A Fossil Fuchsia (Onagraceae) Flower and an Anther Mass with in Situ Pollen from the Early Miocene of New Zealand 1

Total Page:16

File Type:pdf, Size:1020Kb

A Fossil Fuchsia (Onagraceae) Flower and an Anther Mass with in Situ Pollen from the Early Miocene of New Zealand 1 American Journal of Botany 100(10): 2052–2065. 2013. A FOSSIL FUCHSIA (ONAGRACEAE) FLOWER AND AN ANTHER MASS WITH IN SITU POLLEN FROM THE EARLY MIOCENE OF NEW ZEALAND 1 D APHNE E. LEE 2 , J OHN G. CONRAN 3,6 , J ENNIFER M. BANNISTER 4 , U WE K AULFUSS 2 , AND D ALLAS C. MILDENHALL 5 2 Department of Geology, University of Otago, P.O. Box 56, Dunedin, New Zealand; 3 Australian Centre for Evolutionary Biology and Biodiversity & Sprigg Geobiology Centre, School of Earth and Environmental Sciences, Benham Bldg DX 650 312, The University of Adelaide, SA 5005 Australia; 4 Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand; and 5 GNS Science, P.O. Box 30-368, Lower Hutt, New Zealand • Premise of the study: Fuchsia (Onagraceae) anthers, pollen, and an ornithophilous Fuchsia -like fl ower from an earliest Mio- cene lacustrine diatomite deposit at Foulden Maar, southern New Zealand confi rm a long record for Fuchsia in New Zealand and probably an equally long history for its distinctive honeyeater pollination syndrome. The anthers contain in situ pollen of the fossil palynomorph previously assigned to Diporites aspis Pocknall et Mildenh. (Onagraceae: Fuchsia L.). • Methods: We undertook comparative studies of the fl ower and anther morphology of the newly discovered macrofossils and compared the in situ pollen grains from the anthers with dispersed pollen grains from extant species. • Key results: The anther mass is referred to a new, extinct species, Fuchsia antiqua D.E.Lee, Conran, Bannister, U.Kaulfuss & Mildenh. (Onagraceae), and is associated with a fossilized Fuchsia -like fl ower from the same small mining pit. Because Dipo- rites van der Hammen is typifi ed by a fungal sporomorph, the replacement name for D. aspis is Koninidites aspis (Pocknall & Mildenh.) Mildenh. gen. & comb. nov. Phylogenetic placement of the fossils agrees with a proximal position to either sect. Skinnera or sect. Procumbentes. These are the oldest macrofossils of Fuchsia globally. • Conclusions: The fl oral structures are remarkably similar to those of modern New Zealand Fuchsia . They suggest that the distinctive honeyeater bird-pollination syndrome/association seen in modern New Zealand was already established by the late Oligocene–earliest Miocene. The implications for the biogeography and paleoecology of Fuchsia in Australasia are discussed. Key words: anthers; biogeography; fl ower; Fuchsia antiqua ; in situ pollen; Koninidites aspis ; Miocene; Oligocene; Onagraceae. In contrast to the fl ora of neighboring landmasses of Austra- plants include Alepis Tiegh. and Peraxilla Tiegh. (Loranthaceae), lia and New Caledonia, the present-day fl ora of New Zealand is Alseuosmia A.Cunn. (Alseuosmiaceae), Fuchsia L. (Onagraceae), characterized by a depauperate array of fl owering plants, many Knightia R.Br. (Proteaceae), Metrosideros Banks ex Gaertn. monotypic woody genera, a predominance of white-fl owered (Myrtaceae), Phormium J.R.Forst. & G.Forst. (Xanthorrhoeaceae), taxa and unspecialized fl oral structures for generalist pollina- Rhabdothamnus A.Cunn. (Gesneriaceae), and Sophora L. tion by small birds and insects ( Lloyd, 1985 ; Lee et al., 2001 ). (Fabaceae) ( Kelly et al., 2010 ). Of the 29 species of fl owering trees and shrubs in New Zealand Relatively little is known about the antiquity of the fl oral that possess ornithophilous fl owers, most are mainly pollinated structures and syndromes that relate to bird pollination in New by honeyeaters (Meliphagidae), including tūī ( Prosthemadera Zealand (and elsewhere). Lloyd (1985) postulated that the de- novaeseelandiae ) and bellbirds ( Anthornis melaneura ). These velopment of simplifi ed fl oral structures in New Zealand plants was related to a depauperate insect and bird fauna, although he did not speculate on the cause or antiquity of this general biotic 1 Manuscript received 20 December 2012; revision accepted 5 July 2013. The authors thank the Gibson family, Dr. Alan Walker, and Featherston impoverishment. Similarly, Kelly et al. (2010) showed that de- Resources Ltd for kindly allowing us access to the site. Liz Girvan (Otago pendence on bird pollination is unexpectedly high, with 85 na- Centre for Electron Microscopy) provided valuable assistance with the tive species (including 30% of the tree fl ora) having reports of SEM photographs. Jack Lamb of the World living collection of Fuchsia visits to fl owers, despite the very small number of nectarivorous species for BGCI, Fuchsia Species Conservation and Research, U.K. is bird species. They concluded that bird pollination in New Zealand thanked for the photo of F. cyrtandroides . Dr. Jamie Wood helped with is widespread and important for numerous taxa, including many pollination and dispersal information on modern Fuchsia in New Zealand. lacking apparently ornithophilous fl owers. The Departments of Geology and Botany, University of Otago, Dunedin Recent research in richly fossiliferous lagerstätten deposits and the School of Earth and Environmental Sciences, The University of of late Oligocene–early Miocene age in southern New Zealand Adelaide are thanked for the provision of resources to undertake this has revealed a wide variety of particularly well-preserved plant research. Funding for this study was provided by a Marsden Grant from the Royal Society of New Zealand. Prof. Bill Lee (Landcare Research, NZ) is fossils, including a fertile fern ( Conran et al., 2010 ), leaves with thanked for comments on the manuscript. cuticle (e.g., Conran et al., 2009 ; Carpenter et al., 2010a , b ; 6 Author for correspondence (e-mail: [email protected]) Ferguson et al., 2010 ; Jordan et al., 2010 ; Lee et al., 2010 ; Bannister et al., 2012 ), fruits and seeds, and importantly, fl ow- doi:10.3732/ajb.1200643 ers with in situ pollen ( Bannister et al., 2005 ; Lee et al., 2010 ). American Journal of Botany 100(10): 2052–2065, 2013 ; http://www.amjbot.org/ © 2013 Botanical Society of America 2052 October 2013] LEE ET AL.—NEW ZEALAND FOSSIL FUCHSIA 2053 Taken in conjunction with the extensive, continuous palyno- 1999 ; Martin, 2003 ), is considered to represent the modern morph record for the New Zealand Cenozoic ( Mildenhall, 1980 ; semiaquatic genus Ludwigia L. (including Jussiaea L.), which Pocknall and Mildenhall, 1984 ; Mildenhall and Pocknall, 1989 ), is now extinct in New Zealand, possibly indicating climatic these macrofossils make it possible to investigate and clarify change to more open and drier ecosystems ( Macphail, 1999 ). aspects of the history of angiosperms in New Zealand in some The affi nity of C. oculusnoctis was listed in Bannister et al. detail. Of particular interest is the antiquity of ecological inter- (2005 , p. 517) as “Onagraceae, cf. Epilobium .” actions relating to pollination and dispersal in relation to the Onagraceae appears to have diverged from its sister family evolution of the distinctive modern New Zealand fl ora. Lythraceae ~93 Ma in the early Cenomanian, while Fuchsia is One notable genus is Fuchsia, which is widespread through- thought to have differentiated from Circaea L. ~40 Ma in the out New Zealand today and has distinctively colored fl owers Eocene ( Conti et al., 1993 ; Berry et al., 2004 ; Sytsma et al., and pollen and specialized fl oral structures for bird pollination 2004 ; Wagner et al., 2007 ; Xie et al., 2009 ). The presence of a ( Robertson et al., 2008 ). Similarly, the fruits display a bird- well-dated 23 Ma Fuchsia fossil fl ower and pollen-bearing an- dispersal syndrome ( Armesto and Rozzi, 1989 ; Robertson et al., thers at Foulden Maar provides new information on the fl oral 2008 ). structure of early Fuchsia , in particular the shape of the fl oral Fuchsia also displays an unusual biogeographic pattern. Of tube and arrangement of the anthers. Furthermore, as macrofos- the 107 species in 12 sections ( Heywood et al., 2007 ; Wagner sil records for Onagraceae are extremely rare, these fl oral mac- et al., 2007 ; Mabberley, 2008 ), three species (and a natural hy- rofossils are very important for an improved understanding of brid) in two sections are endemic to New Zealand: sect. Skinnera the fossil record of Fuchsia and unraveling the molecular phy- (J.R.Forst. & G.Forst.) DC.: F. excorticata (J.R.Forst. & G.Forst.) logenetics and biogeographic history of Onagraceae. L.f. ( Fig. 1A ), F. perscandens Cockayne & Allan ( Fig. 1B ) and F. × colensoi Hook.f. ( Fig. 1C ); and sect. Procumbentes Godley & P.E.Berry: F. procumbens R.Cunn. ex A.Cunn. ( Fig. 1E ). The MATERIALS AND METHODS remaining species in sect. Skinnera , F. cyrtandroides J.W.Moore ( Fig. 1D ), is confi ned to Tahiti ( Godley and Berry, 1995 ). The Fossil preparation — The fossils were recovered from small mining pits remainder of the genus is found throughout South and Central near Middlemarch in Otago, southern New Zealand. The plant fossils occur in America as far north as Mexico, but Fuchsia is notably absent the Foulden Hills Diatomite ( Lee et al., 2007 ; Lindqvist and Lee, 2009 ), a fi nely from present-day Australia, New Caledonia, and other Pacifi c laminated biogenic lake deposit comprised mainly of pennate diatom frustules, islands ( Berry et al., 2004 ). siliceous chrysophycean algal stomatocysts, sponge spicules, insects, articu- The global fossil record of Onagraceae has until now been lated fi sh skeletons, and plant material ( Pole, 1996 ; Lee et al., 2007 ). The fossil based almost entirely on distinctive pollen, with macrofossils macrofl ora comprises numerous leaf compressions, typically with well-pre- served cuticle, fruits, occasional bark and wood fragments, and rare fl owers. (seeds and fruits) rare for the family ( Grímsson et al., 2011 and The anthers and fl ower described here, as with other fl ower parts from the site references therein) and none reported for Fuchsia ( Martin, ( Bannister et al., 2005 ), were preserved on light-colored layers in the varved 2003 ). Within the family, Fuchsia pollen is highly recognizable diatomite ( Lindqvist and Lee, 2009 ). ( Erdtman, 1952 ; Balme, 1995 ). Distinctive diporate pollen as- The Foulden Hills Diatomite was deposited in a small maar crater lake Diporites aspis ( Lindqvist and Lee, 2009 ).
Recommended publications
  • Salesforce Park Garden Guide
    Start Here! D Central Lawn Children’s Play Area Garden Guide6 Palm Garden 1 Australian Garden Start Here! D Central Lawn Salesforce Park showcases7 California over Garden 50 species of Children’s Play Area 2 Mediterraneantrees and Basin over 230 species of understory plants. 6 Palm Garden -ã ¼ÜÊ ÊăØÜ ØÊèÜãE úØƀØÊèÃJapanese Maples ¼ÃØ Ê¢ 1 Australian Garden 3 Prehistoric¢ØÕ輫ÕØÊ£ØÂÜÃã«ó«ã«Üŧ¼«¹ĆãÃÜÜ Garden 7 California Garden ¼ÜÜÜŧÊÃØãÜŧÃØ¢ã«Ã£¼ÜÜÜũF Amphitheater Garden Guide 2 Mediterranean Basin 4 Wetland Garden Main Lawn E Japanese Maples Salesforce Park showcases over 50 species of 3 Prehistoric Garden trees and over 230 species of understory plants. A Oak Meadow 8 Desert Garden F Amphitheater It also offers a robust year-round calendar of 4 Wetland Garden Main Lawn free public programs and activities, like fitness B Bamboo Grove 9 Fog Garden Desert Garden classes, concerts, and crafting classes! A Oak Meadow 8 5 Redwood Forest 10 Chilean Garden B Bamboo Grove 9 Fog Garden C Main Plaza 11 South African 10 Chilean Garden Garden 5 Redwood Forest C Main Plaza 11 South African Garden 1 Children’s Australian Play Area Garden ABOUT THE GARDENS The botanist aboard the Endeavor, Sir Joseph Banks, is credited with introducing many plants from Australia to the western world, and many This 5.4 acre park has a layered soil system that plants today bear his name. balances seismic shifting, collects and filters storm- water, and irrigates the gardens. Additionally, the soil Native to eastern Australia, Grass Trees may grow build-up and dense planting help offset the urban only 3 feet in 100 years, and mature plants can be heat island effect by lowering the air temperature.
    [Show full text]
  • Foraging Ecology of the World's Only
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. FORAGING ECOLOGY OF THE WORLD’S ONLY POPULATION OF THE CRITICALLY ENDANGERED TASMAN PARAKEET (CYANORAMPHUS COOKII), ON NORFOLK ISLAND A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Conservation Biology at Massey University, Auckland, New Zealand. Amy Waldmann 2016 The Tasman parakeet (Cyanoramphus cookii) Photo: L. Ortiz-Catedral© ii ABSTRACT I studied the foraging ecology of the world’s only population of the critically endangered Tasman parakeet (Cyanoramphus cookii) on Norfolk Island, from July 2013 to March 2015. I characterised, for the first time in nearly 30 years of management, the diversity of foods consumed and seasonal trends in foraging heights and foraging group sizes. In addition to field observations, I also collated available information on the feeding biology of the genus Cyanoramphus, to understand the diversity of species and food types consumed by Tasman parakeets and their closest living relatives as a function of bill morphology. I discuss my findings in the context of the conservation of the Tasman parakeet, specifically the impending translocation of the species to Phillip Island. I demonstrate that Tasman parakeets have a broad and flexible diet that includes seeds, fruits, flowers, pollen, sori, sprout rhizomes and bark of 30 native and introduced plant species found within Norfolk Island National Park. Dry seeds (predominantly Araucaria heterophylla) are consumed most frequently during autumn (81% of diet), over a foraging area of ca.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Bio 308-Course Guide
    COURSE GUIDE BIO 308 BIOGEOGRAPHY Course Team Dr. Kelechi L. Njoku (Course Developer/Writer) Professor A. Adebanjo (Programme Leader)- NOUN Abiodun E. Adams (Course Coordinator)-NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA BIO 308 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2013 ISBN: 978-058-434-X All Rights Reserved Printed by: ii BIO 308 COURSE GUIDE CONTENTS PAGE Introduction ……………………………………......................... iv What you will Learn from this Course …………………............ iv Course Aims ……………………………………………............ iv Course Objectives …………………………………………....... iv Working through this Course …………………………….......... v Course Materials ………………………………………….......... v Study Units ………………………………………………......... v Textbooks and References ………………………………........... vi Assessment ……………………………………………….......... vi End of Course Examination and Grading..................................... vi Course Marking Scheme................................................................ vii Presentation Schedule.................................................................... vii Tutor-Marked Assignment ……………………………….......... vii Tutors and Tutorials....................................................................... viii iii BIO 308 COURSE GUIDE INTRODUCTION BIO 308: Biogeography is a one-semester, 2 credit- hour course in Biology. It is a 300 level, second semester undergraduate course offered to students admitted in the School of Science and Technology, School of Education who are offering Biology or related programmes. The course guide tells you briefly what the course is all about, what course materials you will be using and how you can work your way through these materials. It gives you some guidance on your Tutor- Marked Assignments. There are Self-Assessment Exercises within the body of a unit and/or at the end of each unit.
    [Show full text]
  • Dammann's Garden Company Fuchsia Glow Hydrangea
    Fuchsia Glow Hydrangea Hydrangea macrophylla 'Grefuglo' Height: 5 feet Spread: 5 feet Sunlight: Hardiness Zone: 4a Other Names: French Hydrangea, Bigleaf Hydrangea Fuchsia Glow Hydrangea flowers Description: Photo courtesy of NetPS Plant Finder A stunning shrub producing bold fuchsia mophead flowers when grown in alkaline soil, bluish in acidic; ideal for the shrub border or foundation garden; perfect for patio containers Ornamental Features Fuchsia Glow Hydrangea features bold balls of fuchsia flowers with pink overtones at the ends of the branches from late spring to early fall. The flowers are excellent for cutting. It has forest green foliage throughout the season. The serrated oval leaves do not develop any appreciable fall color. The fruit is not ornamentally significant. Landscape Attributes Fuchsia Glow Hydrangea is a multi-stemmed deciduous shrub with a more or less rounded form. Its relatively coarse texture can be used to stand it apart from other landscape plants with finer foliage. This shrub will require occasional maintenance and upkeep, and should only be pruned after flowering to avoid removing any of the current season's flowers. It has no significant negative characteristics. Fuchsia Glow Hydrangea is recommended for the following landscape applications; - Accent - Mass Planting - Hedges/Screening - General Garden Use - Container Planting 5129 S Emerson Ave. Indianapolis, IN 46237 www.dammannsgardenco.com Planting & Growing Fuchsia Glow Hydrangea will grow to be about 5 feet tall at maturity, with a spread of 5 feet. It tends to be a little leggy, with a typical clearance of 1 foot from the ground, and is suitable for planting under power lines.
    [Show full text]
  • Vestured Pits in Wood of Onagraceae: Correlations with Ecology, Habit, and Phylogeny1
    VESTURED PITS IN WOOD OF Sherwin Carlquist2 and Peter H. Raven3 ONAGRACEAE: CORRELATIONS WITH ECOLOGY, HABIT, AND PHYLOGENY1 ABSTRACT All Onagraceae for which data are available have vestured pits on vessel-to-vessel pit pairs. Vestures may also be present in some species on the vessel side of vessel-to-ray pit pairs. Herbaceous Onagraceae do not have fewer vestures, although woods with lower density (Circaea L. and Oenothera L.) have fewer vestures. Some Onagraceae from drier areas tend to have smaller vessel pits, and on that account may have fewer vestures (Epilobium L. and Megacorax S. Gonz´alez & W. L. Wagner). Pit apertures as seen on the lumen side of vessel walls are elliptical, occasionally oval, throughout the family. Vestures are predominantly attached to pit aperture margins. As seen from the outer surfaces of vessels, vestures may extend across the pit cavities. Vestures are usually absent or smaller on the distal portions of pit borders (except for Ludwigia L., which grows consistently in wet areas). Distinctive vesture patterns were observed in the several species of Lopezia Cav. and in Xylonagra Donn. Sm. & Rose. Vestures spread onto the lumen-facing vessel walls of Ludwigia octovalvis (Jacq.) P. H. Raven. Although the genera are presented here in the sequence of a recent molecular phylogeny of Onagraceae, ecology and growth forms are more important than evolutionary relationships with respect to abundance, degree of grouping, and morphology of vestured pits. Designation of vesture types is not warranted based on the distribution of named types in Onagraceae and descriptive adjectives seem more useful, although more data on vesturing in the family are needed before patterns of diversity and their extent can be fully ascertained.
    [Show full text]
  • Assessing Pollination and Fruit Dispersal in Fuchsia Excorticata (Onagraceae)
    RobertsonNew Zealand et al.—Pollination Journal of Botany, and 2008, dispersal Vol. in46 Fuchsia: 299–314 299 0028–825X/08/4603–0299 © The Royal Society of New Zealand 2008 Assessing pollination and fruit dispersal in Fuchsia excorticata (Onagraceae) ALastaIR W. ROBErtsON cases very frequently by silvereyes, which also oc- Ecology, Institute of Natural Resources casionally rob nectar from flowers. We confirmed Massey University that hermaphrodites account for more than half the Private Bag 11222 plants in all populations, are fully self-compatible, Palmerston North 4474, New Zealand and can autonomously self in the absence of pollina- [email protected] tors (especially in plants with smaller herkogamy). Fruit production in hermaphrodites and (particularly) JENNY J. LADLEY females was frequently pollen-limited (mean Pollen DAVE KELLY Limitation Indices of 0.17 and 0.40, respectively), School of Biological Sciences and was correlated with visual assessments of pol- University of Canterbury len loads on the stigma, a useful index of pollinator Private Bag 4800 service. A comparison of the proportion of ripe or Christchurch 8140, New Zealand overripe fruit on branches exposed to birds versus KatE L. MCNUTT branches enclosed in wire cages showed that un- Ecology, Institute of Natural Resources caged fruit on Kapiti Island is removed almost as Massey University soon as it is ripe but on the mainland it persists for Private Bag 11222 much longer. The proportion of ripe or overripe Palmerston North 4474, New Zealand compared to green fruit is therefore an approximate index of dispersal service. Both indices may be use- PAUL G. PETERSON ful to managers concerned with measuring the level Landcare Research of mutualism service provided by native birds.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]
  • TAXON:Fuchsia Magellanica Lam. SCORE:18.0 RATING:High Risk
    TAXON: Fuchsia magellanica Lam. SCORE: 18.0 RATING: High Risk Taxon: Fuchsia magellanica Lam. Family: Onagraceae Common Name(s): earring flower Synonym(s): Fuchsia gracilis Lindl. hardy fuchsia Fuchsia macrostemma Ruiz & Pav. kulapepeiao lady's eardrops Assessor: Chuck Chimera Status: Assessor Approved End Date: 9 Jul 2021 WRA Score: 18.0 Designation: H(HPWRA) Rating: High Risk Keywords: Smothering Shrub, Environmental Weed, Self-Compatible, Spreads Vegetatively, Bird- Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) y 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n Creation Date: 9 Jul 2021 (Fuchsia magellanica Lam.
    [Show full text]
  • Kent County Council Animal and Plant Health Emergency
    OFFICIAL Animal and Plant Health Emergency Plan PUBLIC VERSION (contact details removed) Date October 2019 Version 1.0 Review date October 2021 Classification OFFICAL PR Number PR-?? All enquiries relating to this document should be sent to: Kent Resilience Team The Godlands Straw Mill Hill Tovil Maidstone Kent ME15 6XB Tel: 01622 212 409 E-mail: [email protected] OFFICIAL Page 1 of 132 KRT site/ Local Topic – KRF Protocols / Animal and Plant Health Emergency Plan OFFICIAL Page intentionally left blank OFFICIAL Page 2 of 132 KRT site/ Local Topic – KRF Protocols / Animal and Plant Health Emergency Plan OFFICIAL Issue and Review Register Summary of changes Version number & date Approved by Version 2: Complete re-draft Tony Harwood: Resilience and Emergencies Manager N/A May 2016 New Appendix N Mark Norfolk: Operations Manager – Mike Overbeke: Group Trading Standards Head Public Protection ‘Draft’ watermark removed from risk N/A September 2016 Tony Harwood assessment 2017 Update N/A May 2017 Tony Harwood 2019 Update 1.0 June 2019 Tony Harwood Tony Harwood: Resilience and Conversion to Multi-agency Plan 1.0 October 2019 Emergency Planning Manager Compiled by: Date: October 2019 Name: Louise Butfoy Role: Project Officer Organisation: KCC Resilience and Emergency Planning Service Approved by: Date: October 2019 Name: Tony Harwood Role: Resilience and Emergency Planning Manager Organisation: KCC Growth, Environment and Transport OFFICIAL Page 3 of 132 KRT site/ Local Topic – KRF Protocols / Animal and Plant Health Emergency Plan OFFICIAL
    [Show full text]
  • Lepidoptera Checklist Cr1a
    Seznam motýlů České republiky Checklist of Lepidoptera of the Czech Republic (Insecta: Lepidoptera) Zdeněk Laštůvka* & Jan Liška** *Ústav zoologie, rybářství, hydrobiologie a včelařství AF MZLU v Brně Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University of Agriculture and Forestry in Brno **Výzkumný ústav lesního hospodářství a myslivosti Jíloviště-Strnady Forestry and Game Management Research Institute Jíloviště-Strnady 1 Úvodm Předložený seznam přináší aktuální přehled druhů motýlůČeské republiky. Zahrnuje druhy v současnosti nebo minulosti dlouhodobě přítomné, migranty, druhy s nestálým nebo nepravidelným výskytem i druhy synantropní. Ze seznamu jsou naopak vyloučeny druhy uváděné na základě chybného určení, druhy, jejichž výskyt není spolehlivě doložen a ojedinělé nálezy zavlečených jedinců cizích druhů bez následného vzniku trvalých populací. UUUSeznam vychází z katalogů motýlů Moravy a české části Slezka (Laštůvka, 1993) a Čech (Novák & Liška, 1997), resp. celé České republiky (Laštůvka, 1998), přičemž jsou zohledněny systematické a nomenklatorické změny, ke kterým od vydání těchto publikací došlo. V zájmu přesnějšího vymezení dosud známého rozšíření v České republice jsou označeny druhy, jejichž známý výskyt je omezen jen na území termofytika nebo oreofytika. UUUPoznámky k výskytu některých druhů doplnili a tím k co neúplnější podobě tohoto seznamu přispěli pánové V. Bělín, J. Bezděk, T. Dobrovský, M. Dvořák, G. Elsner, V. Elsner, A. Gottwald, F. Gregor, V. Hula, M. Janovský, J. Jaroš, T. Jirgl F. Kopeček, J. Korynta, T. Kuras, A. Laštůvka, J. Marek, L. Maršík, J. Němý, I. Novák, M. Petrů, P. Potocký, † D. Povolný, J. Procházka, J. Sitek, J. Skyva, V. Štolc, J. Šumpich, J. Uřičář, J. Vávra, V. Vrabec, M. Žemlička a další entomologové. K některým taxonomickým a nomenklatorickým problémům se laskavě vyjádřili J.
    [Show full text]