2012, S. 1284–1288.

Hughes W. O. H. u. a., Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants, in: Proceedings of the National Academy of Sciences USA 100, 2003, S.9394–939.

Wills B. D. u. a., Correlates and consequences of worker polymorphism in ants, in: Annual Review of Ento- mology 63, 2018, S.575–598.

Mit Zement ausgegossene Blattschneiderameisennester zeigen ihre Größe und Struktur

Jonkman J. C. M., The external and internal structure and growth of nests of the leaf‐cutting ant Atta vollen- weideri Forel, 1893 (Hym.: Formicidae), in: Journal of Applied Entomology 89, 1980, S.158–173.

Moreira A. A. u. a., External and internal structure of Atta bisphaerica Forel (Hymenoptera: Formicidae) nests, in: Journal of Applied Entomology 128, 2004, S. 204–211.

Blattschneiderameisen züchten Pilze

Bass M., Cherrett J. M., Fungal hyphae as a source of nutrients for the leaf‐cutting ant Atta sexdens, in: Phy- siological Entomology 20, 1995, S. 1–6.

Hölldobler B., Wilson E. O., The leafcutter ants. Civilization by instinct, W. W. Norton & Company, 2010.

North R. D. u. a., Evolutionary aspects of ant-fungus interactions in leaf-cutting ants, in: Trends in Ecology & Evolution 12, 1997, S.386–389.

Poulsen M., Boomsma J. J., Mutualistic fungi control crop diversity in fungus-growing ants, in: Science 307, 2005, S.741–744.

Antimykotika schützen den Nahrungspilz der Ameisen

Currie C. R. u. a., Ancient tripartite coevolution in the attine ant-microbe symbiosis Science 299, 2003, S. 386–388.

Haeder S. u. a., Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis, in: Proceedings of the National Academy of Sciences USA 106, 2009, S. 4742–4746.

Santos A. V. u. a., Occurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leaf- cutting ant Atta sexdens rubropilosa, in: FEMS Microbiology Letters 239 (2), 2004, S. 319–323.

Blattschneiderameisen richten in landwirtschaftlichen Plantagen große Schäden an

Blanton C. M., Ewel J. J., Leaf‐cutting ant herbivory in successional and agricultural tropical ecosystems, in: Ecology 66, 1985, S.861–869.

Costa A. N. u. a., Do an ecosystem engineer and environmental gradient act independently or in concert to shape juvenile plant communities? Tests with the leaf-cutter ant Atta laevigata in a Neotropical savanna, in: PeerJ 6:e5612, 2018.

Montoya-Lerma J. u. a., Leaf-cutting ants revisited. Towards rational management and control, in: Internati- onal Journal of Pest Management 58, 2012, S.225–247.

Ameisen verteidigen ihre Pflanzen erfolgreich gegen Blattschneiderameisen

Adams E.S., Territory defense by the ant Azteca trigona. Maintenance of an arboreal ant mosaic, in: Oecolo- gia 97, 1994, S. 202–208.

Schmidt M., Dejean A., A Dolichoderine ant that constructs traps to ambush prey collectively. Convergent evolution with a Myrmicine Genus, in: Biological Journal of the Linnean Society 124, 2018, S. 41–46.

Wetterer J., Attack by Paraponera clavata prevents herbivory by the leaf-cutting ant, Atta cephalotes, in: Biotropica 26, 1994, S. 462–465.

Buckelfliegen greifen Transportarbeiterinnen an

Elizalde L. u. a., Spatial and temporal variation in host-parasitoid interactions. Leafcutter ant hosts and their phorid parasitoids, in: Ecological Entomology 43, 2018, S. 114–125.

Feener D. H., Brown B. V., Oviposition behavior of an ant-parasitizing fly, Neodohrniphora curvinervis (Diptera: Phoridae), and defense behavior by its leaf-cutting ant host Atta cephalotes (Hymenoptera: Formi- cidae), in: Journal of Insect Behavior 6, 1993, S. 675–688.

Orr M. R., Parasitic flies (Diptera: Phoridae) influence foraging rhythms and caste division of labor in the leaf-cutter ant, Atta cephalotes (Hymenoptera: Formicidae), in: Behavioral Ecology and Sociobiology 30, 1992, S. 395–402.

9 Ein Baumhaus für den Staat

Camponotus schmitzi lebt in einer Kannenpflanze und stiehlt dieser die Beute

Bonhomme V. u. a., The plant-ant Camponotus schmitzi helps its carnivorous host-plant Nepenthes bicalca- rata to catch its prey, in: Journal of Tropical Ecology 27, 2011. S. 15–24.

Thornham D. G. u. a., Setting the trap: cleaning behaviour of Camponotus schmitzi ants increases long‐term capture efficiency of their pitcher plant host, Nepenthes bicalcarata, in: Functional Ecology 26, 2011, S. 11– 19.

Azteca-Ameisen halten Trompetenbäume frei von Aufsitzerpflanzen

Janzen D. H., Allelopathy by myrmecophytes: The ant azteca as an allelopathic agent of Cecropia, in: Ecolo- gy 50, 1969, S. 147–153.

Marting P. R. u. a., Colony personality and plant health in the Azteca-Cecropia mutualism, in: Behavioral Ecology 29, 2018, S. 264–271.

Mayer V. E. u. a., Current issues in the evolutionary ecology of ant–plant symbioses, in: New Phytologist 202, 2014, S. 749–764.

Die Büffelhorn-Akazie macht Pseudomyrmex ferruginea von ihrem Nektar abhängig

Heil M. u. a., Main nutrient compounds in food bodies of Mexican Acacia ant-plants, in: Chemoecology 14, 2004, S. 45–52.

Heil M. u. a.,Postsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism, in: Science 308, 2005, S. 560–563.

Heil, M. u. a., Partner manipulation stabilises a horizontally transmitted mutualism, in: Ecology Letters 17, 2014, S. 185–192.

Pennisi E., Sucrose-free sips suit acacia ants, in: Science 308, 2005, S. 481–482.

Die Zitronenameise Myrmelachista schumanni legt im Dschungel als Teufelsgärten bezeichnete Mono- kulturen an

Baez S. u. a., Ant mutualism increases long-term growth and survival of a common Amazonian tree, in: American Naturalist 188, 2016, S. 567–575.

Frederickson M. E. u. a., ‚Devil’s gardens‘ bedevilled by ants, in: Nature 437, 2005, S. 495–496.

Frederickson M. E., Gordon D. M., The devil to pay. A cost of mutualism with Myrmelachista schumanni ants in ‘devil's gardens’ is increased herbivory on Duroia hirsuta trees, in: Proceedings of the Royal Society B 247, 2007, S. 1117–1123.

Salas-Lopez A. u. a., The discovery of devil's gardens: an ant–plant mutualism in the cloud forests of the Eastern Amazon, in: Journal of Tropical Ecology 32, 2016, S. 264–268.

Camponotus femoratus errichtet in Baumkronen hängende Gärten

Cereghino, R. u. a., Ant-plant mutualisms promote functional diversity in phytotelm communities, in: Func- tional Ecology 25, 2011, S. 954–963.

Orivel J., Dejean A., Selection of epiphyte seeds by ant-garden ants, in: Écoscience 6, 1999, S. 51–55.

Seidel J. L. u. a., Neotropical ant gardens, in: Journal of Chemical Ecology 16, 1990, S. 1791–1816.

Grüne Weberameisen weben mit Seide Nester aus Blättern zusammen

Bochynek T., Robson S. K. A., Physical and biological determinants of collective behavioural dynamics in complex systems. Pulling chain formation in the nest-weaving ant Oecophylla smaragdina, in: Plos O- ne 9:e95112, 2014.

Cole A. C. u. a., A study of the weaver ant, Oecophylla smaragdina (Fab.), in: American Midland Naturalist 39, 1948, S. 641–651.

Hölldobler B., Territorial behavior in the green tree ant (Oecophylla smaragdina), in: Biotropica 15, 1983, S. 241–250.

10 Die Ameisen und das liebe Vieh

Ameisen halten sich Blattläuse und andere Pflanzensauger als Nutzvieh

Cushman J. H., Addicott J. F., Intra- and interspecific competition for mutualists. Ants as a limited and li- miting resource for aphids, in: Oecologia 79, 1989, S.315–321.

Detrain C. u. a., Aphid–ant mutualism. How honeydew sugars influence the behaviour of ant scouts, in: Phy- siologicyl Entomology 35, 2010, S.168–174.

Fischer M. K. u. a., Competition for mutualists in an ant–homopteran interaction mediated by hierarchies of ant attendance, in: Oikos 92, 2003, S. 531–541.

Völkl W. u. a., Ant-aphid mutualisms. The impact of honeydew production and honeydew sugar compositi- on on ant preferences, in: Oecologia 118, 1999, S. 483–491.

Ameisen und ihre Läuse haben sich aneinander angepasst

Maschwitz U., Hänel, H., The migrating herdsman Dolichoderus (Diabolus) cuspidatus. An ant with a novel mode of life, in: Behavioral Ecology and Sociobiology 17, 1985, S. 171–184.

Mani M., Shivaraju C., Ant association, in: Mani M., Shivaraju C. (eds.) Mealybugs and their management in agricultural and horticultural crops, Springer, 2016.

Ross L., Shuker D. M., Scale insects, in: Current Biology 19, R184-186, 2009.

Shingleton A. W., The origin of a mutualism. A morphological trait promoting the evolution of ant-aphid mutualisms, in: Evolution 59, 2007, S. 921–926.

Way M. J., Mutualism between ants and honeydew-producing Homoptera, in: Annual Review of Entomolo- gy 8, 1963, S. 307–344.

Die Schwarze Wegameise unterdrückt die Schwarze Bohnenlaus

Banks C. J., Effects of the Ant, Lasius niger (L.). On the Behaviour and Reproduction of the Black Bean Aphid, Aphis fabae Scop, in: Bulletin of Entomological Research 49, 1958, S. 701–714.

Banks C. J., Nixon H. L., Effects of the Ant, Lasius Niger L., On the Feeding and Excretion of the Bean Aphid, Aphis Fabae Scop, in: Journal of Experimental Biology 35, 1958, S. 703–711.

Offenberg J., Balancing between mutualism and exploitation. The symbiotic interaction between Lasius ants and aphids, in: Behavioral Ecology and Sociobiology 49, 2001, S.304–310.

Eine Larvenform der Blattlaus Paracletus cimiciformis frisst Larven der Rasenameise Tetramorium caespitum

Depa Ł. u. a., Do ants drive speciation in aphids? A possible case of ant-driven speciation in the aphid genus Stomaphis Walker (Aphidoidea, Lachninae), in: Zoological Journal of the Linnean Society 179, 2017, S. 41– 61.

Salazar A. u. a., Aggressive mimicry coexists with mutualism in an aphid, in: Proceedings of the National Academy of Sciences USA 112, 2015, S. 1101–1106.

Bläulinge lassen sich als Raupe von Ameisen beschützen und pflegen

Fiedler K., The host genera of ant-parasitic Lycaenidae butterflies. A review, in: Psyche 2012: 153975, 2012.

Henning S. F., Chemical communication between lycaenid larvae (Lepidoptera: Lycaenidae) and ants (Hy- menoptera: Formicidae), in: Journal of the Entomological Society of Southern Africa 46, 1983, S. 341–366.

Pierce N. u. a., The Ecology and Evolution of Ant Association in the Lycaenidae (Lepidoptera), in: Annual Review of Entomology 47, 2002, S. 733–771.

Ameisengäste umgeben sich mit einem sicheren Schutz oder passen sich geruchlich an

Agrain F. A. u. a., Leaf beetles are ant-nest beetles. The curious life of the juvenile stages of case-bearers (Coleoptera, Chrysomelidae, Cryptocephalinae), in: Zookeys 547, 2015, S. 133–164.

Erber D. , Biology of Camptosomata Clytrinae - Cryptocephalinae - Chlamisinae – Lamprosomatinae, in: Jolivet P., Petitpierre E., Hsiao T.H. (eds) Biology of Chrysomelidae, in: Series Entomologica, Vol 42, Springer, 1988.

Hlaváč P., Revision of the myrmecophilous genus Lomechusa (Coleoptera : Staphylinidae : Aleocharinae), in: Sociobiology 46, 2005, S. 203–250.

Hölldobler B. u. a., Behavior and exocrine glands in the myrmecophilous beetle Lomechusoides strumosus (Fabricius, 1775) (formerly called Lomechusa strumosa) (Coleoptera: Staphylinidae: Aleocharinae), in: Plos One 13:e0200309, 2018.

Witek M. u. a., Myrmica ants host highly diverse parasitic communities. From social parasites to microbes, in: Insectes Sociaux 61, 2014, S. 307.

11 Von Schmarotzern und Sklavenhaltern

Temnothorax americanus versklavt T. longispinosus

Foitzik S. u. a., Coevolution in host-parasite systems. Behavioral strategies of slavemaking ants and their hosts, in: Proceedings of the Royal Society B 268, 2001, S. 1139–1146.

Kaur R. u. a., Ant behaviour and brain gene expression of defending hosts depend on the ecological success of the intruding social parasite, in: Philosophical Transactions of the Royal Society B 374, 2019, S. 1769.

Pamminger T. u. a., Raiders from the sky. Slavemaker founding queens select for aggressive host colonies, in: Biology Letters 8, 2012, S. 748–750.

Wesson L. G., Contributions to the natural history of Harpagoxenus americanus, in: Transactions of the American Entomological Society 65, 1939, S. 97–122.

Honigtopfameisen überfallen und berauben Ernteameisen

Hölldobler B., Food robbing in ants, a form of interference competition, in: Oecologia 69, 1968, S. 12–15.

Die Gelbe Diebesameise bricht in die Nester anderer Arten ein

Hölldobler B., Chemical strategy during foraging in Solenopsis fugax Latr and Monomorium pharaonis L., in: Oecologia 11, 1973, S. 371-380.

Megalomyrmex symmetochus nutzen Sericomyrmex-Ameisen aus, beschützen sie aber vor Raubzügen von Gnamptogenys hartmani

Adams R. M. M. u. a., Chemically armed mercenary ants protect fungus-farming societies, in: Proceedings of the National Academy of Sciences USA 110, 2013, S. 15752–15757.

T. minutissimus hat gar keine Arbeiterinnen mehr und lässt T. curvispinosus schuften

Johnson C. A. u. a., Stealth and reproductive dominance in a rare parasitic ant, in: Animal Behavior 76:1965–1976, 2008.

Königinnen von T. schneideri reiten auf ihren Wirtsameisen

Bourke A. F. G., Franks N. R., Alternative adaptions, sympatric speciation and the evolution of parasitic, inquiline ants, in: Biological Journal of the Linnean Society 43, 1991, S. 157–178.

Kutter H., Über eine neue, extrem parasitische Ameise, in: Mitteilungen der Schweizerischen Entomologi- schen Gesellschaft 23, 1950, S. 81–94.

Stumper R., Teleutomyrmex schneideri Kutter (Hym. Formicid.). II. Mitteilung. Über die Lebensweise der neuen Schmarotzerameise, in: Mitteilungen der Schweizerischen Entomologischen Gesellschaft 24, 1951, S. 129–152.

Myrmecocystus-Honigtopfameisen machen Scheinkämpfe oder versklaven die Konkurrenz

Hölldobler B., Tournaments and slavery in a desert ant, in: Science 192(4242), 1976, S. 912–914.

Sklavenhalterköniginnen schleichen geruchlos oder mit Tarnung in ein fremdes Nest

D’Ettore P. u. a., Blending in with the crowd. Social parasites integrate into their host colonies using a fle- xible chemical signature, in: Proceedings of the Royal Society B 269, 2002, S.1911–1918.

D’Ettore P. u. a., Sneak in or repel your enemy. Dufour's gland repellent as a strategy for successful usurpa- tion in the slave-maker Polyergus rufescens, in: Chemoecology 10, 2000, S. 135–142.

Johnson C. A. u. a., Changes in the cuticular hydrocarbon profile of the slave-maker ant queen, Polyergus breviceps emery, after killing a Formica host queen (Hymenoptera : Formicidae), in: Journal of Chemical Ecology 27, 2001, S.1787–1804.

Kleeberg I. u. a., The influence of slavemaking lifestyle, caste and sex on chemical profiles in Temnothorax ants. Insights into the evolution of cuticular hydrocarbons, in: Proceedings of the Royal Society B 284, 2017, S. 1850.

Polyergus-Sklavenhalter setzen bei Sklavenraubzügen auf rohe Gewalt

Topoff H. u. a., Behavioral adaptations for raiding in the slave-making ant, Polyergus breviceps, in: Journal of Insect Behavior 2, 1989, S. 545–556.

Viele Sklavenhalter bringen mit dem Dufourdrüsensekret ihre Wirte dazu, sich gegenseitig zu atta- ckieren

Allies A. B. u. a., Propaganda substances in the cuckoo ant Leptothorax kutteri and the slave-maker Har- pagoxenus sublaevis, in: Journal of Chemical Ecology 12, 1986, S. 1285–1293.

Bauer S. u. a., Fight or flight? A geographic mosaic in host reaction and potency of a chemical weapon in the social parasite Harpagoxenus sublaevis, in: Behavioral Ecology and Sociobiology 64, 2009, S. 45–56.

Brandt M. u. a., Dufour's gland secretion as a propaganda substance in the slavemaking ant Protomognathus americanus, in: Insectes Sociaux 53, 2006, S. 291–299.

Jongepier E. u. a., The ecological success of a social parasite increases with manipulation of collective host behaviour, in: Journal of Evolutionary Biology 28, 2015, S. 2152–2162.

Savolainen R., Deslippe R. J., Facultative and obligate slavery in formicine ants. Frequency of slavery, and proportion and size of slaves, in: Biological Journal of the Linnean Society 57, 1996, S.47–58.

Regelmäßige, zerstörerische Raubzüge von Sklavenhaltern schädigen die Wirtspopulationen

Foitzik S., Herbers J. M., Colony structure of a slavemaking ant: II. Frequency of slave raids and impact on the host population, in: Evolution 55, 2001, S.316–323.

Foitzik S. u. a., Locally-adapted social parasite affects density, social structure and life history of its ant hosts, in: Ecology 90, 2009, S. 1195–1206.

Die „Ninja-Ameise“ Temnothorax pilagens kann teilweise unentdeckt Wirtsnester ausrauben

Kleeberg I., Foitzik S., The placid slavemaker: Avoiding detection and conflict as an alternative, peaceful raiding strategy, in: Behavioral Ecology and Sociobiology 70, 2016, S.27–39.

Seifert B. u. a., Temnothorax pilagens sp. n. – a new slave-making species of the tribe Formicoxenini from North America (Hymenoptera, Formicidae), in: Zookeys 368, 2014, S.65–77.

Genetische Veränderungen machen Ameisen zu Sklavenhaltern nahe verwandter Arten

Alleman A. u. a., Comparative analyses of co-evolving host-parasite associations reveal unique gene expres- sion patterns underlying slavemaker raiding and host defensive phenotypes, Scientific Reports 8:1951, 2018.

Feldmeyer B. u. a., Species-specific genes under selection characterize the co-evolution of slavemaker and host lifestyles, in: BMC Evolutionary Biology 17, 2017, S. 237.

Wirtsarten entwickeln Abwehrstrategien gegen die Angriffe der Sklavenhalter

Jongepier E. u. a., Collective defense portfolios of ant hosts shift with social parasite pressure, in: Procee- dings of the Royal Society B 281, 2014, S. 1791.

Kleeberg, I. u. a., Forewarned is forearmed: Aggression and information use determine fitness costs of slave raids, in: Behavioral Ecology 25, 2014, S. 1058–1063.

Pamminger T. u. a., Increased host aggression as an induced defence against slavemaking ants, in: Behavio- ral Ecology 22, 2011, S.255–260.

Manche Sklaven führen töten in Rebellionen den Nachwuchs der Sklavenhalter

Achenbach A., Foitzik, S., First evidence for slave rebellion: Enslaved ant workers systematically kill the brood of their social parasite Protomognathus americanus, in: Evolution 63, 2009, S. 1068–1075.

Achenbach, A. u. a., Brood exchange experiments and chemical analyses shed light on slave rebellion in ants, in: Behavioral Ecology 21, 2010, S. 948–956.

Metzler D. u. a., The influence of space and time on the evolution of altruistic defense. The case of ant slave rebellion, in: Journal of Evolutionary Biology 29, 2016, S. 874–886.

Pamminger T. u. a., Oh sister, where art thou? Spatial population structure and the evolution of an altruistic defence trait, in: Journal of Evolutionary Biology 27, 2014, S.2443–2456.

12 Selbst ist der Doc

Der Fadenwurm Myrmeconema neotropicum macht Ameisen zu roten Beeren

Dattilo W. u. a., The Geographic Distribution of Parasite-Induced Fruit Mimicry in Cephalotes atratus (Formicidae: ), in: Journal of Parasitology 99, 2013, S.155–157.

Poinar G. Jr., Nematode parasites and associates of ants. Past and present, in: Psyche 2012:192017, 2012.

Robin M. V. u. a., Exoskeletal thinning in Cephalotes atratus ants (Hymenoptera: Formicidae) parasitized by Myrmeconema neotropicum (Nematoda: Tetradonematidae), in: Journal of Parasitology 98, 2012, S. 226– 228.

Yanoviak S. P. u. a., Parasite‐induced fruit mimicry in a tropical canopy ant, in: American Naturalist 171, 2008, S. 536–544.

Der Bandwurm Anomotaenia brevis verlängert das Leben befallener Ameisen und manipuliert ihr Verhalten

Beros S. u. a., The parasite’s long arm: a tapeworm parasite induces behavioural changes in uninfected group members of its social host, in: Proceedings of the Royal Society B 282:20151473, 2015 .

Beros S. u. a., Parasitism and queen presence interactively shape worker behaviour and fertility in an ant host, in: Animal Behavior 148, 2019, S. 63–70.

Feldmeyer B. u. a., Gene expression patterns underlying parasite-induced alterations in host behaviour and life history, in: Molecular Ecology 25, 2016, S. 648–660.

Scharf I. u. a., Ant Societies buffer individual-level effects of parasite infections, in: American Naturalist 180, 2012, S. 671–683.

Trabalon M. u. a., Modification of morphological characters and cuticular compounds in worker ants Lep- tothorax nylanderi induced by endoparasites Anomotaenia brevis, in: Journal of Insect Physiology 46(2), 2000, S. 169–178.

Parasitische Pilze können Ameisen in Zombies verwandeln

Araújo J. P. M. u. a., Zombie-ant fungi across continents: 15 new species and new combinations within O- phiocordyceps. I. Myrmecophilous hirsutelloid species, in: Studies in Mycology 90, 2018, S.119–160.

Fredericksen M. A. u. a., Three-dimensional visualization and a deep-learning model reveal complex fungal parasite networks in behaviorally manipulated ants, in: Proceedings of the National Academy of Sciences USA 114, 2017, S. 12590–12595.

Hughes D. P. u. a., Ancient death-grip leaf scars reveal ant–fungal parasitism, in: Biology Letters 7, 2011, S. 67–70.

Kobmoo N. u. a., Population genomics revealed cryptic species within host-specific zombie-ant fungi (Ophi- ocordyceps unilateralis), in: Molecular Phylogenetics and Evolution 140:106580, 2019.

Lachaud J-P. u. a., Ants and their parasites 2013, in: Psyche 2013:264279, 2013.

Loreto R. G., Hughes D. P., The metabolic alteration and apparent preservation of the zombie ant brain, in: Journal of Insect Physiology 118:103918, 2019.

Auch der Leberegel Dicrocoelium dendriticum zwingt Ameisen seinen Willen auf

Botvenik C. E. u. a., Relative effects of temperature, light, and humidity on clinging behavior of Metacerca- riae-infected ants, in: Journal of Parasitology 102, 2016, S. 495–500.

Hohorst W., Graefe G., Ameisen-obligatorische Zwischenwirte des Lanzettegels (Dicrocoelium dcendcriti- cum), in: Naturwissenschaften 48, 1961, S. 229–230.

Krull W. H., Mapes C. R., Studies on the biology of Dicrocoelium dendriticum (Rudolphi, 1819), Looss, 1899 (Trematoda: Dicrocoeliidae), including its relation to the intermediate host, Cionella lubrica (Muiller), VII. The second intermediate host of Dicrocoelium dendriticum, in: The Cornell veterinarian 42, 1952, S. 603–604.

Manga-González M. Y. u. a., Contributions to and review of dicrocoeliosis, with special reference to the intermediate hosts of Dicrocoelium dendriticum, in: Parasitology 123, 2001, S. 91–114.

Martin-Vega D. u. a., 3D virtual histology at the host/parasite interface. Visualisation of the master manipu- lator, Dicrocoelium dendriticum, in the brain of its ant host, in: Scientific Reports 8:8587, 2018.

Tarry D. W., Dicrocoelium dendriticum. The life cycle in Britain, in: Journal of Helminthology 43, 1969, S. 403–416.

Ameisen schützen sich vor Krankheitserregern

Clardy J. u. a., The natural history of antibiotics, in: Current Biology 19, 2009, R437–R441.

Cremer S. u. a., Social immunity: emergence and evolution of colony-level disease protection, in: Annual Review of Entomology 63, 2018, S. 105–123.

Schulz T. R., Ants, plants and antibiotics, in: Nature 398, 1999, S. 747–748.

Stroeymeyt N. u. a., Social network plasticity decreases disease transmission in a eusocial insect, in: Science 362, 2018, S.941–945.

Kranke Ameisen verlassen freiwillig das Nest

Bos N. u. a., Sick ants become unsociable, in: Journal of Evolutionary Biology 25, 2011, S. 342–351.

Chapuisat M., Social evolution: Sick ants face death alone, in: Current Biology 20, 2010, R104–R105.

Heinze J, Walter B., Moribund ants leave their nests to die in social isolation, in: Current Biology 20, 2010, S. 249–252.

Ameisen leben in Gemeinschaft mit Antiobiotika-produzierenden Bakterien

Hedges S., Science. Ant antibody fights fungal infections in humans, in: New Scientist, 1989, S. 1691.

Ortega H. E. u. a., Antifungal compounds from Streptomyces associated with attine ants also inhibit Leishmania donovani, in: PLOS Neglected Tropical Diseases 13: e0007643, 2019.

Peakall R. u. a., The significance of ant and plant traits for ant pollination in Leporella fimbriata, in: Oecolo- gia 84, 1990, S. 457–460.

Van Arnam E. B. u. a., Selvamicin. An atypical antifungal polyene from two alternative genomic contexts. Proceedings of the National Academy of Sciences USA 113, 2016, S. 12940–12945.

Arbeiterinnen von Megaponera analis retten nach einem Raubzug verletzte Schwestern vom Schlacht- feld

Frank E. T. u. a., Saving the injured. Rescue behavior in the termite-hunting ant Megaponera analis, in: Sci- ence Advances 3:e1602187, 2017.

Frank E. T. u. a., Wound treatment and selective help in a termite-hunting ant, in: Proceedings of the Royal Society B 285:20172457, 2018.

13 Auf dem Weg zur Weltherrschaft

Die Feuerameise Solenopsis geminata wurde im 16. Jahrhundert von spanischen Seefahrern über die Welt verbreitet

Gotzek D. u. a., Global invasion history of the tropical fire ant. A stowaway on the first global trade routes, Molecular Ecology 24, 2015, S.374–388.

McGlynn T. P., The worldwide transfer of ants: geographical distribution and ecological invasions, in: Jour- nal of Biogeography 26, 1999, S.535–548.

Die Argentinische Ameise Linepithema humile beherrscht mit zwei Superkolonien die westeuropäische Mittelmeerküste

Blight O. u. a., A new colony structure of the invasive Argentine ant (Linepithema humile) in Southern Eu- rope, in: Biological Invasions 12, 2010, S.1491–1497.

Jaquiéry J. u. a., Multilevel genetic analyses of two European supercolonies of the Argentine ant, Linepithe- ma humile, in: Molecular Ecology 14, 2005, S.589–598.

Roura-Pascual N. u. a., Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change, in: Proceedings of the Royal Society B 271, 2004, S. 1557.

Suarez A. V. u. a., Behavioral and genetic differentiation between native and introduced populations of the Argentine Ant, in: Biological Invasions 1, 1999, S.43-53

Tsutsui N. D. u. a., Relationships among native and introduced populations of the Argentine ant (Linepithe- ma humile) and the source of introduced populations, in: Molecular Ecology 10, 2001, S. 2151–2161.

Wetterer J. K., Worldwide spread of the Argentine ant, Linepithema humile (Hymenoptera: Formicidae), in: Myrmecological News 12, 2009, S. 187–194.

Der genetische Flaschenhals und der Gründereffekt begünstigen die Bildung von Superkolonien

Jackson D. E., Social evolution. Pathways to ant unicoloniality, in: Current Biology 17, 2007, R1063-R1064.

Lee C. E., Evolutionary genetics of invasive species, in: Trends in Ecology & Evolution 17, 2002, S. 386– 391.

Moffett M. W., Supercolonies of billions in an invasive ant: What is a society?, in: Behavioral Ecology 23, 2012, S. 925–933,

Suarez A. V. u. a., Genetics and behavior of a colonizing species. The invasive Argentine Ant, in: The Ame- rican Naturalist 172, 2008, S. 72–84.

Die Gelbe Spinnerameise Anoplolepsis gracilipes zerstört das ökologische Gleichgewicht auf der Weih- nachtsinsel

Abbott K. L., Supercolonies of the invasive yellow crazy ant, Anoplolepis gracilipes, on an oceanic island. Forager activity patterns, density and biomass, in: Insectes Sociaux 52, 2005, S. 266–273.

Denslow J. S., The ecology of insular biotas, in: Trends in Ecology & Evolution 16, 2001, S.423–424.

O’Dowd D. J. u. a., Invasional 'meltdown' on an oceanic island, in: Ecology Letters 6, 2003, S. 812–817.

Die Rote Feuerameise Solenopsis invicta hat den Süden der USA erobert

Ascunce M. S. u. a., Global invasion history of the fire ant Solenopsis invicta, in: Science 331, 2011, S. 1066–1068.

Morrison L. W., Long-term impacts of an arthropod-community invasion by the imported fire ant, Solenop- sis invicta, in: Ecology 83, 2002, S. 2337–2345.

Morrison L. W. u. a., Potential global range expansion of the invasive fire ant, Solenopsis invicta, in: Biolo- gical Invasions 6, 2004, S.183-191.

Tschinkel W. R., The fire ants, in: Harvard University Press, 2006.

Die Schuppenameise Formica fuscocinerea ist ohne menschliches Zutun von Österreich nach Süd- deutschland eingewandert

Pohl A. u. a., Mass occurrence and dominant behavior of the european ant species Formica fuscocinerea (Forel), in: Journal of Insect Behavior 31, 2018, S.12–28.

Die Übersehene Ameise Lasius neglectus wurde erst 1990 als eigene Art erkannt

Espadaler X., Rey S., Biological constraints and colony founding in the polygynous invasive ant Lasius neglectus (Hymenoptera, Formicidae), Insectes Sociaux 48, 2001, S. 159–164.

Seifert B., Rapid range expansion in Lasius neglectus (Hymenoptera, Formicidae) – an Asian invader swamps Europe, in: Deutsche Entomologische Zeitschrift 47, 2000, S. 173–179.

Tartally A. u. a., Collapse of the invasive garden ant, Lasius neglectus, populations in four European count- ries, in: Biological Invasions 18, 2016, S. 3127–3131.

Die tropische Pharaoameise Monomorium pharaonis verbreitet in Kliniken, Küchen und Bäckereien

Beatson S. H., Pharaoh’s ants as pathogen vectors in hospitals, in: The Lancet 299, 1972, S. 425–427.

Bertelsmeier C. u. a., Worldwide ant invasions under climate change, in: Biodiversity and Conservation 24, 2015, S. 117–128.

Gliniewicz A. u. a., Pest control and pesticide use in hospitals in Poland, in: Orcis Indoor and Built En- vironment 15, 2006, S. 57–61.

Wetterer J. K., Worldwide spread of the pharaoh ant, Monomorium pharaonis (Hymenoptera: Formicidae), in: Myrmecological News 13, 2010, S. 115–129.

Manche invasive Arten verschwinden von selbst wieder

Cooling M. u. a., The widespread collapse of an invasive species. Argentine ants (Linepithema humile) in New Zealand, in: Biology Letters 8, 2012, S. 430–433.

Cooling M., Hoffmann B. D., Here today, gone tomorrow. Declines and local extinctions of invasive ant populations in the absence of intervention, in: Biological Invasions 17, 2015, S. 3351–3357.

Lester P. J., Gruber M. A. M., Booms, busts and population collapses in invasive ants, in: Biological Invasi- ons 18, 2016, S. 3091–3101.

Tartally A. u. a., Collapse of the invasive garden ant, Lasius neglectus, populations in four European count- ries, in: Biological Invasions 18, 2016, S.3127–3131.

Die „verrückte Ameise“ Nylanderia fulva verdrängt in den USA die invasive Feuerameise

Chen J. u. a., Defensive chemicals of tawny crazy ants, Nylanderia fulva (Hymenoptera: Formicidae) and their toxicity to red imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae), in: Toxicon 76, 2013, S. 160–166.

Kumar S. u. a., Evidence of niche shift and global invasion potential of the Tawny Crazy ant, Nylanderia fulva, in: Ecology and Evolution 5, 2015, S. 4628–4641.

LeBrun E. G. u. a., Imported crazy ant displaces imported fire ant, reduces and homogenizes grassland ant and arthropod assemblages, in: Biological Invasions 15, 2013, S. 2429–2442.

LeBrun E. G. u. a., Chemical warfare among invaders. A detoxification interaction facilitates an ant invasi- on, in: Science 343, 2014, S. 1014–1017.

14 Verrückte Viecher

Die afrikanischen Melissotarsus-Ameisen sind so an das Leben in selbstgebohrten Löchern angepasst, dass sie auf ebener Fläche nicht stehen können

Buehler J., Evolution turned this ant into a living drill, in: Sciencemag, unter: www.sciencemag.org/news/2018/08/evolution-turned-ant-living-drill, abgerufen am: 17.01.2020.

Khalife A. u. a., Skeletomuscular adaptations of head and legs of Melissotarsus ants for tunnelling through living wood, in: Frontiers in Zoology 15, 2018, S. 1–11.

Mony R. u. a., Melissotarsus ants are likely able to digest plant polysaccharides, in: Comptes Rendus Biolo- gies 336, 2013, S. 500–504.

Cephalotes atratus und andere Arten segeln gezielt zurück zum Baum, von dem sie heruntergefallen sind

Yanoviak S. P. u. a., Directed aerial descent in canopy ants, in: Nature 433, 2005, S. 624–626.

Yanoviak S. P. u. a., Directed aerial descent behavior in African canopy ants (Hymenoptera: Formicidae). Journal of Insect Behavior 21, 2008, S. 164–171.

Yanoviak S. P. u. a., Aerial maneuverability in wingless gliding ants (Cephalotes atratus), in: Proceedings of the Royal Society B 277, 2010, S.1691.

Schnappkieferameisen katapultieren sich mit ihren Mundwerkzeugen selbst in die Luft

Gronenberg W. u. a., Fast trap jaws and giant-neurons in the ant Odontomachus, in: Science 262, 1993, S. 561–563.

Larabee F. J., Suarez A. V., Mandible-powered escape jumps in trap-jaw ants increase survival rates during predator-prey encounters, in: Plos One 10:e0124871, 2015.

Larabee F. J. u. a., Performance, morphology and control of power-amplified mandibles in the trap-jaw ant Myrmoteras (Hymenoptera: Formicidae), in: Journal of Experimental Biology 220, 2017, S. 3062–3071.

Patek S. N. u. a., Multifunctionality and mechanical origins: Ballistic jaw propulsion in trap-jaw ants, in: Proceedings of the National Academy of Sciences USA 103, 2006, S. 12787–12792.

Die Männchen der südamerikanischen Ameise Hypoponera opacior begatten Jungköniginnen, bevor diese aus der Puppe geschlüpft sind

Foitzik S. u. a., Mate guarding and alternative reproductive tactics in the ant Hypoponera opacior, in: Ani- mal Behavior 63, 2002, S. 597–604.

Kureck I. M. u. a., Wingless ant males adjust mate-guarding behaviour to the competitive situation in the nest, in: Animal Behaviour 82, 2011, S.339–346.

Bei der Kleinen Feuerameise Wasmannia auropunctata unterscheiden sich Männchen und Weibchen genetisch so sehr, als wäre es verschiedene Arten

Foucaud J. u. a., Reproductive system, social organization, human disturbance and ecological dominance in native populations of the little fire ant, Wasmannia auropunctata, in: Molecular Ecology 18, 2009, S. 5059– 5073.

Fournier D. u. a., Clonal reproduction by males and females in the little fire ant, in: Nature 435, 2005, S. 1230–1234.

Queller D., Evolutionary biology – Males from Mars, in: Nature 435, 2005, S. 1167–1168.

Die Wächterinnen der Stöpselkopfameise verschließen mit ihren Köpfen den Nesteingang

Fujioka H. u. a., Observation of plugging behaviour reveals entrance-guarding schedule of morphologically specialized caste in Colobopsis nipponicus, in: Ethology 125, 2019, S. 526–534.

Hasegawa E., Nest defense and early production of the major workers in the dimorphic ant Colobopsis nip- ponicus (Wheeler) (Hymenoptera, Formicidae), in: Behavioral Ecology and Sociobiology 33, 1993, S. 73– 77.

Laciny A. u. a., Morphological variation and mermithism in female castes of Colobopsis sp. nrSA, a Bornean "exploding ant" of the Colobopsis cylindrica group (Hymenoptera: Formicidae), in: Myrmecological News 24, 2017, S. 91–106.

Walker J., Stamps J., A test of optimal caste ration theory using the ant Camponotus (Colobopsis) impressus, in: Ecology 67, 1986, S. 1052–1062.

Arbeiterinnen der brasilianischen Ameise Forelius pusillus verschließen abends von außen das Nest und gehen in den Tod

Bourke A. F. G., Social evolution. Daily self-sacrifice by worker ants, in: Current Biology 18, 2008, S. 1100–1101.

Shorter J. R., Rueppell O., A review on self-destructive defense behaviors in social insects, in: Insectes Soci- aux 59, 2012, S. 1–10.

Tofilski A. T. u. a., Preemptive defensive self-sacrifice by ant workers, in: American Naturalist 172, 2008, S. 239–243.

Die Holzameisen Camponotus saundersi sprengen sich im Kampf in letzter Konsequenz selbst in die Luft und verteilen dabei Gift

Davidson D. W. u. a., Histology of structures used in territorial combat by Borneo's 'exploding ants’, in: Acta Zoologica 93(4), 2012, S. 487–491.

Jones T. H. u. a., The chemistry of exploding ants, Camponotus SPP. (Cylindricus COMPLEX), in: Journal of Chemical Ecology 30(8), 2004, S.1479–1492.

Laciny A. u. a., Colobopsis explodens sp. n., model species for studies on ‘exploding ants’ (Hymenoptera, Formicidae), with biological notes and first illustrations of males of the Colobopsis cylindrica group, in: Zoo Keys 751, 2018, S. 1–40.

Informatiker imitieren die Pheromonspuren von Ameisen, um die besten Wege im Internet zu finden

Bonabeau E. u. a., Inspiration for optimization from social insect behaviour, in: Nature 406, 2000, S.39–42.

Musco C. u. a., Ant-inspired density estimation via random walks, in: Proceedings of the National Academy of Sciences USA 114, 2017, S. 10534–10541.

Werfel J. u. a., Designing collective behavior in a termite-inspired robot construction team, in: Science 343, 2014, S. 754–758.

Tetraponera binghami und Cataulacus muticus trinken bei starkem Regen das eindringende Wasser und spucken oder pinkeln es aus dem Nesteingang

Kolay S., Annagiri S., Dual response to nest flooding during monsoon in an Indian ant, in: Scientific Reports 5, 2015, S. 13716.

LeBrun E. G. u. a., Convergent evolution of levee building behavior among distantly related ant species in a floodplain ant assemblage, in: Insectes Sociaux 58, 2011, S. 263–269.

Maschwitz U., Moog J., Communal peeing. A new mode of flood control in ants, in: Naturwissenschaften 87, 2000, S. 563–565.