KR-95(C)-1 (KIGAM Research Report)

• i£ £ % W % Research on the Biostratigraphy

RECEIVE-. AUG 0 6 1938 OSTI

m % m Korea Institute of Geology, Mining & Materials

IRTWUH Bf QMS B0CBHES! IS UBUIHIEI Bma wa mwna ^ KR-95(C)-1 (K1GAM Research Report)

• * £ m W % Research on the Biostratigraphy

ffi % PJr Korea Institute of Geology, Mining & Materials DISCLAIMER

Portions of this document may be illegible in electronic image products, images are produced from the best available original document. ^7]

m*\, ^4s

Stratigraphy and Paleontology of the Sedimentary Strata in the Youngdong Basin Sung Ja Choi, Yoo Bong Kim, Bok Chul Kim

Abstract The Yongdong Basin developed at the eastern margin of the Okcheon Orogenic Belt is in contact with the Yongnam Massif by the Yongdong Fault. This study deals with tectonic setting, sedimentological, paleontological study of the Yongdong Basin. Concerned with the formation of the basin, left lateral movement of the Ogdong and Youngdong faults gave a major role for the developement of the Youngdong Basin. The Yongdong Basin is tectonically subdivided into three parts (north, center, and south) on the basis of bedding form line and fracture patterns. Sedimentological study is concentrated in the southern part of the basin in order to establish stratigraphy in this area. The Mangyeri Formation is characterized by the deposit of debris flow and hyperconcentrated flow deposts developed at the steep gradient fan-delta slope and on alluvial fan along the southern basin margin. On the other hand, the formation in northern part of the basin is deposited in alluvial fan and braided rivers. The Gadongri Formation is mostly deposited by the process of turbidity current and density under current in lacustrine environment, and the Dongjongri Formation comprises alluvial fan and braided river sediments which mostly

— 1 — deposited by debris flow, hyperconcentrated flood flow, sheetflood and stream flow. For paleontology, Ostracodes and charophytes are yielded from the Gadongri, Dongjeongri and Sonyoudong formations. On the basis of fossils, the Dongjongri formation is correlated with the Hjig Formation of the Euisung basin, the Sonyoudong formation is correlated with the Songnaedong and Geonchunri formations of the Milyang basin. Consequently, the Mangyeri and Gadongri formations are correlated with the Sindong Group, the Dongjongri and Sonyoudong formations are correlated with the Hayang Group.

-2- 4 i 4- 4 y...... s

41 2 # ...... 7 2-1. M44...... 9 2-2. 7>444 ...... 11 2-3. #444...... 12 2-4. 13 2-5. 4d-n'#4...... * ...... 14 2-6. €444...... 14 2- 7. € ##4...... 15

4| 3 € 4€fa4 ##?4 ...... 16 3- 1. 16 3-2. 49 ##9-4 18 3-3. 49 4#94 18 3-4. 9-2:4 MS# ##...... 18 3- 5. 5)49- €€44 ...... 19

4i 4 y- 4^) ^ 44#y...... 2i 4- 1. €4144 ...... 24 4- 2. 4444...... 33

4| 5 € JL4#y?4 4€4 4 ...... 47 5- 1. 4 #4 5-1-1. ^ 44M ...... 49 5-1-2. €4441 53

-3- 5-2. 3444 ...... 54 5-2-l. 55 5-2-2. 55 5-2-3. 57

*8 6 3-4 # ...... 61 tsM ...... 63 Plates ...... 69 Appendix 75

— 4 — 41 1 # 4 #

54##45 1554# 544 44543- 4#45 4 #4 X5 4#4 54#44# #5 145# 444 3# 5X#3 $1#. 4€# 444 44 ^ ### ll#7fl ##1 ixx X45 4# 54 X4 45454 44 455, 444444 &5X 454 444 4454 ## 544 454 445444 4s 44# 7}5#4 #xx*l 44 44 ##x4 445 4445 4 $144 45 5X# 13# 45# 5 $15 4XX ####. x# 545X45 444 X445454 5 M44 ##54 5X43. 45 45 444 4, 44444 445 54 44 4#44 54 4 #4x4 4#455 #!#5 4 444 5-8.# 4&# 45# 4xx 3##. 34# 4544 4# X4454 #4 4# #55 4 444 4# X5&4544# 554XX 5=34 4 &X4, 454 4^.4 4#5 #5 544 4# #4#4, 5&4 5 #4 #47} ###711 1*343 #4 (Cheong, 1987; Chun, 1990; Chun and Chough, 1992; Chun and Kim, 1995; Chun et al., 1993, 1994; Kim et al, 1994; Lee, 1990; Lee and Paik, 1989, 1990; Rhee et al. 1993; Ryang, 1994). #545 44544 454-# #4# 4# 45# 45 4, 4# 444 4# #4#4# 5#4 4444 ##44 #5 X54 #4 4# #57} ###4 1*343. #X4, 4# #4 4## 44# 5 #5 55544 4# 4#### 4-X7} #4#4 X44x #4. 54 554## 4#4 #444544 45 S* 1#7}S7} ?H#^4 4# ##x44x 4# 544# #45444# 457}# 5#7}51 5 5 #4# 454 #x $14. 5# #55 41 #44# 5# ##54 #4#5 #554# 4 44554 4# 4144 3 #4#1 545 ##4, 5454, 4#4 # 414-4# 51 #4 545 5# 4144 #1, 44# # 1# 4- 4# 544 4# 344#15 5##34 4x 4##. 15545 1

-5- 7} ^ SUr 4 # ¥ W ^ •dr TT olr W $ w w -jt* 7F T 3$° Kb fa mini pjfll rt» Jp o| o| nH <=4 tvl mi sp d" 5 * TT T ioT w w w w Tio d * w 'B %p yjo *1 rh *1 o* 8 M M ° ’ j 1 * W TT w 75? -go 7? TT W T W T w -Kb W Op 2 TT d* -p-K ijo» IT fa -Kb Kb b T “ W I '5T 'FT W ojm I & ^ 'RP tfr W W S' W mini oT

T W

tD I Mx* * * s Mx- ja jp ^ ^ Mm >b Mm ofi JsL Jfi, Hu \o flO, si I 2 ns Jb j& ^ 1» Mm £ nib

fr-frit ojm ofi ini - b t o ^ t Hu # ‘ 14 & *r mb xa a? -2* ! rh » l» 3# Mm : # Mm A n& -# rP 0^1 # Ja ob xa " Jfi $ £ W -p Hu -P rnp ns r-U MX Z-N 3L nib M rta g ^ da r& -js xa iup ida TO) \° cB, ofi x Oj. rir IthL ^-zlHlririo I ^ ^ - Hu ofi, ob Mm •(T ! Mi ti|J S S OJ. if- M Jb Jfi # J 0^ I! . _b jfi jd ! ob bfi rbi |o Hu Mx< tHu ^ivinfe-B JRu r& o2, cb j|X< Jgfc -2. ,2. . , nr Mm >. ‘ Hm mb 2 cb it ^ t ofi, A, s? 6 Ik

Mm ofi ob r|r da ofi, ns I & n» rp 8 aa Mm jH> ofi 2 Jfi

2 % $ itiB n 5 $ AL I i : ofi ^(9861) H4 nr ch rbi r£ *fi jfi MX •& * § * rfa 4: ^ £o Mm MX1 $ $

MX1 I Jb r-lo: ^ g *(#£-£& ) ns : 41 r-U ^ o Jb cn rnfi m2. t*i Ji $. tiU S -P t JE jHx m&

I >-§• A ja lil w w 0&, n» $ ^ ^2. nh _o oj. JL Mm r-ju MX" nb ^ i i* 2 1$ Mm rf w Jfi- i$ o2 _& i& a Ja «U 0^ da je m& -P S lo mb $ Hijo _o ” Mrt ojM« JE : da rlo oh =b Mx< MX- M JdS r-y mb -^lYlb"nlk mb oh da ns MX* t-X- )3 T lK #k Jb Mu Jfi, Jb Ms a nx -b ±L ji, Hu ° °b 4s S £ J ojx- Jsk 4> 1 Jfi, Mm 3L mU nr |o o^ MX Ja jb W _a w -P $ mb Jb jfi, Mm ofi ot (a-R^-R-|$ jfi, Jfi 4* M &a tS'^-=T r3 da op Jsfc x jfi Mm nr J(s u ist -jl£ i in ^ ns i

I ? § Ja MX1 jfi |o 3. ap 3L ob |3t I Ji 2 Mm I rb 0* o|)l< I mp A MX1 Hu Jfi, Jfi * f M° #n» Jfi IfH* $ J5§2W r|r jp, m2, ■#' 6 Ja HI O. ^ ojm

A ns Jsa mb lo^Hr Jfi *; -* n> ■ nr ojx< xa s

la-oB-te MX" % Jb jS A n» ‘ nr

4. If If -te loir

|4 o? I §S ofi, MX* r& -ia w J$ 2 XI Ha-^ is 4 $ t & id Jfi JE J°fc "k-fofe m w. rir Mn K mb ob LEGEND

VOLCANIC ROCKS

WONCHONR1 FM.

PAEKMASAN SONYUOONG FM FM

DONGJEONCRI FM MYONCNYUNDONG

GADONGRI FM

MANGYERI FM •Unconformity

GRANITE

METASEDIMENTARY ROCKS

OKCHON GROUP

LIMESTONE —Unknown —

GNEISS

Fig. 1. Geologic map of the Youngdong Basin.

-8- #4 444 444 423 aolfe ####3 4# (Chun et al. 1993) 4# #4 4#, 2# $>#<9- #4 W# 442 2#44 $14. 4#4## 7)14# 44#4 4 ### 4 3500 m 4444. 4 #4 4#44# a##^4 #4# 444#4 4444- #3-4 #4

2-1. 444# 4 ## 4##$4 444 44#234, #4 #4 (1969)4 444 ^^4 $14. 4 #2# 424 2444 (1925)4 4 #4# 4#4 444# f^l, #4 n #42# (1/50.000H4# 4 #4# 23, 4#2iH4# 44 4 #4 4#2 4#4$14. #4 #4 (1969m mwm# (1925)4 4n4tf, #44 y#44#4 #24# 444 44-44 #44 #4#4 #5=4# 4444## #444. #44 44 4# 4#5- 44-4 #44# £443. 444a. 4# 44 4 #23, 4 44M# 4444#23 4#4a, 44# 4# 444 #3=4# 4-4 444 #44 44-4# 7}#4#23 44444 (Table 1 #&). a. 4 4##4 M4 (1986)# 4#4## 4#4 44-# 444a, 4# 444 4444-# £4-44 #44#-2.3. #4444. a44 #4 3 444# #4 44## 44 #34# #44 3 444 44*. 4#44* g 44-# £#4-2.3 3=#44, 4#4 444 ^ 44424-4- #44 444- 444 444 4471# a 44#4# a444 4## 2# 4: 4 4 #23 ###$14-. # ## #4 #444#44# 714:44 4444 444444# #4#23 aa $124, 4##4 4##44 4444 444 $1444 # ##23 44-aL $134, a# 4444# #444-714 4 444*11 44-4 44 ##2 $14. ##&4 (1980)# ##2# (1/50,000)44 ##4- 44-a $1# 44444## 4##4 44## #44 #4#

— 9 — Table 1.

£4^-4(1969) ##4-(1974a)a?#, 9-7114(1986) 4#-f(1991) e # & 4 (1995) ##sl# €#s)# ## si #

# # # # #2.el# 44-## ####4###, #### # ai#sM# # #@## 4 # Si # 4#sl# ts-#2!# -g#2!# # 9 si # {l-fMF# # 444# 7*### {14 si# #4 si# 7># si # 4 9- si # 71-ts-bI# #31 si# #31si# #31 si# #31 si# # 31 si # 3-2-3. 1#3154, 1144 (1994)# 4# llllliM #433 111 353 1^114. 135 #14343 #53# 443# 4 4# 4# !!3#4-#7l- 44^33 6>i^4 3-5-3. 4# 134:2. 44. 134## 444 443 4 433 43# 33#33# 4## -5.3. 3343. 434, 444 ##33# 4# 5# ###4435. 3 343 44- # #313# 3434, 34 34 4 544 434 4 4 3# 41# 271-33. ##1 # 44. #, #3 1#14 444 43334# #435. #5## 44# #33# 44, #3. 43-41 444, 34444, 1#1 444 #4 444344 44 90% 44# 4344, 344 444 4°1 3333 1114. 7]3# #444 5 41 3-433 #3 #344. 444, 434 433 44 4 #34 43# 33HM #53# 34# 34# 443, #4, 444, 44, 4 31, 43343 43434 (#3 434#)4 4# #3. 5444, n 44] #44, #344#4 4#4 I5355. 41#33 1314. 7)144 4#53 13jl 4# #3 43# 133, # 1114 441 1443# 414 4#4 44 !#44, 4##4# 414 1 m 41 4# 44 51435 14. 13 3#4 ### 4 550 m 3 #314.

2-2. 7>#4# # ## &#### (1925)4 344# 1# 3!##3 344# # 533, #3 #4 (1969)3 443 3 #5& 11414. ### 43 # €5# (1#14, 1978)4 115# (#3#4 111, 1968)33# 31

-11- 4# A3, 993# (##A4, 1980)4 a)# 7}#e)#A3 #9484. 4994 (1986)# (1925)5) 49 48## *1144 #4418 3}. a]4M## #8844 44 #8 4#A3 #94A 4# #44# A3 94484. A44 #494 (1969)9 841 4 #4 4448# *11 844 tily-A3 988 998# 7}#B)#A3 m^A^, #8 £A>6)]a)2. 8314 #4 • 5)48284 8844 4449 4484 94 449 #4 44, 3=4 4#4 4482# ## A444, £ 44 44 4 444# 7}#e]#A3 #^4 9494 (1969)4 44# 444. 9 ## 494 8314## 444A3 Ss. 8A4, 994 A39 831 4## 9849 4444 #4444 44 444# 347)2 44. # 44# 443 NS4A) N10-35E4 944- 10-45SE4 4A}# 344. 94 9444# #44 888 44444 #44 48#4, te8 m 9 #4 4944 838 a>4#3 94€4. # #4 #4 4444# 3#4 #88 4#44 4 #4 ##44, 4# (ripple mark), 44 (mud crack), 844 (calcareous nodule) #5) #44, 444 4492: #4 49 #444, 8 # 4 444# (calcareous bed)4 ## (burrow) 4 ## #4443 #4 ##44. 4413 # #51 #99 800-900 m 44.

< 2-3. #4 4 # # ## 4##94 414## 4#4 7>4 ^# ^43 #34# 4 #A34, 8994 M4 (1986)# (1925)5) 4 #4##, 4 #4## 44 4#(TO)A3 8 a #711 884 a &9 4#A3 4 A}# 4# 44# (49944 4###)# All44a, 344# #444 4A 3 #4, #44## 41 #484. 883#48 4#4#A3 4948 4 993 #4 4#4| 3884. 9 ## 494 7>#4## 4#4A3 @A 8A4, 7>#4# 48 94 #44 44#4 zM 4 84- 3348 a) 44471 a) 4-4^ 9^.4

-12- # 4*4 44ti3.5 #34-3 $14. 44 33:4# 444 4-4 4 44 $134, ^44 4 20-50 m 443. ##44, 44 43#4 24 # 44, 4144, 44 #35 444 4#4 3447}# 44# 5.4 4. #4 44444^ 4^^-4444 #444 4#35. #42. $1*. 4, #4 #4444# 44444 444#4 44444 #4444# ^ 444 44 #4^3.5 442 44. 4444# #5. 444 44 ^ 44 44, 44, 4444, 44 4 4##4 #444 #44s ^444 ##4% 44. 444 4## 4- 44 243414 #243 4444, ##s# #444 3#44. 44 4## #4, 44444, #44, 444 (#5. 444#), #44, #4, 444 #44, 44 3.71# f* cm-30 cm4 44# 444# 5.44. 44# #5. 444# 5.44 ##4-5.5. 41144243 ###4. # 4 #4 444 4S44, #44 444# 447>4 ^44 4#4, #1 (burrow), #4#44# (rip-up clast), #441 (calcareous nodule) #4 4# ##43 44. #4# ##4# #4444 4444 44s 441 44, 4## £44 4#44 4#4 ##44# 2##3 44. 4# 444#44 ### 44 300 m 44 4#4# 5.44 4#4. #44#4 ### #5 1500 m 5 4*444, 444 44 ##4

4# 34.

2-4. 44## # ## 44## #335 ###£5 4## 4## #4444 4#35 #4 #244 $14. #4# 44##544# N20-45E, 10-30SE4 #4# 344, ###35 7>#4 3A>7> 40-50SE 4 35 #«H4# 4=4# #4. # ## #44# 44# «jg. 441114 #4 44 41444 #, 244-4-4- 4-4414 #44 4#35 #444, #5. 4# #e#4 %## #444 #343 $14. #4 # #4 44# 3 4# 44-4 #444'4444, #4 3#& 7}34 44# #4# 4#

-13- ##*ii4#4, 4## ##44# 4^4444-4 44 ##*i #7}## #25 5.4iH-i4 (epiclastic) 7]#S] 4 4-1" 4 444 #£44- (Chun et al, 1993). # #44 #44 4444-4444 °}#*\] 45714, £ # £## 4444 44 4441 4^Mr #4=4 ##44 4 4-44, 44# #44 4 ##55 #4444 44 ##55 #44# 44 4#444. 4##, 44, #4#4, #1 (mud crack), 4## 4 4 (calcareous nodules) 44 #4, 444 44424 44 #444 # 4 ##44 £ ##44.

2-5. #### mm&m (1925)4 4# #4#4# 4#4#4 444# ##55 4, 4 #£44# 444 4##4 #44 &4# £44 44#4 £7f £5. #£44, 444 #44## 4 #4 2.5. 4444. #4 ¥4 (1969)# 4 ## 4 #4 #4 ##4 #2.5 #-## 4 #4, # #4 # 4# 445. N30W-N10E4 #4=4 20NE £# 10SE4 44# 7>#4. # #44-4# 4-44414 444 #44*. marl, 44, ^ #44-# #4414 £##44-2.5. #444 42.4, 4#4 ##42.5 #4-# a. 44 €4£7> 4=5L# 4# 4-### 44-4 &## 4#4. #4 44- 4M1# #4#4 3 4##7> 4# ##44, ##4 44414# 444 £## 44-44 #4##7> ##42. 44. 4%##, 47]7fl 4# #r#4# 44 4#4 #r#4 44.

2-6. €#4# 4454-44# #44-55 44# 4 ## 444#4 #£4414 #£44. # 4£4# 4## ### ##4# #455 ###2.5 # #4 #^4 ##44, 44 #55# ## 4 ##44 #£44. # #4 #44 #4# N60-70E, 35-50SE44. #44*4# #34-414 #44-# 44-55 #4# 44# 4# 4#44.

— 14 — 2-7. 4### # ## 4#44#44 4-#4 4#4#4# 4-4-4 itu tiii-ss #54s a6.4, 471 &##A# (1925)4 4#4# 4#4 ^#44-. 1##4 M4 (1986)# 4#s4 7i£A>A]. #4 447> 4#3-4 44#4 #44-71] 44W4 44# 44s $i# 44 #7] 44, 44 €4 W4 4# 44#4 4# 4S3. 44, (1925)4 4# 4#ss 44 45.01 44, 4#4# 444 #### 4## W 4 #### 45»1 ^44%S4, 4##44# S444S3 444^4. s44 4##4 (199D# 4##4 ##4 444 4#4# 454 ^ 4, 414444, #!4#4 4###4 4# 44#, s##, 44 44 H714 ##44 44, 44 (#T) A}### g 44#4 #44- 4# #45f4, #14#4- 4#### #4# 4-#4444# 444 4 4 4 (5. 1 42). n44 3#2##4 4# 4##44 444 4444 # 4, 7>#4#4- #44# 44 4# #*H #44 (intrabasinal uncon- formity) 4 4# ^A3 4444. 54 44 #24S $1# 4 ###4 #44#4 44 S 44## s4# 4, 4#### 444# 4444# (sedimentary sequence)# 4#4#4# 444 ##"4414 # 44-4-44#44 444SS4, #44#4 444# 444s %# 4444# (sedimentary sequence)# 4^4 4# 4#4 (drainage basin)# 7>44 4M 4444 4444 444# 444s %l# IS 3 30>, 4###4 #44## 4447V a]5. 4# #444 44€ 4 S3 ##€4. 4-4-A1 #4 2AV414# 4###4- #44##4& 4- # 4#Al 4:45. 4r#4^4. # #4 #4## 7]#s 444# a>4 5E# 4-444 44-4 7># #44-4, *H 5# 444 4-4% s4s 4^44 43H 4 #4 4-S3 444s $V4. 4ss# 4-4#, 44-4-1 #, #4-, 444- 3 4 4-#7> #2 #544.

— 15 — ag 3 a

4 ##44 444 44## 44433 N10-20°E/25-40°SE, £ # NS/25-40°E4 914 (Attitude)S. ¥4 $134 44 (U @)# 444 ## 4 #33 #34-3 $1# 4### (49#4 44 4, 1986)44 34-24 W- NW 344## 444. 344 #44 4 4444 444 444 43. 4# 444# 4# 433 4#4 444 44, 4##44 4# 4444 bedding form line 4 91# 34 (1/54) 44, 49, 44, 4#, 99, 44442 4 4444 9444 3$t4. 3 #4 4##4# htH 4;D4 #49433 9 #4 4" $134, #44 4 ##44 4444 91 (fracture pattern)# 3## 9 $1$14 (Fig. 2).

3-1. 4# #494 4:44444 #24# 44:444 #4 4:4 4#4 #4 4#4 #.$.4# 43i -4 #T3—34-444~4;?l ^444 # 444 924 #49433 #9 $14. 4 94# 4:44#, 7}#4#, 4# #4 4 #33 4 #4 3 $14. 4 #4 bedding form line 491# 4# #49444 349# 434 43 44-# 44# 34 93 $14. 4 4 #494 444# NS, NE, NW #4 44# 94*4 43 #4#43 44 #43$134, 4# 4#4 94 4## 4 43 # 4# 344# 44-4 414M4 4444. #9 #4 444 # 494# 44 3#34 44 ##9-433 4#4444. 4 #4# (N40°E)4 tflsfl 44-# N20-30°E4 9244 NS 924# 4#4#4 494## 44#4 #44 41934 Ridiel's fracture 4 4 4 tension fracture 3 3444. EW 924 # 44#44 924## 49433 444-3 $1# 433 34- 944 4-E44# 44 444%# 433 ^444.

-16- -17- 3-2. ####94 ####944 #€$i #4-5##-55-#44-4###4 4 #(M^)#4 44 €4 (Orthophyre, 4##4 44#, 1986)4 #2 #2 $1# 444:44 44# #5€4, 44:4 #^H44 4#4# 4# 4# 4###47}- 9##€944 Wl 553 A>M4. 4 945 44 27fl4 5#2 9453 ##9 Si4. n ### N30°E-NS95=53 €447># bedding form line 4=4"# 549# 444 29444. 4# 44444 444 7Bm§£ $15#, 44- 44#4Al 94 4-8 -# #4 444 554 4-$-5. #3€4. &4 # 2##94# 444-#7> #s## 4#4 29453^1, #44 2944 444- 714 ### 544 544 #4&# bedding form line 4 #44 54 4s. 44-2-5. a>5l4^ €4*4 4444.

3-3. ## ##9-4 #4# tfl^is. N40°E 4144 94=### 544. 494# # 54#4 ####4 #542. $154, NW95=4 54#4 4## 4 #4#€4 ###€4 # ##44 SI-2-4, 4# 54# 9€4 #4## 44-711 H444S14. 9# 94#4 54444## beddign form line5 44 445 #4 444, 444 4*4445 a] 9# 9 $14.

3-4. 924 #711 24 4# 5 #4 4#4# N45°E444 4## 4# 4454 4#5## 5492 . $154, 44 #4# 94 4535 2.2 4# 2#4 4€ 54# 44444 4-9 #*M S14-. 9#4# ##-##€-5=53 4441 54, 4##4 #4#54- 44453 a# 449 (half graben)4 5 4# 5494. 4#44#4 944# #4544 4€444# 553 444

-18- # N40°E4 #514 Km 4! & 1:5)31 154, 3L #4)4 !##!# 1441 ^#&1# ##4#4 !#!#4 45 # # 14. ##4#4 !#!## 447) 41444 14! $1-5-4, 4## !& 4& 11! 15)31 1%1 445. !47)# 144 4#!4# !#### 15) (Pull Apart)4 44 4 4£4 14&14 1141# 155 #4. ##!## 144 4l8Kml 4 if%4 Ridiel's fracture# #1 445, 4# # SE14 4## 1# 14#!€# 41# 155. 514. 444 47)14 !#55 !#!# 1# #14 445)1 !#4 444154, 14# 4## ##14 NS5# N10-20°E # #4 41#4 4#4# 4=44 445 1141# 444. 4, 1 4 !##!! 44#14 ##4#4 !##!! !#4#4444 #11 #444# 4##5s #4414. 444 4#4# 444 7>#b)#, #44# #55 444 4# 414. 4#### H#4 5#2ll 1# 445 #4411=5 5 4441# 144, 45 1# 4444 #5)31, ##455 14 # 1# Tilting 4 141:5145 44. 1#, 1##1# €4 NW-SE115144 54# #7)# (half graben)4 #4 414.

3-5. 41# 114# !##1 H# H4#4 444#, 47))4 (1992)4 i#s) 4# 1444. 47)14# !!#44 114# 4# 1 Is)4 ## 4 4 44 44#!!!= (a maxi Direction of the greatest principal stress)# #45 n4 44 41# 4#414. 44 45# 1## 144 4#€ 44#!!!=# 54 54 1) #-4, 2) #4#-4! 7), 3) 4#-#4 #s) 3!!=55 4444, 4-4 1 ###-414 !!=4 1# #5 #1=4#!##, 4#-!4 !!=4 1# #!4#

— 19 — 4# £# 444# 344343. 434. #4 3944# #4.44*4 344 4##4 444 ^s. 4 #3# ^ #44# (Conjugate fault system)## #444 44# 44## 9"434. 44#4 444 4444444 4#4 #44#44# 44-4 #, #444 44#44# 444-44#, nejs 3 #4## 4# #44 #4#-444 #44 44#4##4 94434. 4444 4#44# #4 44 444# 493=*34#4#.6g.4 ##43 6-4, #444 ^ 44##4 #4 4#4# *93*34#4#A 5.4 4 ##4-34. 4# 44#433=#4 34 #4# 44 444-^3 ^444# 44#4, 3#### #44# #4-## 414 #44-44# 43= 4 #9W34#4##4 44-4#4 44#4434 444 3 4# 4-2-3. S11444 44 44-## 43=4 44#44 4#-44 43=4 43-4 #714 4## 43.3. 3.34.

-20- *8 4 # #4 ^ ^4##

«44 4##44 44 4444 4% 24 #4 #4.44# (1974a, 1974b)# 4 ##44 « 2^#4 44# #4# #44, 4# #4# 4*1142.3. #4414# #4-4 (110°) W4 2## ### 22.4 4, ##44- 44 ^ ##^€ #444 444514-2 4514. S4 4 4# (1974b)# «3##4# 444 4^1 el44 4#e]4, #44 4#4 44 4##42.5. #44# 2?H4 44#4 (sedimentation cycles)# 32. 7142 4^4. 2. # 4 ##4" 445: (1989, 1990), 44# (1990)# 4 ##4# ##»144 4471144 444 #43.4, #4=4#4 &### (m#@#)4l #44 444471 #44 444, 454 44#<4 44- #4 43.714-4 3.711 #44 44#4 (megacycle)# 3.7142 4^4. 4, 4 M 44#4# 4:711444 44442.5. #444, 44714 # 4 7l##4# 44-4 441-4, #44 4##4# 3:4441-4 #5£# $2, #44444 444# # #4 444444# 44444#4 # # 4#%2 3:444## 4444 ^514-2 4-514-. 2# #4444 444 4444# #44 #4# 44 2#4 447l€ 44#4 44 45142 484. Chun et al. (1993)# 4##44 444 4W £# 2##44# 1) 14 44#4 444, 2) 24 44#4 444 3) 44

#sl#4 3443. #44-2, 14- ^ 24- 44#4 4444# 4-## # #4# ##71 4#%## 444:#25.#4, 4#4:#4 #### 44 414# 44# (full-graben) 44#, 2 ^-#44# Sb4# (half-graben) 44# 444-^24, #44 # 4#4BH4 44 #4 444 4##4 4 444# S44-S4-2 4-84. 44## 4 #4:## ### 4#44-25. 445124, 2 4 #4 4#### 444# #44-4-4-# #4=4 ##4= 4 #4:41-4 #44-7)1 #4:114-2 4-514-. 54: 4## 44 44 44# #4# #4, 4##4# #44 4=# 44#44 #4

-21- 8 #4#3. 7}84 4448 444 88, 8444 8# 8484# 3.48x 848. #88 8484 4##, # 4#8 #44 8 #84 #444 #4 # ^484 444, 4 ##44 44 4 M8 #44 7] 4 844 44 #44 4£8 8 -1:8 , 4444 444 #4444 #4 4 44 °>7l4-jl &# #48#8 444#4 #44# 4X444 #4X 3. 5)44444 4444X4, 4# £43. 4444 8###4 4# #44 44484. 444-4 844 x##4 ^ 444 84*44 #X# 484 44, 84 4 #4 #8# 4X4444 4484 ###8 484 4444, 8 44#8 44# 4X4444 44#8 4X88 X 48, 8448 48 4844 ^88X4, #44#4 4848 x##, 4848 #44, 8848 848 4444 4*3884 (Fig. 3). 8 4### 84, 84 #x, 844 44, 8444 #4 48 444, 4848 4848)8- 8 #8 4X88 #84 844 #x 44884. 888## 448 #8# 444444 448 84X441 448 4xx £.8# 4#4 8 444 84 #8 X#xx 4X44, 84# (debris flow)8 X#X 4# (hyperconcentrated flow)7> n^8 84714 3. 44*84, #448 44*4 -44448 (steep-gradient fan-delta slope)84 843 84 84, 4884 #44 3-84 848 84 3? 448 X#, #88 x# 8#8 84 44 #4 88 4x8xx #4 4888 (Fig. 4, 5). 884 #48 #4# 44444# 44444 848 44#4 88 84848 4x4 84, #4888 84444 4 4884 #4 84 4X4X3. #488 (Fig. 6, 7). #48## # 4 44#44# 8144 44#8- 8# (sheetflood)4 88 4444 4 848 848444 8488444 X#X3. 8888, #4 44 #8 #4 (700 m 44)84 #3. 4488 (braided river)44 448 8 (braided plain)44 848 84 X# 848 #8# 3.4# 84, 4

-22- Microfossil locality

Columnar Section Site

-23- #4 <3 <3-, 1141, 411 4 #4 41iH4 414 1#4 #&## ^ #14 (Fig. 8, 9). *34 4144# HI 44 (transition)# 23.4# # #-3Hl #e)7> H# 44" ^ si44 444 4444-4 %A4€ 4 4444- ^ 11A3. 444# ##&!4 1## 23.4# #214 1114 (Fig. 10).

4-1. 4:44# 4:44## #44 #4-# 4 4 #44# 4W214444 4111 1#as, #44 #4# 44#44# #4444 ##!#! #4#A 5. ^4#

#4 ### 14#441 4###4# €44 4, €14 (fracture zone)5. #3£4-7] 4#4 7]€€4 1##44 44#4 44 4 as 44-# 2=:## #47> 4# ##4-4 ##14. 441#-1 44# #4 44#44 70 m #4#4 44#4 (Fig. 3) . A#1 4## 1#1 #44 441 4# 4# (Fig. 4, arrow 1) 4 4444 #4# 23-4# 4# (Fig. 4, arrow 2)4 iflS ##14. 4# 111 4##4# 4#1 11414 147> ##44m, #H1 1## 4 ### 1#1 11 414 #14 (Fig. 4, arrow 3 ). 11 # #s 14444 1A4, ##4AS 4#44 &1-& 23.4# ##s 114# #, #1# €1# 44#s 14A& 147} #44. 4## 444 #4444, 111 44# 14# 1#4 4# #4€#&44 HI ##4 #4"#41 (fan-delta slope) 44 ^1# (cohesionless debris flow, Curry, 1966; Winn and Dott, 1977; Postma, 1986)41 4# JL #S ## (hyperconcentrated flow, Costa, 1988)4 444 441 4A s #4-14. A#4 ##44# 4#4 4444 114 #244, 1

— 24 — I /

"•1M

Fig. 4. Columnar section of section Ibawi-1, For location (Ib-1), see Fig. 3.

-25- 144 4-44 944 #4-40) i-ig# #¥4 44 4^49-4 #7))#

4. 4# 1114## 44t11 444 44441# 444, 144#4# 344, 4444 #4# 34 ¥ 444 ¥44. 4¥ 1

44 1944 tS 44# (slurry subaerial debris flow, Shultz, 1984; Costa, 1988/turbulent subaerial debris flow, Pierson, 1981; Nemec and Steel, 1984; Shultz, 1984; Blair, 1987)4 444 5)44 433 4444. 4## #s 4-444 4414 ## 44-444 44^44 111 (87%)4- 11 (13%) 1331 9444, 7]## 3#4 #9¥ 4-44 2l#-924# 4444, 1#¥ 444 4# 41-2.3 9-444.

4444-2 44# 4444-1 4444 4444 4# ¥44-4# 44 44#-2.3. 380 m 4 444¥ 4444 (Fig. 3). 444-2-3 4 44 44447} 44-444, 4# 4444 444 ##44 4# 44 # s.44 444-2.3 444 4144¥ 444-7)1 #1#4# 34 ¥ 444 47)144 (Fig. 5, arrow 1). 4# 47)14 44### 9444 1144 4# #¥44, #4 44#4# 344 (Fig. 5, arrow 2). 4 4-44# 444 47)4 9$ 7)lx) 4 41# (Fig. 5, arrow 3)4, 444 41 #4# 344, 4994 44 #444 l¥4-7fl 41431, 444# 4 24# 34¥ 11# (Fig. 5, arrow 4)4 M£)3L 14. 1## 9 3 414494 4114 44147]¥ 41^7)4 141 (86%)4- 1 1 (14%) 1334 9444, 4## ¥44 2l#-92l# x}l33, 11#4 193 7}14 7)14 14 #7>4¥ 444 9¥44 141 4 (Fig. 5, arrow 5). 1#4 #44 4433 ¥1 14 4 #92 (imbrication)^ #4 ##44. #44 ¥4## ¥#433 34# 4, # 394 1144 ¥ 9444 ##7)-#z)-9 4-1 (steep-gradient fan-delta slope) 44 #4.## 4## (cohesionless debris flow, Curry, 1966; Winn and Dott, 1977; Postma, 1986) 4)7) ¥ 3#3 9# (hyperconcentrated flow, Costa, 1988)4) 444 444134, H# #

-26- Fig. 5. Columnar section of section Ibawi-2. For location (Ib-2), see Fig. 3.

-27- Fig. 5. (continued)

-28- ¥3 3333# #¥43 343 33# #3#7} 4 #3 #4 #3 34334, #3 4# (tractionH 333 ^34 3as. 343 4. 433 434 44¥43# 45.33 A3 33 333 a¥43 3 34 444 33334.

¥5.33 A 33# 34AWA5. 3# 33313343 3##AS. #37}# 193 4A44 334# ^3h43 34as. 350 m 334 3344 (Fig. 3). # s¥# 3433 3433 433443 3443 4AS. 15 tn 444 3344. 343AS. 3343 43AS. 343# 34434 (fining-upward) 34# A4# 3333 ¥3 (%80AS. 4 33# ¥ 34. a¥3 4¥43# 43# 4¥# 333 33 S 34 33 (Fig. 6, arrow 1)4, 34434 ¥#4 ¥333# 5.4# 33 (Fig. 6, arrow 2) ^ 4333# A4# 33 (Fig. 6, arrow 3)4 -HS. 4A 34. 333# 4¥# 34 33334 344 44¥ 44# 7> 44. 4¥#3 33## 7] 44 7]23# A44, 7] 4# 4-33 34 43AS. ¥334. a34 ## ¥413 33 33## 34434 &A 4, 4## #344 S343 33# 4#s. 3=444. 4¥ 33## #47} 334 34333 4433 (amalgamation) 34 &A4 (Fig. 6, arrow 4), 4333# 344 443# 33#3 34 333# #3 44. s¥3 #¥# 71344 s# 34434 3A4, 34 343 4 ¥ 443# A4# 333 33#3, 33, ¥3 #3 ^ 3#3# A4 # (34)33, 443 54 43#AS. ¥334. 4¥¥3 4333# # 34434 3A4, 3#4 #334 4^44 4334, 43# 44 3 544 43AS. ¥33# #4# A34. ¥3#3 ^ 3#3# ¥ S2| ^ #433, 44-43 MS. 4¥4 44, 3¥3 334# 4 ¥3 4343# 34433, 4^3 34# 5.442 44 (Fig. 6, arrow 5). 54 43#44# 4 #3 #44 444 414# 4s#3 3

-29- f—1M 1

4 l-o

Fig. 6. Columnar section of Kugbo mine section. For location (Kb), see Fig. 3.

30 Fig. 6. (continued)

31 ^a>^7> Mly7i] #344 (Fig. 6, arrow 7), #3# 5714 44 £ £4-715. #4 (Fig. 6, arrow 8). £=4 39349 494 9# #4

^ 4#4 #34 s.4 ^^4-tII ##44, #449#4 494 394 9# #439 345 34444, 4#4 #9 5 #43 954-b 44 3.71 £ #71-43. 3-5-5. 434434. 44 4 3## 594 99 4- 43435. 4332:31- 544, 3994 44 #443 ##33 til) #4 4, 331: 3-3 4455 9443. 39 49## #47} 33 4 3344-4 4334 44 44. 4## 95 4344394 344 33343 3335 9444, #94 43 534 344 5945 # 4. 4# 434-34- (48%), 344- (3%), 34- (54% 333, 35%) ^ 33 334- (14%)55 9344, 94 333 434 49 95 334- #4-55 9334. 434 93#1 54 3 4, 9 594 499 93 33 &43 9 3349 95 499 (slurry subrial debris flow, Shultz, 1984; Costa, 1988/turbulent subaerial debris flow, Pierson, 1981; Nemec and Steel, 1984; Shultz, 1984; Blair, 1987 Costa, 1988)7} 94# #344 444# 54, 99455 39 (sheetflood) 439 #5 4494 #94# # 55 443 9 #4. 594 9, 399 49444 39 41397} 9 443 494#54, 395 7}44 4#44 93 #49 549 (43) 43#4 til94 435 #7}## 355 54, 31394 #41 44## 34 5## 497} 9 44 933 4441 #44 93 44395 3 355 4394 (Wells and Dohrenwend, 1985). 3-4 4 3# 4 4 954-9 43-4 43 4-4-41: 9933 4334 #94 39 99 4 4-5334 44434 9944 #43 93 443 (crevasse splay deposits)44, 39 434934#34 3349 3355 49 #43 4 #34, 5954 ##94 (lateral accretion)# 5499 35 (Fig. 6, arrow 9) 934433 355 3433.

-32- 443 41314 4 ##33. #47}# 4! 4$131 4 144 (Fig. 3). 4 s## 71444 44471 #44## #1433 4444. 714444 44444# ^M4 4# 444 7144# 44 4-ai 4^-4, 4# 44 44&7M <844 4#4 #444 444 1$ 3 #444. 4# 444 44s. 44# 7] #4 424# S.4# 44# 4, 44 s# #4#4# s.4# 44 44, 444 4# 44#4 32.5: 4-ui 44 (Fig. 7). 44#4 4## 4## #444 1^431 414 4 5£34, 44 444 47114!# s.44. $4 44### #47> Ml (41) 444 4144 44s 44 (Fig. 7, arrow l), s#4 4#44# si 14 44# 714s. $44#, #37} 111 4 4#4 #$14. 1# 44 44# 44#3# $44$ 44 (Fig. 7, arrow 2), 444 41 44# 414# 4#4 #41 14! 44# te#4 41 44417} 434 1414 (Fig. 7, arrow 3). # $##, 44# 41# (slurry subrial debris flow, Shultz, 1984; Costa, 1988/turbulent subaerial debris flow, Pierson, 1981; Nemec and Steel, 1984; Shultz, 1984; Blair, 1987 Costa, 1988), (41) 44# 1# #4 4#4 431 144 4143 4414.

4-2. #13# #13## #44 #4# 131444# 1133444 4444 4#3S, #44 #4# 131444# 44444 414# 3 4441 4 444, !1414#4 #1433 #4# 4#44 (Fig. l). # # 4 411 #4# 444 si#, #431 ^ 1134 3 4144 411 #4# 14444.

si#41# 4### #444 si## #4, #43s. 114# 41SS314 si #4 4 4 S3. 1431 4444 (Fig. 3). #44 s# # 131133 #1 cm314 4 2 m4 #313] 43# 1441

-33- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + l-o “r-r-r-r-rr—nr- M Fig. 7. Columnar section of Jaemal section. For location (Jm), see Fig. 3.

— 34 — I /

MB

•*•< i«# <«ar

Fig. 8. Columnar section of Chosimdong section. For location (Cs), see Fig. 3.

35 Fig. 8. (continued)

-36- I /

l-o

37 Fig. 8. (continued) I /

Fig. 8. (continued)

39 (fining-upward)^ €## 5.4# 4444 #435 #4 €4 (Fig. 8). S# 4 ##4 4# ^ 4€4 #47} €€ 3? ^7] ^Efll- 5.43 a 34, 4 €4#4 #44 4€#4 ##4-3, 4€€4##4 4### ## €3 ^ €434 €4 €4€# 7>^3L M^JL €35 # € €# # $14 (Fig. 8, arrow 1). #€ €4# 4€€€ 4€4 4€, #4# 54# 44", t##4 ^ €#4# 54# (4€)€4-€ €44 M #4 €4. w^lr 47] #4# #€€# 4€€4# ## €4€ 714 €^1€# 544, 4f#4 t^I^^l} 4^4435 #4# 7}€# 4€€€#35 €444. €€# 5#€34 H£t 7}€# 24# €43.5 ?€44. €# 44, 3# 44 €4-## #€ 35 till44 #4#44€ (rip-up clast)4 €44 a.?M 4#& f€4 715. #4 (Fig. 8, arrow 2). #4 #4 3 €#4# 54# €€# 44 4 €444 s447> 354-713 44, 4&# #€4€ &€€4 44 4 444 M444 #4# ^444. 4f#4 44t^ 44 3# 4€#4 444 44 €4f& 444 344 4€44 #4=44. 44 4 44-#44# 444 #4€ €€€ 44# te€4 4€44417} 44441 47H44 (Fig. 8, arrow 3). 4## #5 44444#4 €4 4 €€€4€ €€€ 3.714, 444 (63%), 44 (8%) ^ 444 (29%)35 #•€€€. #714 44# #4 4 4,# 44 3## 4444 (braided river) 4 €#4€ €444 (ephemeral) #4=44# (444 44 ^ #4# 5.4# 44)4 444441444 4-34 444 444#, #1€t (longitudinal bar) 4 €3*}^ (diagonal bar) €# €4^4 4#4 44 €3#44, 3#&4 43# ## €#4 4#4 44 4444#, ^3. 4# 3 €#4 €€44# 444#4 444 4€€ 44#4, 4€4 #714# (channel abandon- mental 4# 4€€ 44# #44 35.4 4^4 #€€ €35. €44 4= $14. 3# ^Hol#^ iflofl #£€# €44 4€ €4-41# #4=7M €€€4 44 € 4# 4=€4 4-3*11 #

— 40 — °1 445]14 914 6] 141 ## 444 (crevasse splay deposits)6] 4. #44 41# 942314 1,300 m 144, 944314 191 #25 114# 254 ##5513] 4414 (Fig. 3). 944 29# 60 cm 44 4 m 944 #4=41 (fining-upward) 14=9 5-6]# 4444 9 4-5.5. ?-444, #4=4114=9 444 4444 41, 91 #4 ^ 4 #-4# 561# 4441 ^ 414 444 611-5-5. 9444 (Fig. 9). 4144#9 4424 44441# 7>44(Fig. 9, arrow 1), 61# 44 41#4 444# 94 91#4# 7>4# 41414 ¥14. 19 4 1 41## 91-5.5. tiflll #49141 (rip-up clast)4 441 37] 4 4#5. 91 #4# 1144s 1:4 (Fig. 9, arrow 2). 4441## 44141 4444 92# a#9 444 #444, 249444 4414 4114 44#5. 9444, 44#4 141 "Ills. 15-442, 44 611#4 #9 s 3] 9 944 14. 444 611#3]3]9 #44 141 I 41=25. 914 124, 12#4 414144# 41417} 1144 4414- (Fig. 9, arrow 3).. 4## 95 4414494 114 144 4 4# #44 37]# 7>4#, #4111 (43%), 117]l6] 441 (27%), 441 (13%), 11 (10%), 141 (7%)25 9114. 94 1 7}1444 57] 3]## ##144 Ml 425 561# #a##6] 4 #25 93=14. 4#25 9 4, 944 29# 1441 (braided river)4 4944 42# 49 4-24-9, 9149 1 11494 494 6193] 4314 1 41 4495 1114.

#14 419 lie] 6]9914295414 4#25 380 m 7]# 4 2514 1444 (Fig. 3). 9 444 299 14425 #4=24 4 (coarsening-upward) 1 #4=99# (thickening- upward) 14=9 5 61# 425 #14# 9 14 (Fig. 10). 294 49# 144314 #

— 41 — Fig. 9. Columnar section of Solchijae section. For location (Sc), see Fig. 3. 42 •V

I /

Fig. 10. Columnar section of Simwonri section. For location (Sw), see Fig. 3.

43 ■.i

22223 Z5Z2H3 -■p-- "T'iTl

S35ESSS3 —1

i—1M

L-0 I " I'T T i—i—r M S G

Fig. 10. (continued)

44 ■I "I I

Fig. 10. (continued) •V

-45 t 44 4455 ^€4. 947} # ##44 954, (convolution)# ## #5 ##44. 4 4# 44M444 9# 4 #4 4# ^###7} ### ## 5# 47M4 4#4#e# ### #4 44# 7>44, ##44 $1# #44 #4## 5W4. &# 4## 4# ##4 HS.£]7l5. 44, #4 #4# 5.4715 #4. 5#4 ## # #4# #44 4# # 44 444 44-417} 3254# 44 #44 4. 4## 414# #4-# 3.714 44# 447} 44 5#44, ## 4## 4tH14# 454 (bioturbation) -£4 5 ###4 (Fig. 10, arrow 1). A}#^4^ 7> 32544Ai 44# #44.

4#4 A}## ## # 4, 5##f4 msHt 4### 44-a}# 4# #97M 4## (density undrcurrent) 6)! 4# 4#44, 4^44 4# 5###4Al 444 #55 4 4# 4. 44 ^ #444#4 325 4# ##, 544 7154#### (base level fluctuation) 4 444 4 #€ #44 54## 4 4 #4 554# #55 4444. 599 #-# 4 #54# ##44 &4#4 a>4- # 4#a}#44 444 4941# 44# 44, 4 m# £4 # 444 #4#55 54 #44# ##4ai #4# 5#54 4-544# # ### 44#5 44-94.

— 46 —

P ' '' 4 5# 4## 4

(1925)41 4 #3^M 7}*m 3M ^1&44. life 4&4 4##4 •ir ^g-si^a^-Ei 7}*m5&^ «] %s] *] ^ ; Frenelopsis sp., Bradtyphyllum sp., "tir6! 2l^M : Brachyphyllum cf. macrocarpum Newb., Frenelopsis koheneggri (Ettingshausen) mmm (i925)fe 4 ^4##41 ti> $14 (Table 2).

The present area Chinan district N. and S. (N. Zenra-Do) Kyongsang-Do

Sonyudong Formation Mandoksan formation of Red formation of the Chinan series Upper Kyongsang formation Hoidongri Formation

Upper horizon of the Sigumri Lower Kyongsang Formation formation

Table 2. Stratigraphic Corelation of Youngdong Basin by Shimamura(1927)

4)2^M M#, 1986), 4M2ie4M 4#

— 47 — 448 Pseudojrenelopsis sp.4" 7)18#, estherids §= ###444 41 48%, #84#6114 7fl8#4 estherid 444 414811 :a%48 4. 44#4 444 &%€ 4# 8%4, #448 tin 1 84# 88% 4, &4 44441 44 8?# 44=484. 4# Chun et a?, (1993)# 8##?4I 44 %8#44 8?# ?^I4%& #848%4, %84# 414 84. O #444 : 44444 #£## #44 4444^ 48=4 44? &4 44 ##4 #444 1414 444% 84% &%484. O 4444 : 444#4 #44#, 444#%5. #4 ?4441 (Coniferales)8 Pseudojrenelopsis, Frenelopsis, Brachyphyllum #4 4 14811 &a.48%4, % ### 414 44. Pseudojrenelopsis sp. cf. P. parcenamosa Frenelopsis sp. cf. F. data Brachyphyllum sp. cf. B. vulgare Miaasastrobus sp. Platanus sp. Populus sp. Eqdsetites sp. Aphebia sp. 444 ?44 44444 444 #84#4 4?4I8444# Neocomian 4 *8444, #84# 444 4444# Aptian 48 % 4 #3- S.8%4, 84¥#?4 44##4 «H4€ ##484. O 444 : 7118#, ls#444 444#, #84#4 41##4)4 414811 3%484. 7881441 44 beak ##4 8# Ozrzdona 41 *8444, #5. #84#44 4# 41484. #2:#44 4 41##414 48:41. 4811 &%484. 441 44- #84#

— 48 —

-k =& B jk * B 0» Jk & *■ Sft

tiu 4N n» a o Md O f da -“• T

© uti e © fir © $

& oj{i -£ : £ ! c£ >. B, # c& kB $ b k k # » A A «*» kfc£^r&> -:ii & I b ^ k k A 41 (m cflfc B B ca |« B Jk fi» f& R , In* o&» on oil* ok A A i l» F* B H ib k lo z r £ O * ka " Jffi d& B A

i:* N' A 0$ B Hr ^ © B on B it& fe B _2 & k lb ^ lr A nr

c& ♦ MS. |s*$ B no K1 a <£ tok-tofc&'M^ &&-&& - H r k B

S 4* <$ it? _a B

- B

t B k # ? s il $ffjd ti. B

# B i cNr-Rf I y» P$ A

*a 1$ rX B 41 ? # i B k Jjr nr 32

Ml on X. - f c i ^ W Jst £ A R»kfc& ( £ kB A B $ $ t k # I &* 4>ujo ¥ * i 'k"o%T? && A 4L k lb k k te M n 41 5 k 1 .2. f Iff is* t> ti? I rk A b * k . Ok 04 A t $ $ in k k a a

b

|;i 0^ A | & H -2. oEfc nr H k l b k f c * * •bl$ # ? k

oJ)> ’ Jk 11 4X II53 4N- 6 A f I jg. s * § Jk o$t dft jjti f - H s k * 2

d» Jk $ * i « k *£ +

-W fljc> B. rfe toSiH r-Srk

jj* t|?4d 4w B B ^ R# rtr rft

0 -£ A

• h - p g - m * on

^ a ‘ -ti •Srk 5 B c*L J=t ■teKfftf I 4M B I 4 in 4#4&4. ©s^-4# 44 i# 444 44444 #44 ;lj^##4# #44$4. #4 #2:##44 4:#4 444 4

#^4- ^4-sfe Fig. 114 #4. M^44 zz-4# 44 #4 444

44#4 ^444 ##4s safe 1.5 m 4-44 444 444#44

db.^4 #Z:##4 s' #4 45$ 4.

© 444444 44ir t#4 ^44# jl4, 44SS. 4 #44 # 4444 4 s# 444^4 7^##444 ##4^# #4 4.

©4:*) 3 ~ -§-444444 4 ##444# aM4^2, 207fl 4 s.

# 444^4 4 #4# #444 #4^4.

* Simwon iy/ Elementary School

Normal Fault

SgSi Siltstone with calc, nodule MOO 1^4 Siltstone •50 S Gray (3 Purple Youngdong

Fig. 11. Columnar section of sample site, Simweonri area, distributed the Dongjongii Formation.

— 50 — O #### : ### #44s 214= ### ^3 3^ - ^44 # #4 W^l 4 #4#, #444 217] 4#4 4 #4 4 # #t # 21c ### #4 4 #4 7^£] «1*# *e»14. © J2L4# ^4444 #&##44 7M###4 4-4=-9.3 ##sj 214. 4##4 estherids4 44K ##421-9-4-, ##7> #7}#4-4

34344# 444-44. #s#7} ##g i3f-4 t^c Fig. 12-1, -2 44. 4-## 33. 4444 sil# 4M4 44 44, #444 O 444 4E.44 444z. 214. 444 44 4#4 #3# 1103-10, 11, 15, 1644. © 4451 ~ 447H #441 444 44#4 #34-2. 21-5.4, 20?H 4 4&# ^444-5-4, #71144 44s 444 3-444.

2) 444^

4444#^# 4-B-44S4 244# 444 #4. © 444&# 1 - 10 mm 3.713. #711 4444. © Na2S04 3 4S444# 4#4 © 4S444# #44 43.44 *2 hot plate44 7>144 #4 #4. © 44 15°C44 44444. © ©4 ©444# #4 4 #444 444 4# crack4 4444 #4 44. © 444-9-3. hot plate44 444 S3# #44 4444 © 43-# dry oven44 4s443 44 €4 4 S3 444# ## 4. 44 4444# 4#44, 444 ##4 44444 #44# 44 # ## 444 #4S3 4:4#441 4444# . s##### s#44s 42144 44 44#3-9.3# #7>##4. #31444#

-51- Fig. 12-1. Columnar section indicating stratigraphic level of sampling for charophyta in the Simwonri Area

52

i weathered zone

0 greenish gray

0 dark gray

0 purple

01-cream

m [

Fig. 12-2. Columnar section indicating stratigraphic level of sampling for charophyta in the Simwomi Area

53 Leica M10&

5-1-2. Table 3 4 #4.

"'\^pedes Sphaerochara Sph. sp. Feistiella F. prae- Amblyochara Mesochara Mesochara Ostracoda Remark samplenD^. sonyouensis S.-MSrsche mundula mundua latifasciata ameehinoi stantoni 1103-03 o A S.Y. 1103-04 A A A 1103-05 A 1103-10 # # o 1103-11 # A A A A 1103-12 * frag, of charo- phyta 1103-15 # A A A gastro. 1103-16 A A # A gastro. 1103-17 A A A S.Y. 1103-19 * frag, of charo- phyta 0416-09 A A A charo.stem, 0416-11 # A A A S.Y. 1104-23 A A DJ. 1104-24 A A 1104-42 A A A 0319-37 A Si. 0610-14 A 0610-08 A 0507-07 A 0721-02 • DJ. 0721-03 • 0721-04 S 0721-05 • 0721-06 • 0721-07 # S.Y. ; Sonyoudong Formation, DJ. : Dongjongri Formation, S.I. ; Saniri Formation •: more than 50 specimens, °: less than 50 specomens, A: less than 20 specimens

Table 3. Distribution "of Charophytes and Ostracoda from each sample.

— 54 — 4 #44 ##7} 7}#44, n ### 4#4 344 4, Eucypris sp. Candona sp. indet Cypridea (Pseudocypridim) sp. indet 2) #44# : # #414# #&#, ?M#4 4##44 444 # #4$&4. 7M## 44 4##4 X#4 Candona^ W44, Fabanella, Eucypris, Sinocypris fAS. ##44, 4## 44 4 #7fl 4)41 444 ##4. #&## Mesochara ameghinoi, Feistiella pmemundula 3 ##44 ^4, 104 711444 ## 7}## 4#44. 4## 4 7M# 3.#4 4^44 4#%44#41 3=524- #34-71) 3.44. 3) #### : 4##44 44#44 7}# ##7> @=^4 7}# 444 ##4$&4# 44 #4444. ##414# 44#4 estherids# ###, riel a 71118#, #&##44 TO4 8-2-4, 4 #4 4# #44 8# Ƽ ##484 7H4#44# #44#4 7114#44 ###4 «132.*H # 4 >h#44, 4## #3. G3zicZom4 W44, a 444 Darwinula sp., Cypridea (Pseudocypridim) sp. #4 314. # ,# f47H47} ##48-2-4, 3.##4S. £33 4#4 #4 4# 5#33 ## 4 4 #4. Sphaerocham sonyouensis n. sp. Sphaerocham sp. Souli6-MSrsche Feistiella mundula Amblyochara latijasdata Mesochara stantoni

5-2. 4 £4 4 4#414 ### 44454 #44, 4#4 3# 48#^4 3 ##

-55- 444 4 ##44 4^44# M4$(24, m ###444 44 #44 5£# #3445-44 44# #4-4, #44 #4 ####4 mm ^ #444# #84. 244 7>#4## #34444 4# #444 ##4 #4 43:4-4, 44-4444: #444# 44 #7}#4 5&4. 4#4 4444# 4#4 #4 ## 4445614. 4#44 ##€ 44-44 ##4 4#4 4#44^ Fig. 134 4 4.

5-2-1. 7>#4# #44#44 #S ##4# 44# 4#4444, 4## 2#9-4 # 4##4 444. 7>#e]#4 44 2# #44 4##44 #441 ##42. &# ^4 ##44. ##4 445# 5444#445#41s. ##4## #4. 444# 7fl4# 44# Cypridea (Pseudocypridina) sp. # ###44 ###414 #S ##4# 44##44. ##4 4 #44# 444 444 444 ### # #4.

5-2-2. #44# 44 2# 444# #44##4 ##44 ##484. ##€ 4 4## 4-S-4 ## ###44 ##227> #4. 1)7B## : # Darwinulcfc 4449-4 #44 8# ##4 4 ## #4# 4####-###44 7114#4444. 4 #-Er ###44 4 44# # ###44 2# ##€ 4 56124, # ## ##4 44# # # 84. 4 CandonalE: 8##23 4#7]9*4 #4# ### 7fl##4 4, ###44 ###44 #4 ##4# #44 (4#, 4#^,1988). ZL 44 ^>d>^ g ###442 4 $14. # Fabanella# 4# 4#4 4423 1mm #24 27]# ##4. # 4# #44 #44 - 4# 444 ### (Swain et als., 1972)4 #^4 #44 4###4 Purbekian (Anderson et als, 1971)44 Sul# 4 $14. 242 Swain

— 56 — GENERALIZED VERTICAL CHAROPHYTA, OSTRACODA, CRETACEOUS TERTIARY SECTION AND GASTROPODA Lower Upper Paleooene •Be. Va. Ha. Ba. Ap. Al. Ce. Hi. So. Ha. . Dan- Mont Sphaerochara sonyouensis a sp. — Sphaerochara sp. Soulid-MSrsche Feistiella mundula Amblyochara latifasdata Mesochara stantoni Darwinula sp. Candona sp. — Cypridea (PseudocypricBna) sp. fragments of Gastropoda

Mesochara ameghinoi Feistiella praemundula IM - Candona sp. 1 Candona sp.2 Candona sp.3 — Fabanella sp. indet

Edcypris sp. Candona sp. indet Cypridea(Pseudocypridina) sp. indet

y.opb • *»b

Fig. 13. Stratigraphic level and geologic range of fossils. et als. (1972)# % #3 #44 - 4#4#7l %#£j4 W4#7l %# # 4^ ## 31A3. 5.58:4. 7H##444 44% % ## ^47H 4444, ;H%# 44^# %##4 7>4 44% 3 As. %%4# *r 584. % ##4 %3# 44 As ##44 3LA44AS. #44# #584. 2)#S%4 : Mesochara ameghmoi # 44 %3%444 Neuquen Group 414 4# AA% #4 %44 44414 44 ##44 (Mussachio, 1973). Neuquen Group4 Mesochara ameghinoi # 4*44 4-71414 % #44 58tr # Platychara 4 #41 (14 7fl41) %#4 A 58#61 #4 4 4 4. 444 Neuquen Groupfe- %#44"7l4 SenonianASL #44584 (Mussachio, 1981). Feistiella praemundula # Feistiella mundula 4 #4% 4#"£* i#

A 58A4, A7l4 44454 # #4 44414 %4% 44#A4# a 58# 4-fi-A Feistiella praemundula 4 4A4 44% 4 #4 (444, 1990). # ## 4%#44 #4#414 44= %# % 4 #4. 4# #4 #44#4 Feistiella # A4441 5844, 44AS Feistiella praemundula 41 #4# # #4. 444 #44## #544°H 444 4%#44 #4#4 44# # 58 A4, A% Feistiella praemundula 4 %## Feistiella mundula 7> %#% #4##44 %%4#A4 44 4 4### 44%4. 444 #4 4 #4 #444# Table 4 4 #4.

5-2-3. %### 4 Sphaerocham # 4# 447144 #44 58A4, 4# 4#7H # 44I44AS o># H#7H AA44 58 A%, #3. 4%7l#4l4 #4 711 %#4A 58 A4, % ## %444 4#4# #44. # #414 % ## Sphaerochara # ##A3 A# %## Aptian 4 Trinity Division 414 AA% Sphaerochara sp. L soulfe-M&rsche 4 ##44, 4# %#

-58- Age Euisung Youngdong Basin Basin

Oeno. Jomgok Sonyudong (Baekmasan) Alb. Hupyeong -dong

Apt. Dongjongri 11 jig Bar. J inju Saniri Haut. Hasandong Mangyeri Val. Nagdong

Ber.

Table 4. Stratigraphic correlation of the Dongjongri Formation by charophyte flora.

<^-71^*1 ^.6.5. ^jjzj-sjol Sphaerochara souyouensis n. sp.3. 714)4-^4 (sonyouensis-4 A

^S%4). Feistiella mundula c ^^21^414 ti-H s|4^1 (^4 7},

1987)31 3L7]7\ %}—4", ^41 ^-#4) 4 4}#^ Feistiella mundula

4 -ft-A}s}t}. Feistiella mundula 3141414-£--§• Aptian ~ Albian4l A #4314 (Peck, 1957; Musacchio, 1972; Wang, 1978, 1981; Wang et at, 1982, 1985; Liu, 1984; Li, 1988, etc.). Amblyochara latifisdata & 204 711417} o]$r Peck (1957)41 4#4 Albian4 Bear

River ^414 4 &4. 4%44| &$= &SSH54 ^A#47ls 44. Mesocham

— 59 — stantonfe # #414 d:# #44 Bear River (Albdan) 41 4

Milyang Youngdong Age Basin Basin

Albian "GeOhchunri Sonyoudong Aptian Songnaedong

Banyaweol

Barren.

Table 5. Stratigraphic correlation of the Sonyudong Formation by charophyte flora.

#44441 344 7>4 # #44# 44% 4444# 444# Clavatoraceae 44 #3:444 %#44 &&4# 444, #44-4*414 Clavatoraceae44 #3#4 4 ##3 ## 4## #44. Z%44 4"o' 4-4 %#3 #5445-5.3. 4#4 #444# 44 S.% 4#4 #4 ##34. #, #44## 44#44 %4#41 4444, %#### 3

-60- (Table 6).

Geologic f Milyang Youngdong Euisung" Age Basin Basin Basin . T'" 1 • Albian Geonchunri Songnaedong §,1a Aptian Sonyoudong 'Dongjongri M ! mik ^119. ____ Jinju_____ Saniri F-i Barremian g 121. ------Hasandong • Hauterivian Nagdong 131. ------Valaginian 138. ------Berriasian -* —144. ------=------

Table 6. Stratigraphic correlation of Milyang, Euisung and Youngdong Basin. 4| 6 # 4 #

1. 4 ##44 0 4##46)1 4% 44:44 bedding form line 4M# E# (1/5 4) S #444 f4#4, 4##4# 2711 4"#, ##, ##4 3711 ##, 4##^1 4 4#4^4 (fracture pattern)# E#

© 4 #4 4 #4 ^44# #4444 48# 4EE 444# #E 44 «^sj s $1E#, 2 #44 4##4# *§444 # #&4# ##4#4 4#4#4#2 # ^r $14. ##4:#4 4 #4## 4 4-71 014444 44451E4, 4## #& 45. 444 442 $1 %4 445 444#4 444 44"# 4# 4:### 4 4# ^#4 #%^#^1 (strike-slip basin) E54 4##^# 4EE ##. 4 4"### 43:#4 E#E4$1 4# 445 y####EE 4## #-& 444, 45 45fl 4444 #42, ###EE 34# 4# Tilting 4 441AE442 #4. 44, 3##4# #4 NW-SE4 4E#44 54# ^14# (half graben4 %4# 44 4$14. ® 4 4 #4 444 444#444 444 #^4#44# #4- 4#, #4414 444-44# 444-4-4"#, 242 3#4:## 4 ##44 #4#-44-4 ### 44#4##4 #44^4. 4#4 ## #4#4 444# 44"# ##4# 4#E&4 ##4^E4, #444 4 4 4 #44 #4 444# #4"# ##4# ##EE4 4#4$4. 4# 44#4###4 ^4 #4# #4-4"# ##4 44#44 ##-44 ##4 45# #7M ### 4EE 544.

2. 4444 3# 0 #e#4 4##44 #4444 ^4# #44-2 $1# 4## #4 ####, # #44-## #44#4 #44# #544# #4EE

— 62 — 444-54# 44, #5#e4 4# #4# ^4#^#. © #4 4 #5 544 ### 445445 4 #24 4 44# 423. 345 4^4 9 * 5#4 44#4 i?5LS 52##, 44# (debris flow) 4 3l#JE 55 (hyperconcentrated flow)?} 5# 4445 3 44"45, 54 #4 ##4 -l"#### (steep-gradient fan-delta S#%)44 #4€ #4 44, #44# 44# 5.4# 444 44 # 444 2#, 44-4 25 444 44 44 44 4# #2#23 44 4444. 444 #44 444 44444# 444i4 444 4# 44 4# #444-4- #£4 44*. #44#4 ##44-44 4-### #4 4# #2#23 #4 #4. © #44## #4 4 4#44# ##44 4I##4 ## (sheetflood) 4 44) ##444 44# #4- 44-4)4 #4* 4444-4 ifl-ss # #44, #4 4 4 #4 #4 (700 m ##)## 53. #4-## (braided river) 44 4-4-## (braided plain)6!)# 44# 44" 25 44# #4# it4 5 44-, ##4 44-, 4 ##4-, #4-# 44-4 44-44 #444-# 4 4-2:## 4 4 #4.

3. 24# 4? ® 4##54 7}#B)#, #44#, ####44 4#44 ?D4#4- # 2#4# ###44-. © 4# #44 4*B, #44## 44544 #4#, 4#### #4= 544 ##### ##4#4 #####. © #44#4 4#4 #5 4 ###54 4##5, #44## #### 5 ###54 444#.

-63- % jl & ta

1986. % 4#3E. (1/50,000), 24p.

#94, oM^, 1986. ^ ##E (1/50,000), 4 20p.

##4, #49, #€#, 444, 1978. t^llE, 4424 (1/50,000), 21p.

##7l, 44, 1988. ###4 494 (^4)44 4#€ 4. 443-4# W 4 4€ 2JL, 94-109.

449, 4 #4, 4% g#3L, 1969. 9214-44 5]#4#4 x] #9-2. 4471 #4, 25-27.

€##, #714, 1969, 444 #2, #924 (1/50,000), 4#4#2 42, 34p.

44#, 4^#, 1968, 44442, 4424 (1/50,000), 44442 42, 15p.

%&3L, 449, #44, 1980, 44442, 9924 (1/50,000), 4 €7i#-#92, 28p.

Anderson, F.W. & Bazley, R.A.B., 1971, the Purbeck Beds of the Weal(England). Bulletin of the Geological Survey of Great Britain. 34, 175p.

Blair, T.C., 1987. Sedimentary processes, vertical stratification sequences, and geomorphology of the Roaring River alluvial fan,

— 64 — Rocky Mountain National Park, Colorado. Jour. Sed. Petrol., 57, 1-18.

Cheong, S.W., 1987. The structural analysis of the nothem part of the Cretaceous sedimentary basin in Jeungpyeong-Eumsung area, Korea. Unpublished M.Sc. thesis, Seoul Nat'l University, 68p.

Choi, S-J., 1987, Study on the Lower Cretaceous charophytes from the upper Gyeongsang Supergroup. Jour. Paleont Soc. Korea, 3, 79-92. Choi, S-J., 1990, Some nonmarine fossils from thecentral part of Gyeongsang Basin, S. Korea. Jour, Paleont Soc. Korea, 6, 165-179.

Chun, H.Y., Um, S.H., Choi, S-J, Kim, Y.B., Kim, B.C. and Choi,Y.S., 1993. Fossil floral and faunal assemblage and Paleoenvironmental modelling study on the Cretaceous sedimentary basins scattered in/near the Ogcheon Belt (I). KJGAM KR-93(T)-11, 122p.

Chun, H.Y., Choi, Y.S., Choi, S-J, Kim, Y.B., Kim, B.C., Lee, B.S.and Bong, P.Y., 1994. Fossil floral and faunal assemblage and Paleoenvironmental modelling study on the Cretaceous sedimentary basins scattered in/near the Ogcheon Belt (I). KIGAM KR-94(T)-11, lOlp.

Chun, S.S., 1990. Sedimentary processes, depositional environments and tectonic settings of the Cretaceous Uhangri Formation, southwest Korea. Unpublished Ph.D. thesis, Seoul Nat'l University, 328p.

Chun, S.S. and Chough, S.K., 1992. Tectonic history of Cretaceous sedimentary basins in the western Korean Peninsula and Yellow Sea. In: S.K. Chough (Editor) Sedimentary basins in the Korean Peninsula and Adjacent Seas. Spec. Publ. Korean Sedimentology Research Group., 1. 60-76. Chun, S.S and Kim, S.B., 1995. The Cretaceous Kyokpori Formation, SW Korea: sublacustrine steep-sloped delta facies, Jour. Geol. Soc. Korea, 31, 215-236.

— 65 ~ Costa, J.E., 1988. Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. In: Baker,R. et al., Eds., Flood Geomorphology, 113-122.

Curry, R.R., 1966. Observation of Alpine mudflows in the Tenmile Range, central Colorado. GeoL Soc. Am. Bull., 77, 771-776

Kim, H.M., 1974a. Paleocurrent analysis of the Yeongdong Group, Southern Korea. Jour. Geol. Soc. Korea, 10, 1-24.

Kim, H.M., 1974b. Sedimentation of the Yeongdong Group, southern Korea. Jour. Geol. Soc. Korea, 10, 225-244.

Kim, J.H., Lee, J.Y. and Kee, W.S., 1994. Structural evolution of the Cretaceous Puyeo Basin, Korea, Jour. Geol. Soc. Korea, 30, 182-192.

Lee, D.W. and Paik, K.H., 1989. Sedimentological characteristics along Yongdong iault zone in Cretaceous Yongdong Basin, Korea. Jour. Geol. Soc. Korea, 25, 259-272.

Lee, D.W. and Paik, K.H., 1990. Evolution of strike-slip fault-controlled Cretaceous Yongdong Basin, : Sings of strike-slip tectonics during infilling. Jour. Geol. Soc. Korea, 26, 257-276.

Lee, D.W., 1990. Sedimentation and tectonic evolution of the Cretaceous Yongdong basin, Korea. Unpublished Ph.D. thesis, Korea University, 273p.

Lee, D.W., Chi, J.H. and Lee, K.C., 1991. Stratigraphy of the strike- slip fault-controlled Yongdong Basin, Korea: A genetic study in the northern part of the basin. Jour. Geol. Soc. Korea, 27, 246-258.

— 66 — Li, Z-W., 1988, fossil charophytes of the Zhidan Group from the western border of the Ordos Basin. Acta Micropalaeontologica Sinica, 5, 283-295.

Liu, J-Y., 1984, (4) Charophyte in paleontological Atlas of North China. (HI. Micropalaeontological volume), Geological publishing house, 265-313.

Musacchio, E., 1972, Charophytas de la formacidn Yacoraite en tres Cruces y Yavi Chico, Jujuy. Argentina. Ameghiniana 9, 223-237.

Musacchio, E., 1973, charophytas y ostracodes no marinos del Group NeuquenCCretacico superior) en algunos afloramientos de las . provicias de rio Negro y Neuquen, Republica Argentina, la revista del Museo de la PlataCNueva Serie), Seccidn Paleontologia, tomo VIII, 1-32.

Musacchio, E., 1981, South American and Cretaceous Formanimifera, Ostracoda and Charophyta of Andean and sub-Andean regions. Cuencas sedimentaiias del jurisico y Cretdsico del Sur, 2, 461-498

Nemee, W. & Steel, R.J., 1984. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. In: Koster, E.H. & Steel, R.J., Eds., Sedimentology of Gravels and Conglomerates. Can. Soc. Petrol. Geologists, Mem. 10, 1-32.

Peck, R.E., 1957. North America Mesozoic Charophyta. Geological survey Professional Paper, 294-A, 43p.

Pierson, T.C., 1981. Dominant particle support mechanisms in debris flows at ML Thomas, New Zealand, and implications for flow

-67- mobility. Sedimentology, 28, 49-60.

Postma, G., 1986. Classification for sediment gravity-flow deposits based on flow conditions during sedimentation. Geology, 14, 291-294.

Rhee, C.W., Ryang, W.H. and Chough, S.K., 1993. Contrasting development patterns of crevasse channel deposits in Cretaceous alluvial successions, Korea. Sedi. Geol., 85, p.401-410

Ryang, W.H., 1994. Architectural development of stream-domianted alluvial fan, Eumsung Basin (Cretaceous), Korea. Unpublished M.Sc. thesis, Seoul Natl University, 328p.

Shimamura, S., 1925, Geological Map of Chosun, Yongdong and Cheongsan Sheet (1/50,000), Geological survey of Chsun.

Shultz, A.W., 1984. Subaerial debris-flow deosition in the Upper Paleozoic Culter Formation, western Colorado. Jour. Sed. Petrol., 54, 759-772.

Soulfe-Marsche, L, 1994, The paleoeclogical implications of the charophyte flora of the Trinity Division, junction, Texas. Jour. Paleont., 68, 1145-1157

Swain, f.W. & Brown, D.M., 1972, Lower Cretaceous, Jurassic(?), and Ostracoda from the Atlantic Coastal Region. Geological Survey Professional Paper 795, 55p.

Wang, S., Huang, R-J., wang, Z., Lin, X-D., Zhang ,Z.-R., 1982, Cretaceous and Cenozoic charophytes from Jiangsu. Geological Publishing House, 66p.

Wang, S., Lu, H-N., Zhao, C-B., 1985, Cretaceous charophytes from Songliao Basin and Adjacent areas. Heilong Science Press, 80p.

-68 - Wang, Z., 1978, Cretacous charophytes from the Yangtze-Han River Basin with a note on the classification of Porocharaceae and Characeae. memoirs of Nanjing institute of Geology and Palaeontology, 9, 61-88.

Wang, Z., 1981, Mesozoic charophytes from Anhui and Zhejiang with its stratigraphic significance. Acta. Palaeonotologica Sinica, 20, 311-323.

Winn, R. D., Jr. & Dott, R.H., Jr., 1977. Large-scale traction-produced structures in deep-water fan-channel conglomerates in southern Chile. Geology, 5, 41-44.

-69- Explanation of Plates

Plate 1 Occurrence : Dongjongri Formation 1, 2, 4, Mesochara ameghinoi, lateral view, xlOO, 3. Charophyta stem fossil 5. Mesochara ameghihoi, apical view, x!20 6, 7, 8, 9, Feistiella praemmdula, lateral view, xl20, x!20, x!20, x!30.

Plate 2 Occurrence : Dongjongri Formation 1, 2, 3, 4, Feistiella praemundula, lateral view, x!30, x!50. 5, Mesochara ameghinoi, apical view, xl56 6, Mesochara ameghinoi, lateral view, xl56 7, Mesochara sp. lateral view, x!56

Plate 3 Occurrence : Dongjongri Formation 1, 2, 3, Candona sp. 2, left valve, x78, x65, x81 4, 5, Candona sp. 1, right valve, left valve, x81, x78 6. Darwinukft sp. , left valve, x71, Saniri Formation 7. Fabanella ? sp. right valve, x65 8. Candona sp. 1, right valve

Plate 4 Occurrence ; Sonyoudong Formation 1, 2, 3, 4, Sphaerochara sonyouensis n. sp., lateral view, x!63, 170, xl94, xl86 5,6. Sphaerochara sp. Soulfe-Marsche, 1994, xl86, xl56

— 70 — PLATE 1

-71- PLATE 2

-72-

:'L. 1. 73 PLATE 4

— 74 — 71- 4- M □

i

75

CONTENTS

Morphology of Conodont Idiognathodus

Classification of Conodont

List of Conodonts Cnathodus sp. Idiognathodus claviformis Gunnell, 1931 Idiognathodus dellcatus Gunnell. 1931 Idiognathodus magnificus Stauffer & Plummer, 1932 Idiognathodus parvus (Dunn, 1967) Idiognathodus sinuosus Ellison & Graves, 1941 Neognathodus bothrops Merri11, 1972 Spathognathodus minutus (Ellison, 1941) Streptognathodus gracilis Stauffer & Plummer, 1932 Streptognathodus eiongatus Gunnel1, 1933

Morphology of Fusulinids

Classification of Fusulinids

List of Fusulinids Hilierella variabilis Hauser, 1951 (In Rauser-Chernoussova, 1951) Eostaffeila subsoiana Sheng, 1958 Eostffelia ikensis Vissarionova, 1948 Ozawainella vozhgalica Safonova, 1951 (In Rauser-Chernoussova, 1951) Ozawainella vozhgalica Safonova, 1951 (In Rauser-Chernoussova, 1951) Schubertella obscula Lee et Chen, 1930 Profusuiinella fukujiensis Igo, 1957 Profusulineila aljutovica Rauser, 1951 (In Rauser-Chernoussova, 1951) Wedekindeilina dutkevitchi Rauser et Beljaev, 1951 (In Rauser-Chemoussova, 1951) Fusiella typica var. extensa Rauser, 1951 (In Rauser-Chernoussova, 1951) Taizehoella taizehoensis Sheng, 1951 Verella sp. Pseudostaff el la kimi Cheong, 1973 Hanostafella dogensis (Cheong, 1973) Hanostafeila eagna (Cheong, 1974) Hanostafel la hanensis (Cheong, 1973)

-77- Hanostafella papilioformis (Cheong, 1973) Xenostafella koreaensis Cheong, 1973 Fusulinella laxa Sheng, 1958 Fusulinella soni Cheong, 1973 Beedeina acuta (Lee, 1927) Fusulina danyangensis Cheong, 1974 Protiticites sp. Schwagerina yeongweolensls Cheong & Lee, 1983 Schwagerina campa Thompson, 1954 Pseudofusulina compllcata Iacetiformis Miklucho-Maclay, 1949 Pseudofusul ina sp. Pseudo fusul ina hexagonarla Igo, 1964 Quasi fusulina longissim praecursor Rauser -Chernoussoua, 1951 Quasi fusulina nacharensls Cheong, 1977 Quasi fusulina inusitata magna Cheong, 1977 Pseudoschwagerina paraborealis Han, 1975

%

-78- Morphology of conodont Idiognathodus

(P element) (O element) accessory lobe cusp

posterior

anterior ■k anterior process

canna

cusp

posterior cusp posterior process

(As element) (N element)

lateral process

cusp posterior process Antero­ lateral (Az element) process Antero­ (Ai element) lateral process

-79- • Classification of CONODONT

Phylum Conodonta ^------Class Conodonta

— Order Paraconodontida

— Superfamily Amphigeisinacea

— Superfamily Fumishinacea

— Order Conodontophorida

— Superfamily Proconodontacea

— Superfamily Fryxellodontacea

— Superfamily Prioniodontacea

— Superfamily Chirognathacea

— Superfamily Panderodontacea

— Superfamily Distacodontacea

— Superfamily Hibbardellacea

— Superfamily Gondolellacea

— Superfamily Polygnathacea

— Superfamily Unknown

-80- Gnathodus sp.

Shape regular sub-rectangular outline of blade in lateral view, the regular height and thickness of the confluent denticles which make up the blade. The platform asymmetrical in detail, denticles fused to about the top height.

Idiognathodus claviformis Gunnel 1, 1931

Lower Sadong Formation

Middle Pennsylvanian

Samcheog Coal Field

x75

Outline of platform in oral view broad, stout, lanceolate, posteriorly rounded, greatest width near anterior one third: accessory lobes on both sides of platform, inner lobe larger: surface of lobes nodose, nodes vary from six to 25 on each lobe: transverse section of oral surface flat to slightly convex: oral surface ornamented

-81- with discontinuous transverse ridges with a variable number of irregularly spaced nodes: margins of platform commonly well rounded: blade of average length consisting of 10 to 16 denticles continued only a short distance posteriorly on the platform as a carina: carina may or may not be set off from anterior edges of platform by sulci: aboral cup commonly ornamented with well defined radiating undulations.

Idiognathodus claviformis Gunnell, 1931

Lower Sadong Formation

Middle Pennsylvanian

Samcheog Coal Field

x 50

-82- • Idiognathodus delicatus Gunnell, 1931

Platform in upper view is long, laceolate, and tapers posteriorly. Upper surface is ornamented by parallel transverse ridges, which may or may not be transected by a shallow trough. Accessory nodes and lobes may be present. Free blade is long and widest at base of denticles: it bears 10 or more laterally compressed fused denticles, which are free at the tips. Carina extends only short distance onto platform. Large flaring basal cavity extends anteriorly as groove along the lower surface of the free blade.

Idiognathodus delicatus Gunnell, 1931

Hongjeom Formation

Early-Late Pennsylvanian

Samcheog Coal Field

x85

-83- Idiognathodus delicatus Gunnell, 1931

Lower Sadong Formation

Early-Late Pennsylvanian

Samcheog Coal Field

x 80

Idiognathodus delicatus Gunnel 1, 1931

Lower Sadong Formation

Early-Late Pennsylvanian

Samcheog Coal Field

x 120

-84- Idiognathodus deJicatus Gunnell, 1931

Hongjeom Formation

Early-Late Pennsylvanian

Samcheog Coal Field

x 80

Idiognathodus dellcatus Gunnell, 1931

Lower Sadong Formation

Early-Late Pennsylvanian

Samcheog Coal Field

x 75

— 85 — Idiognathodus delicatus Gunnell, 1931

Hongjeom Formation

Early-Late Pennsylvanian

Samcheog Coal Field

x 70

Idiognathodus delicatus Gunnell, 1931

Hongjeom Formation

Early-Late Pennsylvanian

Samcheog Coal Field

x 95

l.

-86- Idiognathodus delicatus Gunnell, 1931

Lower Sadong Formation

Early-Late Pennsylvanian

Samcheog Coal Field

x 60

Idiognathodus nagnificus Stauffer & Plummer, 1932

Lower Sadong Formation

Early-Late Pennsylvanian

Samcheog Coal Field

x 65

A robust specimen in which the oral surface is flat or nearly so, tapering to a point at the anterior, and marked by about a dozen transverse and nearly parallel ridges. About midway along the oral surface the cross-ridges cease, and two longitudinal ridges, often nodes bearing and seemingly representing the outer ends of the cross-ridges, curve down on each side to the base of the bar. At this same point where the cross-ridges cease the oral surface is much expanded on both sides by the numerous papollae. The base flares out

-87- beneath the flat oral portion, and its under side has a prominent cavity, which narrows into a groove that extends along the base of the slender bar. Bar bladlike, its upper surface bearing twelve to fourteen partly fused denticles.

Idiognathodus magni ficus Stauffer & Plummer, 1932

Hongjeom Formation

Early-Late Pennsylvanian

Samcheog Coal Field

x 90

Idiognathodus parvus (Dunn, 1967)

Hongjeom Formation

Early-Middle Pennsylvanian

Samcheog Coal Field

x 140

The platform is almost straight, subsymmetrical and long. In upper view two to three rows of ridges are aligned parallel to the long axis of platform on anterior portion of platform. There are four to six transverse ridges developed on posterior half of the platform in median position. The basal cavity is symmetrical and somewhat shallower than - 88 - other species of the genus Idiognathodus.

Idiognathodus parvus (Dunn, 1967)

Hongjeom Formation

Early-Middle Pennsylvanian

Samcheog Coal Field

x 130

Idiognathodus parvus (Dunn, 1967)

Hongjeom Formation

Early-Middle Pennsylvanian

Samcheog Coal Field

x 150

-89- Idiognathodus parvus (Dunn, 1967)

Hongjeom Formation

Early-Middle Pennsylvanian

Samcheog Coal Field

x 170

Idiognathodus sinuosus Ellison & Graves, 1941

Hongjeom Formation

Early Pennsylvanian

Samcheog Coal Field

x 70

Outline of platform in oral view, long, slender, sinuous, posteriorly pointed, greatest width near midlength: accessory lobes on inner margin mostly anterior to junction of blade and platform: transverse section of oral surface flat: oral surface ornamented with 10 to 14 parallel transverse ridges complete from one margin to the other, normal or slightly obiique to axis. Blade of average length ending abruptly against the first continuous transverse ridge: set off from the platform on either side by deep, laterally constricted sulci so that lateral margins of the anterior portion of the platform extend as free edges.

— 90 — Idiognathodus sinuosus Ellison & Graves, 1941

Hongjeom Formation

Early Pennsylvanian

Samcheog Coal Field x 70

Idiognathodus sinuosus Ellison & Graves, 1941

Hongjeom Formation

Early Pennsylvanian

Samcheog Coal Field x 90

s

-91- Idiognathodus sinuosus Ellison & Graves, 1941

Hongjeom Formation

Early Pennsylvanian

Samcheog Coal Field

x 75

i.

Neognathodus bothrops Merrill, 1972

Lower Sadong Formation

Early- early Middle Pennsylvanian

Samcheog Coal Field

x 85

Unit slightly bowed in oral view: blade relatively straight: platform lanceolate, greatest width in anterior one-third, pointed to acutely rounded posteriorly: blade continued posteriorly on platform as fairly straight carina composed of a series of rounded to slightly compressed nodes, less evenly spaced posteriorly: outer row of nodes parapet-like, essentially parallel to carina, consisting of discrete, transversely extended nodes that decrease in width toward the carina, producing wedge-shaped nodes, dying out into depressed area bordering carina: inner row of nodes most commonly like outer row, in some specimens the wedge-like shape of nodes causes inner row to become more

-92- like transverse ridges than nodes, resulting in a radial, fan-like pattern; both rows of nodes converge sharply or gradually to meet posterior terminus of carina, fuse with it, and produce single node that forms carina. Continuous nodose rows produce high parapet outlines in lateral view, as high or higher than carina, platform commonly being as high as wide with vertical to slightly overhanging sides and rear: blade high and strong, highest denticles located in anterior one-third. In aboral view basal cavity wide, widest in anterior one-third, deep, deepest near widest point, bordered by thin, shelf-like flanges, basal cavity continues anteriorly as groove on aboral edge of blade.

Neognathodus bothrops Merrill, 1972

Hongjeom Formation

Early-early Middle Pennsylvanian

Samcheog Coal Field

x 110

Spathognathodus ainutus (Ellison, 1941)

Hongjeom Formation

Early-Late Pennsylvanian

Samcheog Coal Field

x 95

-93- The unit is large, robust and moderately arched in lateral view. The lower margin is strongly concave upward in posterior region which is occupied by the basal cavity. The anterior edge of the process makes an acute angle with the aboral margin. The cusp is triangular in shape and generally twice as long as other denticles and four to five times as wide. The upper side of the process consist of usually fewer than 12 denticles. In lower view, the basal cavity is deepest and widest at anterior portiorrowing posteriorly.

Streptognathodus gracilis Stauffer it Plummer, 1932

Hongjeom Formation

late Middle-Late Pennsylvanian

Samcheog Coal Field

x 120

Plate slender, lanceolate, straight or nearly so and surface furrow of medium to shallow depth: lateral ridges twelve to eighteen or possibly more. The outer ends of these form ridges which curve or roll downward at the base of the plate and disappear just below the lower end of the denticles. Shelf processes are narrow and bear a single denticle on one or both sides. Bar with a dozen or more denticles fused along their sharp margins except at the upper ends. The bar terminates in the lower third of the plate. Under surface of the plate with a broad flaring cavity, which narrows to a groove along the under side of the bar.

— 94 — Streptognathodus elongatus Gunnel 1, 1933

Hongjeom Formation

Late Pennsylvanian

Samcheog Coal Field

x 120

Outline of platform in oral view very long, slender, lanceolate, slightly flexed, posteriorly pointed, greatest width near mid-length: if accessory lobe is present it commonly has only one or two nodes: transverse section of oral surface deeply V-shaped: oral surface ornamented with 10 or more parallel transverse ridges ending abruptly in the oral trough: blade of average length consisting of 10 to 18 denticles continued posteriorly as a carina in the oral trough for about one-fourth the length of the platform: row of nodes posterior to the carina generally absent: carina set off from platform on either side by deep sulci that merge into the trough posteriorly so that lateral margins of the anterior portion of the platform extend as free edges.

Streptognathodus gracilis Stauffer & Plummer. 1932

Hongjeom Formation

late Middle-Late Pennsylvanian

Samcheog Coal Field

x 120

— 95 —

j Morphology of Fusulinidis

Axial section septa fluted throughout

t.

Sagittal section

— 96 — CLASSIFICATION OF FUSULINA

Order Foraminiferida

Suborder Fusulinina

Superfamily Fusulinacea

Family Ozaqainellidae

Family Staffelidae

Family Fusulinidae

— Subfamily Schubertellinae

— Subfamily Fusulininae

— Subfamily Schwagerininae

Family Verbeekinidae

— Subfamily Verbeekininae

— Subfamily Neoschwagerininae

-97- Millerella variabilis Rauser, 1951 (In Rauser-Chemoussova, 1951)

Upper Geumcheon Formation middle Late Samcheog Coal Field x 67

Shell small, rounded form. 0.08-0. 09nn in length, 0.32-0.36 in width: form ratio 0.24-0.26. Periphery straight to slightly convex. Number of volutions 3.5-4. Spirotheca composed of a tectum, upper and lower tectoria , septa nearly plane. Chomata developed very weakly. Tunnel narrow, outside diameter of proloculus 0.03mm

Hi Here] la variabilis Rauser, 1951 (In Rauser-Chemoussova, 1951)

Middle Manhang Formation middle Early Carboniferous Samcheog Coal Field x 67

Eostaffella subsolana Sheng, 1958

Lower Manhang Formation middle Early Carboniferous Samcheog Coal Field x 33

Shell small, lenticular, 0.24-0.30mm in length, 0.44-0.56 in width: form ratio 0.53-0.61. Periphery round, lateral slopes straight to convex, axial ends slightly convex. Spirotheca thin, composed of a tectum, upper and lower tectoria. Spire expanding gradually. Number of volutions 5-6. Chomata weak, but pseudochomata developed. Outside diameter of proloculus 0.02mm

Eostffella ikensis Vissarionova, 1948

Lower Yobong Formation middle Early Carboniferous Yeongweol Coal Field x 33

-98-

■t, Shell small, rounded to lenticular, 0.38-0. 54mm in length, 0.52-0.74 in width: form ratio 0.51-0.84. Periphery angular, lateral slopes straight to slightly convex, axial ends slightly convex. Spirotheca thin, composed of a discontinuous tectum, upper and lower tectoria. Spire expanding gradually. Number of volutions 4-5. Chomata weak, but pseudochomata developed. Outside diameter of proloculus 36u.

Ozawainella vozhgalica Safonova, 1951 (In Rauser-Chemoussova, 1951)

Upper Geumcheon Formation middle Late Carbon!ferous Samcheog Coal Field x 27

Shell small, 0.40-0.46mm in length, 1.0-1.1 in width: form ratio 0.40-0.41. Periphery pointed, lateral slopes straight to slightly convex. Spirotheca thin, composed of a distinct tectum, upper and lower tectoria. Spire expanding gradually. Number of volutions 5. Chomata developed. Outside diameter of proloculus 0.04mm.

Ozawainella vozhgalica Safonova, 1951 (In Rauser-Chemoussova. 1951)

Lower Geumcheon Formation middle Late Carbon!ferous Samcheog Coal Field x 27

Schubertella obscula Lee et Chen, 1930

Manhang Formation middle Early Carboniferous Samcheog Coal Field x 33

Shell very minute, ellipsoidal to subellipsoidal, but sometimes fusiform in shape. 0.21 to 0.38mm in length, 0.2-0.23mm in width: form ratio 1.05-1.58. Periphery convex, and polar regions bluntly pointed. Number of volutions 2.5-3.5. Axis of coiling straight. Spirotheca composed of a tectum, upper and lower tectoria. Chomata distinct, about 1/3 to 1/2 as high as the chamber in the first to second volutions. Tunnel angle 25 degrees on the second volution. Outside diameter of proloculus moderately large.

Profusulinella fukujiensis Igo, 1957

Middle Yobong Formation middle Early Carboniferous Yeongweol Coal Field x 20 .

Shell small, subelliptical with highly inflated median regions. Lateral slopes slightly convex, axial regions rounded. Inner two volutions spherical or subspherical in shape, outer ones elliptical or subelliptical. Spirotheca composed of tectum, upper and lower tectoria. Height of volutions increasing gradually. Septa nearly plane. Tunnel angles 10 to 15 degrees in the third and fourth volutions. Chomata well developed, nearly symmetrical, and their tunnel side steep but poleward sloping away.

Profusulinella aljutovica Hauser, 1951 (In Rauser-Chemoussova, 1951)

Middle Yobong Formation middle Early Carbon!ferous Yeongweol Coal Field x 20

Shell small, thickly fusiform. Peiphery inflated, lateral slopes slightly concave, with rounded or pointed axial ends. The first one or two volutions are staffelloid. Spirotheca very thin, composed of a tectum, upper and lower tectoria. Septa completly straight in the central portion, weakly folded in the axial regions. Chomata massive, rounded or subquadrate. Tunnel angles 25 to 35 degrees on the third and fourth volutions, respectively.

— 100 — Wedekindellina dutkevitchi Rauser et Beljaev, 1951 (In Rauser-Chemoussova, 1951)

Upper Geumcheon Formation middle Late Carboniferous Samcheog Coal Field x 13

Shell small to medium. 2.48-3. 05mm in length. 0.55-0.63 in width: form ratio 4.5-4.9. Periphery slightly convex, lateral slopes straight to slightly convex, axial ends slightly convex. Spirotheca very thin, composed of a weakly developed tectum and tectoria. Spire expanding gradually. Number of volutions 7. Chomata weak. Outside diameter of proloculus 0.02mm.

Wedekindellina dutkevitchi Rauser et Beljaev, 1951 (In Rauser-Chemoussova, 1951)

Upper Geumcheon Formation middle Late Carboniferous Samcheog Coal Field x 13

Fusiella typica var. extensa Rauser, 1951 (In Rauser-Chemoussova, 1951)

Upper Geumcheon Formation middle Late Carboniferous Samcheog Coal Field x 13

Shell small, 1.43mm in length, 0.38mm in width: form ratio 3.8. Periphery angular, lateral slopes straight to slightly convex, axial ends pointed. Spirotheca thin, composed of a discontinuous tectum, upper and lower tectoria. Spire expanding gradually. Number of

- 101- volutions 4. Chomata well developed, tunnel low and narrow.

Taizehoella taizehoensis Sheng, 1951

Upper Yobong Formation middle Early Carboniferous Yeongweol Coal Field x 13

Shell small, caltrop-like in shape, 1.47 to 1.70 mm in length, 0.77 to 0.97mm in width, form ratio 1.75 to 1.91. Periphery highly inflated, lateral slopes concave, with a bluntly pointed axial ends. Inner two volutions coiling at large angles to the outer volutions. Spirotheca very thin, composed of a tectum and a relatively thicker protheca. Septa plane at the median region, but folded at the axial regions. Inner two volutions coiling tightly, but outer ones coiling loosely. Chomata prominent.

Taizehoella taizehoensis Sheng, 1951

Upper Yobong Formation middle Early Carboniferous Yeongweol Coal Field x 13

Verella sp.

Lower Pangyo Formation middle Late Carboniferous Yeongweol Coal Field x 13

Shell large, cylindrical. 5.2mm in length, 0.75mm in width: form ratio 6.93. Periphery very slightly depressed, lateral slopes straight with narrowly rounded polar ends. Number of volutions 3.5. Height of chambers increasing gradually. Spirotheca composed of tectum and protheca. Septal folding developed from the polar regions to the periphery, but not the reaching the tunnel. Chomata developed weakly and inconstantly. Axis of coiling slightly curved in the inner three volutions, but moderately curved at the polar regions in the outermost volution. Axial filling heavy along the axial regions.

- 102- Pseudostaff el la kirn Cheong, 1973

Lower Geumcheon Formation middle Late Carboniferous Samcheog Coal Field x 23

Shell small, drum shape. 0.55mm in length, 0.75mm in width: form ratio 0.73. Periphery nearly straight in the inner three volutions, but concave with concavity 0.88 in the outermost volution. Lateral slopes straight to slightly convex, umbilical region slightly concave with concavity of 0.85. Number of volutions 5. Height if volutions increasing gradually: coiling loosely. Spirotheca composed of tectum, upper and lower tectoria. Chomata prominent and reaching 3/4 or more as high as the respective chambers. Tunnel angles about 20 degrees.

Pseudostaff el la kimi Cheong, 1973

Lower Geumcheon Formation middle Late Carboniferous Samcheog Coal Field x 23

Pseudostaffella kimi Cheong, 1973

Upper Manhang Formation middle Early Carboniferous Samcheog Coal Field x 23

Hanostafella dogensis (Cheong, 1973)

Upper Geumcheon Formation middle Late Carboniferous Samcheog Coal Field x 23

Shell small, drum shape, 0.63-0.66mm in length, 0.95-1. 05mm in width: form ratio

- 103- 0.63-0.66. Periphery angular, lateral slopes concave ends slightly convex. Spirotheca thin, composed of a discontinuous tectum, upper and lower tectoria. Spire expanding gradually. Number of volutions 5-5.5. Chomata well deveploed, tunnel narrow and low. Outside diameter of proloculus 0.08mm.

Hanostafella dogensis (Cheong, 1973)

Middle Geumcheon Formation middle Late Carboniferous Samcheog Coal Field x 23

Hanostafella magna (Cheong, 1974)

Upper Geumcheon Formation middle Late Carboniferous Danyang Coal Field x 13

Shell small, thickly lenticular in shape, 0.5 to 0.6mm in length, 1.22 to 1.40mm in width: form ratio 0.41 to 0.46. Periphery pointed or bluntly pointed, lateral slopes straight or slightly convex or slightly concave, axial regions straight or slightly depressed. Number of volutions 5 to 6. Spirotheca composed of a tectum, upper and lower tectoria. Chomata thick near the tunnel, but a little thicker ribbons of chomata continuing toward the poles.

Hanostafella hanensis (Cheong, 1973)

Lower Geumcheon Formation middle Late Carbon!ferous Samcheog Coal Field x 13

— 104 — Shell small, drum shape. Middle periphery slightly concave from fifth to the last volution with concavity 0.94 in the last volution, lateral periphery semicircular, not pointed and lateral slopes straight to slightly convex. Umbilical regions broadly concave from fifth to the last volution with concavity of 0.8 in the last volution. 1.07mm in length, 1.62mm in width: form ratio 0.66. Number of volutions 7.5. Height of volutions increasing very slowly, coiling rather tight. Spirotheca composed of a tectum, upper and lower tectoria in the inner four volutions, but diaphanotheca appeared intermittently form the fifth volution. Tunnel angles 13 to 15 degrees of the fifth and sixth volutions. Chomata crescent, ribbon-1ike in most cases, reaching one-half as high as the chambers, but massive in the lateral periphery, reaching 3/4 as high as the chambers.

Hanostafella hanensis (Cheong, 1973)

Upper Geumcheon Formation middle Late Carboniferous Samcheog Coal Field x 13

Hanostafella hanensis (Cheong, 1973)

Upper Geumcheon Formation middle Late Carboniferous Samcheog Coal Field x 13

Hanostafella hanensis (Cheong, 1973)

Upper Geumcheon Formation middle Late Carboniferous Samcheog Coal Field x 13

s

— 105 — Hanostafella papilioformis (Cheong, 1973)

Middle Geumcheon Formation middle Late Carton!ferous Samcheog Coal Field x 23

Shell small, drum shape, showing X-letter. 1.05 to 1.35 in length, 1.30 to 1.70mm in width:form ratio 0.77 to 0.81. Middle periphery concave from third to last volution, with concavity of 0.81 to 0.89 in the outermost volution. Lateral slopes generally straight or slightly convex. Umbilical regions concave with concavity of 0.80 to 0,89 in the outermost volution. Number of volution 6.5 to 8. Spirotheca composed of tectum, upper and lower lectori a in the inner four volutions, but four layers from the fifth volution. Septa plane. Tunnel angles 15 to 25 degrees in the fourth and fifth volutions. Chomata bluntly pointed and thickest in the lateral periphery, reaching three-fourth or more as high as the chambers, extending to poles decreasing the height, and sloping down toward the tunnel. Outside diamnter of proloculus 70 to 75u.

Hanostafella papilioformis (Cheong, 1973)

Middle Geumcheon Formation middle Late Carboniferous Samcheog Coal Field x 23

— 106 — Hanostafella papilioformis (Cheong, 1973)

Upper Geumcheon Formation middle Late Carboniferous Samcheog Coal Field x 23

Xenostafella koreaensis Cheong, 1973

Upper Geumcheon Formation middle Late Carbon!ferous Danyang Coal Field x 23

Shell small, lenticular, 0.85-1. 05mm in length, 1.65-1.95 in width: form ratio 0.52-0.54. Inner periphery concave, concavity 1.10-1.24, outer periphery lenticular, lateral slopes straight to slightly convex, axial ends slightly convex. Spirotheca thin, composed of a tectum, diaphanotheca, upper and lower tectoria. Spire expanding gradually. Number of volutions 7-8. Chomata half-circle, twisted, tunnel dish in shape and tunnel angle large. Outside diameter of proloculus 0.1mm.

Fusulinella laxa Sheng, 1958

Upper Pangyo Formation middle Late Carboniferous Yeongweol Coal Field x 13

- 107- Fusulinella soni Cheong, 1973

Upper Geumcheon Formation middle Late Carboniferous Samcheog Coal Field x 13

Shell medium, rounded, 5.67-5.80mm in length, 1.37-1.53 in width: form ratio 3.35-3.65. Periphery convex to straight, lateral slopes straight to slightly convex, axial ends slightly convex. Number of volutions 4.5. Chomata distinct, tunnel angle wide to 80-90 degrees. Outside diameter of proloculus 0.20mm.

Beedelna acuta (Lee, 1927)

Upper Pangyo Formation middle Late Carbon!ferous Yeongweol Coal Field x 13

Shell large, elongate fusiform to elongate subrhomboidal in the outer shape. However, from the first to the outer volutions test change: subrhomboidal (1st volution), subrhomboidal or elongate subrhomboidal(2nd-5th volutions). Lateral slopes nearly straight. Axial regions bluntly pointed to rounded in the inner five volutions, but pointed in the outer volutions. Spirotheca moderately thick, composed of a tectum diaphanitheca, upper and lower tectoria. Septa of the same thickness as the spitotheca and spetal folding intense and high. Tunnel narrow and high. Tunnel angles 10 degrees from the third to the sixth volution. Chomata very masive, subquadrate and their height 3/4 as high as the chamber.

-108- Beedeina acuta (Lee, 1927)

Upper Pangyo Formation middle Late Carboniferous Yeongweol Coal Field x 13

Fusulina danyangensis Cheong, 1974

Upper Geumcheon Formation middle Late Carboniferous Danyang Coal Field x 10

Shell large, elongate-cylindrical. Periphery almost curved, but sometimes stright. Lateral slopes nearly straight, with narrowly rounded axial ends. Height of the chamber Increasing very gradually. Spirotheca composed of a tectum, diaphanotheca, upper and lower tectoria. Septa rather regularly folding in the periphery, forming semicircular loops, reaching 2/3 to the ceiling of the chamber. Chomata weakly developed, semicircular on the first volution, beginning with the second volution, replaced by discontinuous and irregular shaped pseudochomata, and disappear in the last one or two volutions. Axial filling heavy along the axial regions of the inner four volutions. Some cuniculi-like long ellipse-form at the polar regions.

Protiticites sp.

Upper Geumcheon Formation Late Carboniferous Samcheog Coal Field x 6

— 109 — Protiticites sp.

Upper Geumcheon Formation Late Carboniferous Samcheog Coal Field x 6

Schwagerina yeongweolensis Cheong & Lee, 1983

Lower Bamchi Formation Early Yeongweol Coal Field x 6

Shell small, elongate fusiform, Periphery gently convex, lateral slopes almost straight with narrowly rounded or bluntly pointed polar ends. Axis of coiling straight ot slightly curved. The inner three volutions tightly coiled. Spirotheca thin, composed of a tectum and a keriotheca. Septal fluting broad or very weak in the median regions. Chomata developed in the inner volutions, changing into pseudochomata in the outer volutions. Slight axial filling in the axial regions of the inner volutions.

Schwagerina yeongweolensis Cheong k Lee, 1983

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Schwagerina campa Thompson, 1954

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Shell small, elongate fusiform or subcylindrical. Axis of coiling straight or curved. Median region slightly convex, with blunt polar ends. Lateral slopes irregular or straight. The inner three volutions rapidly increase their height and length to form elongate fusiform. Spirotheca thin and composed of a thectum and a keriotheca. Septa broadly and weakly folded across the tunnel areas, highly and irregularly fluted in the polar regions. Distinct chomata small in the inner volutions, but changing into pseudochomata in the outer volutions. Slight axial filling in the axial regions of the - no- inner volutions.

Pseudofusulina cooplicata lacetiforais Miklucho-Maclay, 1949

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Shell large, elongate fusiform. Periphery gently convex and lateral slopes nearly straight, with narrowly rounded polar ends. Height of volutions increasing gradually. Length of diameter increasing rapidly beyond the 4th volution. Spirotheca thin, 70 -90u in outer volutions, composed of a tectum and a fine alveolar keriotheca, partly developing pebbled surface of the tectum. Septal folding high and somewhat coarse in the median portion. Phrenotheca often observed. Axial filling distinct in the axial regions of the inner two or three volutions.

— Ill — Pseudofusulina conplicata lacetiformis Miklucho-Maclay, 1949

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Shell large, irregularly subcylindrical, axis of coiling curved. Median region nearly straight, lateral slopes slightly convex, and polar ends rounded. Early volutions tightly coiled with inflated fusiform and pointed ends, though the shell elongately fusiform in the outer volutions. Height of volutions increasing gradually. Spirothca thin, composed of a thin tectum and a fine alveolar keriotheca. Pebbled appearance developing on the surface of spirotheca. Length increasing rapidly from the third volution. Septal fluting irregular, septal folding rather compact and high. Phrenotheca often observed. Chomata indistinct except on the proloculus. Axial filling slight in the axial regions of the inner volutions.

-112- Pseudofusulina hexagonaria Igo, 1964

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Shell large, subhexagonal fusiform. Periphery straight and lateral slopes nearly straight to slightly convex with broadly pointed ends. Shell rather loosely coiled, inner three volutions increasing the height of chamber conspicuously and outer volutions, containing of thin tectum and alveolar keriotheca. Septa strongly and irregularly fluted throughout the length of the chambers. Chomata lacking. Axial filling not recognized.

Pseudofusulina hexagonaria Igo, 1964

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

— 113 - Quasi fusulina longissima praecursor Rauser-Chemoussoua, 1951

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Shell large, elongated fusiform. Periphery straight, median region slightly depressed, the lateral slopes straight or slightly convex with narrowly rounded polar ends. Number of volutions 6. Coiling tight in the inner volutions, becoming rather loose in the outer volutions. Axis of coiling slightly curved. Spirotheca thin and composed of a tectum and a translucent diaphanotheca, finely perforated in the inner volutions, and the sixth volution covered with very thin tectoria. Septa irregularly and coarsely fluted, reaching 2/3 as high as the chambers.

Quasi fusulina macharensis Cheong, 1977

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Shell large, cylindrical. Peiphery broadly concave, lateral slopes straight or slightly convex with rounded or narrowly rounded polar ends. Axis of coiling nearly straight. Septa thin, coarsely folded in lateral areas. Chomata absent except on the proloculus. Axial filling concentrated in the median region with papilionaceous form.

— 114 — Quasi fusulina mcharensis Cheong, 1977

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Quasi fusulina nacharensis Cheong, 1977

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Quasi fusulina inusitata magna Cheong, 1977

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Shell large, irregularly shaped, median portion constricted, lateral slopes convex and polar ends rounded. Height of chamber low in the first volution, increasing gradually from second to fifth volutions. Axis of coiling curved. Spirotheca thin, composed of a continuous tectum and a translucent diaphanotheca covered with thin tectoria. Septa

- 115- intensely and regularly fluted, forming semicircular loops. Chomata appearing on proloculus only. Axial filling heavy on both sides of proloculus, papilionaceous in form. Proloculus large, subspherical.

Quasifusulina inusitata magna Cheong, 1977

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Quasi fusulina inusitata magna Cheong, 1977

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Quasi fusulina inusitata magna Cheong, 1977

Lower Bamchi Formation

— 116 —

I : . ■ >' ‘ ' Early Permian Yeongweol Coal Field x 6

Quasifusulina inusitata magna Cheong, 1977

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Pseudoscfwagerina paraborealis Han, 1975

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Shell alrge and oval. Median portion convex, with blunt poles. The first volution spherical, coiling around the axis at a right angle to the axis of the outer volutions. The second to fourth volutions fusiform. Spirotheca tightly coiling in the inner three volutions, with sharply pointed poles, but beyond the third volution expanding rapidly with rounded to blunted pointed poles. The height of volutions increasing gradually to in the inner three volutions, but increasing abruptly in the fourth volution and decreasing gradually in the outer volution. Spirotheca thin in the inner six volutions, thicking gradually in the last two volutions. Septa unfluted in the median region, except slight curving and weak folding in the polar regions. Chomata small and distinct in the inner

- 117- three volutions, but weak and random on the outer volutions,

Pseudoschwagerina paraborealis Han, 1975

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

Pseudosch wagerina paraborealis Han, 1975

Lower Bamchi Formation Early Permian Yeongweol Coal Field x 6

t.

118 B •

199# 2E B mW 199# 2E B WVS

MW 30 m®&a m MrA m &

@ f U: 6> # <2 4