Lithographus, an Abundant Arthropod Trackway from the Cretaceous Haenam Tracksite of Korea Nicholas J

Total Page:16

File Type:pdf, Size:1020Kb

Lithographus, an Abundant Arthropod Trackway from the Cretaceous Haenam Tracksite of Korea Nicholas J This article was downloaded by: [Pukyong National University] On: 22 March 2012, At: 02:37 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Ichnos: An International Journal for Plant and Animal Traces Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gich20 Lithographus, an Abundant Arthropod Trackway from the Cretaceous Haenam Tracksite of Korea Nicholas J. Minter a , Martin G. Lockley b , Min Huh c , Koo-Geun Hwang c & Jeong Yul Kim d a Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada b Dinosaur Tracks Museum, University of Colorado, Denver, Colorado, USA c Faculty of Earth Systems and Environmental Sciences and Korea Dinosaur Research Center, Chonnam National University, Gwangju, Korea d Department of Earth Science Education, Korea National University of Education, Cheongwon, Korea Available online: 19 Mar 2012 To cite this article: Nicholas J. Minter, Martin G. Lockley, Min Huh, Koo-Geun Hwang & Jeong Yul Kim (2012): Lithographus, an Abundant Arthropod Trackway from the Cretaceous Haenam Tracksite of Korea, Ichnos: An International Journal for Plant and Animal Traces, 19:1-2, 115-120 To link to this article: http://dx.doi.org/10.1080/10420940.2011.625756 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Ichnos, 19:115–120, 2012 Copyright c Taylor & Francis Group, LLC ISSN: 1042-0940 print / 1563-5236 online DOI: 10.1080/10420940.2011.625756 Lithographus, an Abundant Arthropod Trackway from the Cretaceous Haenam Tracksite of Korea Nicholas J. Minter,1 Martin G. Lockley,2 Min Huh,3 Koo-Geun Hwang,3 and Jeong Yul Kim4 1Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 2Dinosaur Tracks Museum, University of Colorado, Denver, Colorado, USA 3Faculty of Earth Systems and Environmental Sciences and Korea Dinosaur Research Center, Chonnam National University, Gwangju, Korea 4Department of Earth Science Education, Korea National University of Education, Cheongwon, Korea first considered to be those of swimming sauropods (Lee Trackways ascribed to Lithographus hieroglypichus and at- and Huh, 2002; Thulborn, 2004; Lee and Lee, 2006) but tributed to pterygote insects are described from the Cretaceous later reinterpreted as large ornithopod undertracks caused by Uhangri Formation of Korea. The locality is part of the Haenam progression over unusual substrates (Hwang et al., 2008; Song, Tracksite at the Uhangri Dinosaur Museum Complex, which is 2010). The site has also produced the world’s largest pterosaur famous for dinosaur, pterosaur and bird tracks. This represents the first report of the arthropod trackway Lithographus from tracks, assigned to the ichnogenus Haenamichnus (Lockley the Cretaceous of Korea. The trackways are preserved in cherty et al., 1997; Hwang et al., 2002) and trackways (Uhangrichnus mudstones that formed in the margins of an alkaline lake in the chuni and Hwangsanipes choughi) attributed to birds with vicinity of active volcanoes. Numerous trackways are preserved at webbed feet (Yang et al., 1995). a single horizon. This probably reflects a brief period of exposure In addition, the site reveals a single horizon with a high of balanced-fill lake margin sediments, which provided a window of opportunity for the production and preservation of trackways density of arthropod trackways. This material has previously of insects that inhabited the region rather than a sudden influx of only been illustrated briefly and without detailed comment. insects into the area related to volcanism and a productivity bloom. The first reports and illustrations of the material appeared in an unpublished research report (Huh et al., 1998) compiled at Keywords Arthropod, Continental, Ichnology, Insect, Lake margin, the time the site was being excavated prior to construction of Trackway the Uhangri Dinosaur Museum Complex. Subsequently, Hwang et al. (2002, fig. 3) published a photograph of one of these trackways but did not assign it to any ichnotaxon. No other INTRODUCTION description of these trackways exists, and they have not been The tracksite locality at the Uhangri Dinosaur Museum assigned to an appropriate ichnotaxon. Herein, we provide the Downloaded by [Pukyong National University] at 02:37 22 March 2012 Complex in Haenam-gun County (Figs. 1A–C), situated in first detailed description of these trackways and discuss their the Haenam Basin, is one of the most interesting vertebrate paleoecological significance. tracksites in Asia. In 1998 it was designated as Haenam Tracksite Natural Monument No. 394. The track-bearing units, occurring at several levels in the Uhangri Formation, have GEOLOGICAL SETTING been intensively studied and have produced abundant tracks The Haenam tracksite locality occurs within the Uhangri of dinosaurs, pterosaurs and birds. Most dinosaur tracks have Formation, which is the middle unit of the Haenam Group been attributed to the ichnogenus Caririchnium (Hwang, 2001). in the Haenam Basin of Korea. The Uhangri Formation is There has also been heated debate about some unusual footprints underlain by an andesitic tuff with andesite intrusions and flows and is overlain by the Hwangsan Tuff and Jindo Rhyolite (Lee and Lee, 1976; Chun and Chough, 1995; Hwang et al., 2008). Radiometric dating of tuffs above and below the Uhangri Address correspondence to Nicholas J. Minter, Department of Geological Sciences, University of Saskatchewan, 114 Sci- Formation places age constraints of 96 to 81 Ma (mid- ence Place, Saskatoon, Saskatchewan, S7N 5E2, Canada. E-mail: Cenomanian to Early Campanian) on the trace fossil-bearing [email protected] sequence (Moon et al., 1990; Kim et al., 2003). 115 116 N. J. MINTER ET AL. FIG. 1. A: Location of the Haenam tracksite at the Uhangri Dinosaur Museum Complex (black rectangle). B: Map of the study locality at the Uhangri Dinosaur Downloaded by [Pukyong National University] at 02:37 22 March 2012 Museum Complex. C: Linear outcrop of the Lithographus-bearing layer (stippled, at half scale) parallel to interpretative trail boardwalk and viewing platform (in black). Details of west and east outcrops are also shown with locations of approximately 80 conspicuous Lithographus trackways and those from which replicas (R) were obtained through molding. D: Schematic stratigraphic section of the Upper Cretaceous Uhangri Formation. Lithographus trackways occur at a single horizon and dinosaur, pterosaur, and bird tracks have been found in three layers. A and D redrawn after Hwang et al. (2002). The sedimentology of the Uhangri Formation was described Vertebrate tracks occur at three horizons in the study section. in detail by Chun and Chough (1995). It consists mainly of The most abundant vertebrate tracks occur in the lowermost an epiclastic sequence of conglomerates, sandstones, cherty of these horizons (Figs. 1D, 2A), which consists of laminated mudstones, black shales and volcaniclastics. The upper part black shales with plants and nonmarine ostracods. This is consists of laminated dark gray to black shale, crudely stratified overlain by a unit of convoluted sandstones/cherty mudstones sandstone, convoluted sandstone/cherty mudstone and massive (Figs. 1D, 2; facies S/M2 of Chun and Chough, 1995). This sandstone (Chun and Chough, 1995). Tuffaceous sandstones facies consists of couplets of sandstone and cherty mudstone also occur within the study section at the Uhangri Dinosaur with transitional boundaries between the sandstone and base Museum Complex (Fig. 1D). of the cherty mudstone and sharp upper boundaries (Fig. 2B). CRETACEOUS LITHOGRAPHUS FROM KOREA 117 commonly alkaline or saline and chemically stratified (Bohacs et al., 2000), and the lake waters at the time of deposition of the Haenam arthropod trackway-bearing unit are inferred to have been alkaline and saturated with dissolved silica from the nearby volcanism (Chun and Chough, 1995). The sandstones in the sandstone/cherty mudstone couplets are interpreted to have been deposited by density flows, and such perturbations are suggested to have disrupted the chemical balance of the lake water, which resulted the precipitation of silica in the cherty mudstones (Chun and Chough, 1995). Associated symmetrical ripple marks indicate wave action and that the water was shallow. The single horizon with arthropod trackways suggests that emplacement of the trackways was enabled by temporary exposure of the lake margin sediment. The lack of desiccation features indicates that exposure was probably only brief and is consistent with a balanced-fill lake. SYSTEMATIC ICHNOLOGY The
Recommended publications
  • Pterosaur Distribution in Time and Space: an Atlas 61
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • Lower Cretaceous Avian-Dominated, Theropod
    Lower cretaceous avian-dominated, theropod, thyreophoran, pterosaur and turtle track assemblages from the Tugulu Group, Xinjiang, China: ichnotaxonomy and palaeoecology Lida Xing1,2, Martin G. Lockley3, Chengkai Jia4, Hendrik Klein5, Kecheng Niu6, Lijun Zhang7, Liqi Qi8, Chunyong Chou2, Anthony Romilio9, Donghao Wang2, Yu Zhang2, W Scott Persons10 and Miaoyan Wang2 1 State Key Laboratory of Biogeology and Environmental Geology, China University of Geoscience (Beijing), Beijing, China 2 School of the Earth Sciences and Resources, China University of Geoscience (Beijing), Beijing, China 3 Dinosaur Trackers Research Group, University of Colorado at Denver, Denver, United States 4 Research Institute of Experiment and Detection of Xinjiang Oil Company, PetroChina, Karamay, China 5 Saurierwelt Paläontologisches Museum, Neumarkt, Germany 6 Yingliang Stone Natural History Museum, Nan’an, China 7 Institute of Resources and Environment, Key Laboratory of Biogenic Traces & Sedimentary Minerals of Henan Province, Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Henan Polytechnic University, Jiaozuo, China 8 Faculty of Petroleum, China University of Petroleum (Beijing) at Karamay, Karamay, China 9 School of Biological Sciences, The University of Queensland, Brisbane, Australia 10 Mace Brown Museum of Natural History, Department of Geology and Environmental Geosciences, College of Charleston, Charleston, United States ABSTRACT Rich tetrapod ichnofaunas, known for more than a decade, from the Huangyangquan Reservoir (Wuerhe District, Karamay City, Xinjiang) have been an abundant source Submitted 10 January 2021 of some of the largest Lower Cretaceous track collections from China. They originate Accepted 26 April 2021 from inland lacustrine clastic exposures of the 581–877 m thick Tugulu Group, 28 May 2021 Published variously divided into four formations and subgroups in the northwestern margin of Corresponding author the Junggar Basin.
    [Show full text]
  • Ichnotaxonomy of the Eocene Green River Formation
    Ichnotaxonomy of the Eocene Green River Formation, Soldier Summit and Spanish Fork Canyon, Uinta Basin, Utah: Interpreting behaviors, lifestyles, and erecting the Cochlichnus Ichnofacies By © 2018 Joshua D. Hogue B.S. Old Dominion University, 2013 Submitted to the graduate degree program in Geology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science. Chair: Dr. Stephen T. Hasiotis Dr. Paul Selden Dr. Georgios Tsoflias Date Defended: May 1, 2018 ii The thesis committee for Joshua D. Hogue certifies that this is the approved version of the following thesis: Ichnotaxonomy of the Eocene Green River Formation, Soldier Summit and Spanish Fork Canyon, Uinta Basin, Utah: Interpreting behaviors, lifestyles, and erecting the Cochlichnus Ichnofacies Chair: Dr. Stephen T. Hasiotis Date Approved: May 1, 2018 iii ABSTRACT The Eocene Green River Formation in the Uinta Basin, Utah, has a diverse ichnofauna. Nineteen ichnogenera and 26 ichnospecies were identified: Acanthichnus cursorius, Alaripeda lofgreni, c.f. Aquatilavipes isp., Aulichnites (A. parkerensis and A. tsouloufeidos isp. nov.), Aviadactyla (c.f. Av. isp. and Av. vialovi), Avipeda phoenix, Cochlichnus (C. anguineus and C. plegmaeidos isp. nov.), Conichnus conichnus, Fuscinapeda texana, Glaciichnium liebegastensis, Glaroseidosichnus ign. nov. gierlowskii isp. nov., Gruipeda (G. fuenzalidae and G. gryponyx), Midorikawapeda ign. nov. semipalmatus isp. nov., Planolites montanus, Presbyorniformipes feduccii, Protovirgularia dichotoma, Sagittichnus linki, Treptichnus (T. bifurcus, T. pedum, and T. vagans), and Tsalavoutichnus ign. nov. (Ts. ericksonii isp. nov. and Ts. leptomonopati isp. nov.). Four ichnocoenoses are represented by the ichnofossils—Cochlichnus, Conichnus, Presbyorniformipes, and Treptichnus—representing dwelling, feeding, grazing, locomotion, predation, pupation, and resting behaviors of organisms in environments at and around the sediment-water-air interface.
    [Show full text]
  • Stone Flowers Explained As Dinosaur Undertracks: Unusual Ichnites from the Lower Cretaceous Jiaguan Formation, Qijiang District, Chongqing, China
    第 34 卷 第 5 期 地 质 通 报 Vol.34 No.5 2015 年 5 月 GEOLOGICAL BULLETIN OF CHINA May, 2015 Stone flowers explained as dinosaur undertracks: unusual ichnites from the Lower Cretaceous Jiaguan Formation, Qijiang District, Chongqing, China 石花形恐龙幻迹:中国重庆綦江区下白垩统夹关组的 罕见遗迹化石 XING Lida1, LOCKLEY Martin G.2, WANG Fengping3, HU Xufeng4, LUO Shunqing4, ZHANG Jianping1, DU Wei5, Persons Ⅳ W. Scott6, XIE Xianming3, DAI Hui4, WANG Xunqian4 邢立达 1,洛克利 马丁 G.2,王丰平 3,胡旭峰 4,罗顺清 4,张建平 1,杜 伟 5, 培森四世W. 斯考特 6,谢显明 3,代 辉 4, 王荀仟 4 1. School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; 2. Dinosaur Trackers Research Group, University of Colorado Denver PO Box 173364, Denver, CO 80217, USA; 3. Qijiang District Bureau of Land Resources, Chongqing 401420, China; 4. No.208 Hydrogeological and Engineering Geological Team, Chongqing Bureau of Geological and Mineral Resource Exploration and Development, Chongqing 400700, China; 5. Chongqing Beibei Bureau of Land and Resources, Chongqing 400700, China; 6. Department of Biological Sciences, University of Alberta, 11145 Saskatchewan Drive, Edmonton Alberta T6G 2E9, Canada 1.中国地质大学(北京)地球科学与资源学院,北京 100083; 2.美国科罗拉多大学丹佛分校恐龙追踪者团队,美国 丹佛 80217; 3.重庆市綦江区国土资源和房屋管理局,重庆 401420; 4.重庆市地质矿产勘查开发局208水文地质工程地质队,重庆400700; 5.重庆市北碚区国土资源管理分局,重庆 400700; 6.阿尔伯塔大学生物科学系,加拿大 埃德蒙顿 T6G 2E9 Xing L D, Lockley M G, Wang F P, Hu X F, Luo S Q, Zhang J P, Du W, Persons Ⅳ W S, Xie X M, Dai H, Wang X Q. Stone flowers explained as dinosaur undertracks: unusual ichnites from the Lower Cretaceous Jiaguan Formation, Qijiang Dis⁃ trict, Chongqing, China.
    [Show full text]
  • A Global Overview of Pterosaur Ichnology: Tracksite Distribution in Space and Time 185
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • Late Cretaceous Ornithopod-Dominated, Theropod, and Pterosaur Track Assemblages from the Nanxiong Basin, China: New Discoveries, Ichnotaxonomy, and Paleoecology
    Palaeogeography, Palaeoclimatology, Palaeoecology 466 (2017) 303–313 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Late Cretaceous ornithopod-dominated, theropod, and pterosaur track assemblages from the Nanxiong Basin, China: New discoveries, ichnotaxonomy, and paleoecology Lida Xing a,b,⁎,MartinG.Lockleyc, Daliang Li b, Hendrik Klein d,YongYee, W. Scott Persons IV f, Hao Ran g a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China b School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China c Dinosaur Trackers Research Group, University of Colorado Denver, PO Box 173364, Denver, CO 80217, USA d Saurierwelt Paläontologisches Museum, Alte Richt 7, D-92318 Neumarkt, Germany e Zigong Dinosaur Museum, Zigong, Sichuan, China f Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada g Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guilin 541004, China article info abstract Article history: Re-examination of the Late Cretaceous Yangmeikeng tracksite, in the Zhutian Formation (Nanxiong Group) near Received 23 February 2016 Nanxiong, Guangdong Province, China, has led to the documentation of over 30 vertebrate tracks. The track as- Received in revised form 20 November 2016 semblage is dominated by large and small ornithopod tracks. The larger ornithopod tracks have been assigned Accepted 21 November 2016 to Hadrosauropodus nanxiongensis and Hadrosauropodus isp. indet. The smaller ornithopod tracks are consistently Available online 22 November 2016 incomplete, showing only three pes digit traces, without heel or manus impressions.
    [Show full text]
  • (2007) Epithermal Systems of the Seongsan District, South Korea An
    This file is part of the following reference: Bowden, Christopher David (2007) Epithermal systems of the Seongsan district, South Korea an investigation on the geological setting and spatial and temporal relationships between high and low sulfidation systems. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/2040 Chapter 1 Chapter 1: Introduction to the epithermal systems of the Seongsan district, South Korea Bowden, C.D. Chapter 1: Introduction 1.1 INTRODUCTION The primary objective of this project is to investigate the geological setting and the spatial and temporal relationships between the distinctly different epithermal systems in the Seongsan district of South Korea. Detailed research aims are listed in Section 1.2 after some background information on selected issues for epithermal systems is presented and discussed. 1.1.1 Epithermal Au-Ag deposits and their related hydrothermal systems Epithermal Au-Ag deposits are an important source of precious metals, particularly within Phanerozoic orogenic belts of the circum-Pacific and southern Europe (Fig. 1-1). The large size and/or high grade of some epithermal Au-Ag deposits (Fig. 1-2) ensure that they continue to be an important exploration target. In addition to Au and Ag, epithermal deposits can also be an important source of base metals and clay-sulfate mineralisation (Kitagawa, 1999; Cooke & Simmons, 2000; Einaudi et al., 2003). Epithermal deposits are generally hosted in subaerial volcanic rocks within both island-arc and continental-arc settings (Cooke & Simmons, 2000; Sillitoe & Hedenquist, 2003; Simmons et al., 2005), and are generally inferred to have formed at relatively shallow levels in the crust (ca.
    [Show full text]
  • With Special Reference to Dinosaur-Dominated Ichnofaunas: Towards a Synthesis Masaki Matsukawa A,*, Martin Lockley B, Li Jianjun C
    Cretaceous Research 27 (2006) 3e21 Cretaceous terrestrial biotas of East Asia, www.elsevier.com/locate/CretRes with special reference to dinosaur-dominated ichnofaunas: towards a synthesis Masaki Matsukawa a,*, Martin Lockley b, Li Jianjun c a Department of Environmental Sciences, Tokyo Gakugei University, Tokyo 184-8501, J apan b Dinosaur Tracks Museum, University of Colorado at Denver, P .O. Box 173364, Denver, CO 80217-3364, USA c Department of P aleontology, Beijing Natural History Museum, 126 Tian Qiao South Street, Beijing 100050, China Received 22 July 2004; accepted in revised form 20 October 2005 Available online 10 February 2006 Abstract This paper represents an ##editorial$$ introduction to this issue, which is one of two special issues of Cretaceous Research on the geology and paleontology of East Asia. This paper makes special reference to the results of j oint Japanese, Chinese, and North American expeditions that investigated more than 70 fossil footprint sites and other fossiliferous localities in China, Japan, Korea, Laos, Mongolia, and Thailand. More than 50 of the track sites are considered Cretaceous in age, though in some cases dating is uncertain. We herein present summaries of selected im- portant sites not previously described in detail b ased on new maps, tracings, and replicas of representative type specimens and related materials that have b een assembled in accessible reference collections. Other sites are described in detail elsewhere in this issue and are placed in broader paleoenvironmental context in conjunction with p apers that deal with floras, invertebrate and vertebrate b ody fossils, p aleoecosystem r econstruc- tion, and their stratigraphic, sedimentological, and tectonic settings in the second of the two special issues.
    [Show full text]
  • New Pterosaur Tracks (Pteraichnidae) from the Late Cretaceous Uhangri Formation, Southwestern Korea
    Geol. Mag. 139 (4), 2002, pp. 421–435. © 2002 Cambridge University Press 421 DOI: 10.1017/S0016756802006647 Printed in the United Kingdom New pterosaur tracks (Pteraichnidae) from the Late Cretaceous Uhangri Formation, southwestern Korea KOO-GEUN HWANG*†, MIN HUH*, MARTIN G. LOCKLEY‡, DAVID M. UNWIN§ & JOANNA L. WRIGHT‡ *Faculty of Earth Systems and Environmental Sciences & Dinosaur Research Center, Chonnam National University, Kwangju 500-757, Korea ‡Department of Geology, University of Colorado at Denver, PO Box 173364, Denver, CO 80217, USA §Institut für Paläontologie, Museum für Naturkunde, Zentralinstitut der Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (Received 27 February 2001; revised version received 20 November 2001; accepted 4 March 2002) Abstract – Numerous footprints of dinosaurs, pterosaurs and birds, together with arthropod tracks, have been discovered in the upper Cretaceous Uhangri Formation which crops out along the south- western coastline of South Korea. This ichnofauna contains the first pterosaur tracks reported from Asia. The digitigrade tridactyl manus impressions exhibit features of a typical pterosaur hand print. The pes impressions, however, show features that are different from pterosaur footprints reported pre- viously: there is no visible trace of impressions of individual digits, and the toes are triangular or rounded in shape distally without distinct claw impressions. As these features clearly distinguish the Uhangri tracks from Pteraichnus and Purbeckopus, we assign them to a new genus, Haenamichnus which accommodates the new ichnospecies, Haenamichnus uhangriensis. The prints are five to six times larger than those of Pteraichnus, and are currently the largest pterosaur ichnites known. They show virtually no trace of the 5th phalange of the pes, indicating that they were made by pterodactyloids; moreover, features of the tracks suggest that they can be attributed to azhdarchids, the commonest pterosaur of the Late Cretaceous.
    [Show full text]
  • U-Pb Age Dating and Geochemistry of Soft-Sediment Deformation
    minerals Article U-Pb Age Dating and Geochemistry of Soft-Sediment Deformation Structure-Bearing Late Cretaceous Volcano-Sedimentary Basins in the SW Korean Peninsula and Their Tectonic Implications Kyoungtae Ko 1, Sungwon Kim 1,* and Yongsik Gihm 2 1 Geology Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 124, Gwahang-no, Yuseong-gu, Daejeon 34132, Korea; [email protected] 2 School of Earth System Science, Kyungpook National University, Daegu 41566, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-42-868-3501 Abstract: Cretaceous volcano-sedimentary basins and successions in the Korean Peninsula are located along NE-SW- and NNE-SSW-trending sinistral strike–slip fault systems. Soft-sediment deformation structures (SSDS) of lacustrine sedimentary strata occur in the Wido, Buan, and Haenam areas of the southwestern Korean Peninsula. In this study, systematic geological, geochronological, and geochemical investigations of the volcanic-sedimentary successions were conducted to constrain the origin and timing of SSDS-bearing lacustrine strata. The SSDS-bearing strata is conformably underlain and overlain by volcanic rocks, and it contains much volcaniclastic sediment and is interbedded with tuffs. The studied SSDSs were interpreted to have formed by ground shaking during syndepositional earthquakes. U-Pb zircon ages of volcanic and volcaniclastic rocks within the studied volcano- Citation: Ko, K.; Kim, S.; Gihm, Y. U-Pb Age Dating and Geochemistry sedimentary successions were ca. 87–84 Ma, indicating that active volcanism was concurrent with of Soft-Sediment Deformation lacustrine sedimentation. Geochemical characteristics indicate that these mostly rhyolitic rocks are Structure-Bearing Late Cretaceous similar to subduction-related calc-alkaline volcanic rocks from an active continental margin.
    [Show full text]
  • Indicators of Propagation Direction and Relative Depth in Clastic Injectites: Implications for Laminar Versus Turbulent Flow Processes
    Cobain et al. Indicators of propagation direction and relative depth in clastic injectites: Implications for laminar versus turbulent flow processes S.L. Cobain†, J. Peakall, and D.M. Hodgson School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK ABSTRACT injectites are very different from injectites and internal flow processes in operation during that reach the surface and produce extru- sand injection. We thus address the following fun- Clastic injectites are widely recognized dites. Surface-linked injectites are associated damental questions: (1) Can injection propaga- in deep-water stratigraphic successions, al- with open conduits where a greater fraction tion direction be determined using margin struc- though their sediment transport processes, of carrier fluid to particles can be accom- tures?; (2) Can injection depth be estimated?; and propagation direction, and depth of injec- modated, enabling highly turbulent, lower- (3) What flow processes occur during injection? tion are poorly constrained. Understanding concentration flows. These questions support a discussion on sand how they form is important, as injectites injectite emplacement mechanisms, including are increasingly being recognized as signifi- INTRODUCTION the current debate on laminar versus turbulent cant components of sedimentary basin fills, flow and how this controls differences in injectite yet are not predicted by standard sedimen- Clastic injectites have been documented in geometries and surface features. tary facies models. Here, analysis of features many sedimentary environments (see Hurst on the margins of exhumed clastic sills and et al., 2011; Ross et al., 2011, and references SOURCES OF OVERPRESSURE, dikes, and clasts within them, enables their therein). Interest in injectites has increased as TRIGGER MECHANISMS, AND genesis to be determined.
    [Show full text]
  • Article a Reassessment of the Pteraichnus
    Journal of Vertebrate Paleontology 29(2):487–497, June 2009 # 2009 by the Society of Vertebrate Paleontology ARTICLE A REASSESSMENT OF THE PTERAICHNUS ICHNOSPECIES FROM THE EARLY CRETACEOUS OF SORIA PROVINCE, SPAIN BA´ RBARA SA´ NCHEZ-HERNA´ NDEZ, ANDREW G. PRZEWIESLIK, and MICHAEL J. BENTON* University of Bristol, Department of Earth Sciences, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, U.K., [email protected] ABSTRACT—The Cameros Basin, distributed over Soria, La Rioja and Burgos provinces in NE Spain, is apparently one of the richest sources of pterosaur footprints, with six ichnospecies of Pteraichnus named to date. The Cameros Basin exposes 9 km thickness of Late Jurassic and Lower Cretaceous continental deposits that are richly fossiliferous. Of the six alloformations in this sequence, the Hue´rteles Alloformation is a succession of alluvial siliclastics and lacustrine lime- stones dated as Tithonian-Berriasian in age. The pterosaur footprints are described, and compared with related forms from elsewhere. Of the six ichnospecies named from the Cameros Basin, Pteraichnus palacieisaenzi and P. cidacoi are nomina dubia because they lack holotypes housed in a public institution. Further, P. manueli and P. vetustior cannot be characterized at present, and so are also regarded as nomina dubia until diagnostic characters may be identified. P. longipodus and P. parvus are probably valid taxa, distinct from P. saltwashensis and P. stokesi, named previously from North America. Of the four supposed pterosaurian ichnogenera, Pteraichnus is valid, and Purbeckopus and Haenamich- nus may be valid, but Agadirichnus is a nomen dubium because it is poorly characterized and lacks type specimens.
    [Show full text]