<<

Introduction Future Intensity Frontier The Belle II Experiment

Boštjan Golob Introduction University of Ljubljana/Jožef Stefan open questions Institute triple approach & Belle/Belle II Collaboration Intensity Frontier CPV in SM R(D(*)) Direct CPV search University “Jožef Stefan” of Ljubljana Institute Summary & Future Trans European School of High Energy Krvavec, July 2017 Disclaimer: chosen examples subjective choice of lecturer and not comprehensive overview Note: natural units used, =c=1 ( & momentum in eV)

TESHEP, July 2017 B. Golob, Belle II Experiment 1/55 Introduction Future Energy Frontier Open questions Intensity Frontier Open questions in (SM) of electromagnetic, weak and (no, no ...) is one of the most successfull and experimentaly best verified physics theories 1945: W. Pauli 1948: Patrick Maynard Stuart Blackett 1949: 1950: Cecil Frank Powell 1957: Chen Ning Yang, Tsung-Dao (T.D.) Lee 1963: Eugene Paul Wigner 1965: Sin-Itiro Tomonaga, , Richard P. Feynman 1968: Luis 1969: Murray Gell-Mann 1976: , Samuel Chao Chung Ting 1979: , , 1980: Cronin, 1984: , Simon der Meer 1990: Jerome I. Friedman, Henry W. Kendall, Richard E. Taylor 1999: Gerardus 't Hooft, Martinus J.G. Veltman 2004: David J. Gross, H. David Politzer, 2008: , Makoto Kobayashi, 2013: François Englert, Peter W. Higgs ... @ currently achieved energies & measurement precision ....

TESHEP, July 2017 B. Golob, Belle II Experiment 2/55 Introduction Future Energy Frontier Open questions Intensity Frontier Open questions in particle physics Standard model (SM) of electromagnetic, weak and strong interaction (no, no gravity...) is one of the most successfull and experimentaly best verified physics theories 1945: W. Pauli theory:experiment 1948: Patrick Maynard Stuart Blackett 11:7 1949: Hideki Yukawa 1950: 6Cecil Frank Powell # of Nobel prizes in 1957: Chen Ning Yang, Tsung-DaoPhysics (T.D.) for Lee Particle 1963: 5Eugene Paul Wigner Physics / decade 1965: Sin-Itiro Tomonaga, Julian Schwinger, Richard P. Feynman 4 1968: ? 1969: 3Murray Gell-Mann 1976: Burton Richter, Samuel Chao Chung Ting 1979: 2Sheldon Lee Glashow, Abdus Salam, Steven Weinberg

1980: 1James Watson Cronin, Val Logsdon Fitch 1984: Carlo Rubbia, 1990:0Jerome I. Friedman, Henry W. Kendall, Richard E. Taylor 1999: Gerardus1945 't1965 Hooft, 1985Martinus2005 J.G. Veltman2025 2004: David J. Gross, H. David Politzer, Frank Wilczek 2008: Yoichiro Nambu, Makoto Kobayashi, Toshihide Maskawa 2013: François Englert, Peter W. Higgs ... @ currently achieved energies & measurement precision ....

TESHEP, July 2017 B. Golob, Belle II Experiment 3/55 Introduction Future

Intensity Frontier Open questions Open questions in particle physics SM problems: origin of mass: spontaneous breaking  Higgs conservation of unitarity (probability)

W+ g, Z0 W+ W+ e+ W+ + n W- W- e ne W- e- W- E divergent

TESHEP, July 2017 B. Golob, Belle II Experiment 4/55 Introduction Future

Intensity Frontier Open questions Open questions in particle physics SM problems: origin of mass: spontaneous symmetry breaking  conservation of unitarity (probability)

W+ g, Z0 W+ W+ H0 W+ W+ e+ W+ - + n n W W- W- W- + e e W- e- W-

unitary if MH  O(100 GeV)

MH : corrections due to in order for MH  O(100 GeV) M = A - B; A/B = 1 + 10-18 0 0 H H t H + ... “” t

several solutions: , Extra ... “New Physics” (NP)

TESHEP, July 2017 B. Golob, Belle II Experiment 5/55 Introduction Future

Intensity Frontier Open questions Open questions in particle physics SM problems: Matter/ : visible universe – complete matter dominance; one of (Sakharov) conditions – violation of CP symmetry(CPV) in SM - Cabibbo-Kobayashi-Maskawa matrix (CKM) q c c s c s e-if + i Vud Vus Vub 12 13 12 13 13 W Vcd Vcs Vcb = -s12c23 c12c23 s23 X V V V if Vij td ts tb s12s23-c12c23s13e -c12s23 c23c13 qj Measured CPV particles/anti-particles several orders of magnitude too small  new sources of CPV beyond CKM  NP hierarchies: experimentally determined parameters of SM

V V Vud us ub e m t u c t -3 -3 Vcd Vcs Vcb m[GeV]: 0,5 ·10 0,1 1,8 2 · 10 0,1 170

V V td ts Vtb unknown symmetries (NP) @ higher energies?

TESHEP, July 2017 B. Golob, Belle II Experiment 6/55 Introduction Future

Intensity Frontier Open questions Open questions in particle physics not directly related to SM: gravitation: theory of may yield answers about dark matter & dark energy

: not massless, oscillating etc.), (ne ↔nm, what is their mass hierarchy, is there CPV in n sector?

unification: are all interactions equally strong at high

energies? coupling 105 1010 1015 E [GeV]

TESHEP, July 2017 B. Golob, Belle II Experiment 7/55 Introduction Future

Intensity Frontier Open questions Open questions in particle physics Couldn't it just be the Standard Model?

The answer to this question is, unfortunately, yes. If the Higgs boson mass1) is above the LEP lower bound of 114 GeV and below the upper limit from the LHC quoted in Section 9, the SM is self-consistent up to very high energies, all the way to the Planck scale2). Thus, a possible outcome of the LHC experiments could be the end of experimental particle physics. This would leave us in a terrible situation. All of the questions that we have today about the properties of particles within the SM would not only be left unanswered but would be unanswerable.

Michael E. Peskin, Univ. of Stanford, Summary Speech @ 2011, arXiv:1110.3805

1) 2) c 2 18 MH=(125.09 ± 0.24) GeV c  210 GeV 8G TESHEP, July 2017 B. Golob, Belle II Experiment 8/55 Introduction Future

Intensity Frontier Open questions Open questions in particle physics

But every particle needs to confront these ideas and ask: Do I think that this is how Nature works? There is an alternative point of view. We do not know whether it is correct. Nature will choose. That point of view is the optimism that the physics of the Higgs and electroweak symmetry breaking has a mechanism, and that that mechanism will be visible to our experiments at the TeV scale. There is a compelling justification for accepting this idea: Only people who believe in it can make the discovery that it is true.

Michael E. Peskin, Univ. of Stanford, Summary Speech @ Lepton Photon 2011, arXiv:1110.3805

TESHEP, July 2017 B. Golob, Belle II Experiment 9/55 Introduction Future

Intensity Frontier Triple Approach Experimental view triple approach Energy Frontier

origin of mass

hierar- dark chies matter NP

matter/ dark anti-matter neutrinos energy

Cosmic Frontier Intensity Frontier

TESHEP, July 2017 B. Golob, Belle II Experiment 10/55 Introduction Future

Intensity Frontier Triple Approach Experimental view triple approach Energy Frontier

origin of mass

hierar- dark chies matter NP

matter/ dark anti-matter neutrinos energy Cosmic Frontier

Intensity Frontier

TESHEP, July 2017 B. Golob, Belle II Experiment 11/55 Introduction Future

Intensity Frontier Triple Approach Experimental view Energy Frontier triple approach Energy Frontier , pp

, origin of mass pp (LHC)

Intern. Linear Collider, hierar- dark + - chies matter e e (ILC, CLIC) NP LHC upgrade matter/ dark anti-matter neutrinos energy m collider Cosmic Frontier

Intensity Frontier direct search for new particles & processes

TESHEP, July 2017 B. Golob, Belle II Experiment 12/55 Introduction Future

Intensity Frontier Triple Approach Experimental view triple approach Energy Frontier Intensity Frontier super B Factories (Belle II) B Meson factories origin of mass (Belle, BaBar) LHCb upgrade

LHCb (LHC) hierar- dark chies matter experiments neutrino NP : experiments : matter/ dark : anti-matter neutrinos energy : Cosmic Frontier indirects search for Intensity Frontier contribution of new particles and processes to known phenomena

TESHEP, July 2017 B. Golob, Belle II Experiment 13/55 Introduction Future

Intensity Frontier Triple Approach Experimental view energy/intensity frontier

Energy frontier: direct discovery of new particles & processes at colliders with highest achievable energies (E = mc2)

Intensity frontier: NP modifies properties of known phenomena, easisest observable with phenomena very rear within SM Energy frontier Both approaches complementary in discovery & identification of NP Intensity frontier

TESHEP, July 2017 B. Golob, Belle II Experiment 14/55 Introduction Future

Intensity Frontier Triple Approach Experimental view energy/intensity frontier t discovery: B0 meson oscillation measurements V V * d id jb b W+ 0 B u, c, t u, c, t B0 W- b d Vib* Vjd 0 0 2 P(B  B ;t)  sin( mt); m  f (mt )

Z0 →b b rate measurements Measuremens with LEP collider (e+e-), e+ e+ b Z0 b Z0 t E=91 GeV, W+ e- - precursor of LHC; b e t b hadronic jets originating from b  1 1 m2  (Z 0  bb) 110 2   t  can be identified (long t  2   5 2 mZ  of b hadrons) TESHEP, July 2017 B. Golob, Belle II Experiment 15/55 Introduction Future

Intensity Frontier Triple Approach Experimental view energy/intensity frontier t quark discovery: B0 meson oscillation measurements V V * d id jb b W+ 0 B u, c, t u, c, t B0 W- b d Vib* Vjd 0 0 2 P(B  B ;t)  sin( mt); m  f (mt )

Z0 →b b rate measurements Direct t t production + @ Tevatron collider e e+ b Z0 b Z0 t W+ (p p), E=1,8 TeV e- - b e t b hadronic jets originating from b  1 1 m2  (Z 0  bb) 110 2   t  quarks can be identified (long t  2   5 2 mZ  of b hadrons) TESHEP, July 2017 B. Golob, Belle II Experiment 16/55 Introduction Future

Intensity Frontier Triple Approach Experimental view energy/intensity frontier

indirect measurements

e+ b 2 0 t  1 1 m  Z (Z 0  bb) 110 2   t  -  5 2 m2  e t b  Z 

m =91 GeV, m =172 GeV; Z t  process possible within the realm of uncertainty principle Et  2 short high 2 t, E (> 2mtc )

t quark could be observed through indirect measurements even if m would be too high for direct production at Tevatron t

Intensity frontier requires reliable theory predictions

TESHEP, July 2017 B. Golob, Belle II Experiment 17/55 Introduction Future

Intensity Frontier Triple Approach Experimental Tests Energy frontier and majority of Intensity frontier exp‘s performed with particle colliders

price of e+e- collider: ~ a R + b E4 / R . length of the accelerator ( R); civil engineering work, , ... (minor) synchrotron radiation ( E4 / R ); accelerating units, cooling, ... a ~10 5 $/m, b ~10 3 $m/GeV4 LHC cost ~7 ·10 9 $

TESHEP, July 2017 B. Golob, Belle II Experiment 18/55 Introduction Future

Intensity Frontier Triple Approach Important to know cross-section for given Energy Frontier process (physics) #1 Center-of-mass energy dN #2 Detector Performance  L (E) #3 Collider luminosity dt rate of luminosity of given Intensity Frontier accelerator process (tehnics) (experiment) #1 Collider luminosity #2 Detector performance #3 Center-of-mass energy N   (E) Ldt

integrated luminosity

TESHEP, July 2017 B. Golob, Belle II Experiment 19/55 Introduction Future

Intensity Frontier SuperKEKB / Belle II Running Intensity Frontier

Tokyo (40 mins by Tsukuba Exps) SuperKEKB:

e- (HER): 7.0 GeV e+ (LER): 4.0 GeV

2 ECMS=M(U(4S))c

+ - dNf/dt = (e e →f) L e- L =8x1035 cm-2 s-1

e+

TESHEP, July 2017 B. Golob, Belle II Experiment 20/55 Introduction Future SuperKEKB / Belle II Intensity Frontier Running Intensity Frontier Luminosity: Energy:

Ldt

Apr ’99 Dec ‘10 1999-2010: -1 -1 Ldt ~ 1 ab Belle, 0.6 ab BaBar √s=10.58 GeV 2016-> : Belle II e+ e- U(4S)

B z ~ cbgt U(4S) B B ~ 150mm

P. Urquijo, Belle2-note-ph-2015-004 p(e-)=7.0 GeV p(e+)=4.0 GeV

TESHEP, July 2017 B. Golob, Belle II Experiment 21/55 Introduction Future SuperKEKB / Belle II Intensity Frontier Running Intensity Frontier Luminosity: Energy:

Ldt

Apr ’99 Dec ‘10 1999-2010: -1 -1 Ldt ~ 1 ab Belle, 0.6 ab BaBar √s=10.58 GeV 2016-> : Belle II e+ e- U(4S)

e+e-  q q, l + l - (q=u,d,s,c; l =e,m,t))

P. Urquijo, Belle2-note-ph-2015-004 p(e-)=7.0 GeV p(e+)=4.0 GeV

TESHEP, July 2017 B. Golob, Belle II Experiment 22/55 Introduction Future SuperKEKB / Belle II Intensity Frontier KL and detector: Running Intensity Frontier Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps , inner 2 barrel layers) EM Calorimeter: CsI(Tl), waveform sampling (barrel) Pure CsI + waveform sampling (end- caps)

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd) (7GeV) Beryllium beam pipe 2cm diameter Vertex Detector 2 layers DEPFET + 4 layers DSSD Central Drift Chamber (4GeV) He(50%):C2H6(50%), small cells, long lever arm, fast electronics Detector – Belle II

TESHEP, July 2017 B. Golob, Belle II Experiment 23/55 Introduction Future CPV in SM Intensity Frontier Intensity Frontier A.D. Sakharov, Pisma Zh. Exp. Teor. Fiz. 5, 32 (1967) what we do know we know Sakharov conditions for CP Violation within SM an asymmetric (matter/anti-matter) Universe : CPV discovered in 60‘s - barion number non-conservation in neutral system - CP (and C) symmetry violation ( in 1980: - out-of-equilibrium state J.W. Cronin, V. Fitch) 1 2 X → f1 (NB ,r) X → f2 (NB ,1-r) is CPV an inherent property X → f (-N 1,r) X → f (-N 2,1-r) of 1 B 2 B or something else? 1 2 1 2 NB  rN B  (1 r)NB  r(NB )  (1 r)(NB )  B meson factories:  (r  r)(N1  N 2 ) BaBar @ PEPII B B SLAC Belle @ KEKB CPV barion number violation KEK accumulated integrated luminosity corresponding to ~800 ·10 6 0 ± produced B meson pairs (Bd and B )

TESHEP, July 2017 B. Golob, Belle II Experiment 24/55 Introduction Future CPV in SM Intensity Frontier Intensity Frontier what we do know CP Violation within SM U(4S) → B0 B0 JPC= 1- - 0- 0- mesons oscillate; A , A : instantaneous amplitudes for B, B → f B0B0 must be in same f f (one B0, one B0) until1st B decays; t: time between decays D. Kirkby, Y. Nir, CP Violation in Meson Decays, in RPP, PLB 667, 1 (2008) P(B 0  f ,t)  P(B0  f ,t) a   CP P(B 0  f ,t)  P(B0  f ,t) simplifications in mixing formalism:  S f sin( mt)  Af cos(mt) z=1 (CPT conservation) manifestation of CPV y = /  = 0 Sf, Af  0  |q/p| = 1 2 lf =(q/p) (Af / Af) Sf =2 (lf) / [ 1+| lf | ] f1=f, f2=f 2 2 Af = [ | lf | -1] / [ | lf | +1]

TESHEP, July 2017 B. Golob, Belle II Experiment 25/55 Introduction Future CPV in SM Intensity Frontier Intensity Frontier q what we do know W+ i CP Violation within SM V qj Described by CKM matrix ij

- qi Vud Vus Vub W V V V cd cs cb = Vtd Vts Vtb * q V ij j

= l ~ 0.225

4 free if * parameters Vij=Vij ► L=LCP ► CP simetry is conserved * necessary condition for CPV VijVij ►

TESHEP, July 2017 B. Golob, Belle II Experiment 26/55 Introduction Future CPV in SM Intensity Frontier Intensity Frontier V V * V V * what we do know ud ub 1 td tb  0 CP Violation within * * VcdVcb VcdVcb SM h * VudVub Unitary triangle * VcdVcb * VtdVtb * VcdVcb V V V f2 ud us ub = f(A,l,r,h) Vcd Vcs Vcb f f Vtd Vts Vtb 3 1 various measurements 1 r - triangle sides, (|Vij | – triangle angles) arg(Vij) to test if the picture by Kobayashi & Maskawa is correct

TESHEP, July 2017 B. Golob, Belle II Experiment 27/55 Introduction Future CPV in SM Intensity Frontier Intensity Frontier what we do know CP Violation within SM principle of one of the measurements, time dependent CPV m+ 0 0 B or B m- Fully reconstructed decay J/y to CP eigenstate - BCP + K  Determination s l- (4s) of B meson flavor

Υ - B K (tagging) from tag t=z/bgc charge of typical determined decay products B0(B0) Determination of t between two B meson decays time dependent 0 0 P(Btag  B , BCP  fCP ,t)  P(Btag  B , BCP  fCP ,t) asymmetry: a   CP 0 0 P(Btag  B , BCP  fCP ,t)  P(Btag  B , BCP  fCP ,t)  S sin( mt)  Acos(mt)

TESHEP, July 2017 B. Golob, Belle II Experiment 28/55 Introduction Future CPV in SM Intensity Frontier Intensity Frontier what we do know B0 CP Violation within 0 SM B experimental effects: - resolution on t - dilution (reduction of amplitude) due to wrong tagging

B meson reconstruction: t [ps] m+ -  J/y m 2 2 - M bc  (ECMS 2)  ( pi ) B  + signal at MB Ks    pi

TESHEP, July 2017 B. Golob, Belle II Experiment 29/55 Introduction Future CPV in SM Intensity Frontier Intensity Frontier Belle, 710 fb-1, Phys. Rev. Lett. 108, 171802 (2012) what we do know B → J/y KS B → J/y KL CP Violation within B0 SM B0 V V *    arg cd cb  1  *   VtdVtb 

S=sin2f1= 0.668 ± 0.023 ± 0.013 A~0

P(B  B0 , B  f ,t)  P(B  B 0 , B  f ,t) a  tag CP CP tag CP CP  CP 0 0 P(Btag  B , BCP  fCP ,t)  P(Btag  B , BCP  fCP ,t)  S sin( mt)  Acos(mt)

TESHEP, July 2017 B. Golob, Belle II Experiment 30/55 Introduction Future CPV in SM Intensity Frontier Intensity Frontier what we do know CP Violation within SM many various measurements of observables related to CKM matrix (only 4 free parameters)  global fit

TESHEP, July 2017 B. Golob, Belle II Experiment 31/55 Introduction Future CPV in SM Intensity Frontier Intensity Frontier what we do know CP Violation within SM many various measurements of observables related to CKM matrix (only 4 free parameters)  global fit

TESHEP, July 2017 B. Golob, Belle II Experiment 32/55 Introduction Future CPV in SM Intensity Frontier Intensity Frontier what we do know CP Violation within SM many various measurements of obseravbles related to CKM matrix (only 4 free parameters)  global fit

Kobayashi Maskawa mechanism fits perfectly....

M. Kobayashi T. Maskawa

TESHEP, July 2017 B. Golob, Belle II Experiment 33/55 Introduction Future R(D(*)) Intensity Frontier Intensity Frontier what we do not know deviations from the SM predicitions environment at e+e- collider much „cleaner“ than at hadron collider; possible to reconstruct events Missing E with n‘ s (escaping detection); (n) fully (partially) reconstruct Btag Btag; reconstruct h from Bsig

Bsig→hnn or Bsig→ t(→ hn)n; no additional energy in EM Bsig → tn calorim.; candidate signal at EECL~0; event TESHEP, July 2017 B. Golob, Belle II Experiment 34/55 Introduction Future R(D(*)) Intensity Frontier

B  D*tn

Belle, PRD 94, 072007, 700 fb-1

R(D(*))= B(B  D*tn) / B(B  D* l n) l =e,m Test of LFU R(D)SM=0.300 ±0.008 H. Na et al., Phys.Rev.D 92, 054410 (2015) R(D*) =0.252 ±0.003 u SM D(*)0 S.Fajfer et al., Phys.Rev.D85(2012) 094025 B+ b c

+ Lepton Flavor Universality (H+) W l =e+,m,t+ n

form factors → theoretical uncertainty

possible contribution of NP (e.g. charged Higgs boson)

TESHEP, July 2017 B. Golob, Belle II Experiment 35/55 Introduction Future R(D(*)) Intensity Frontier

B  D*tn

Belle, PRD 94, 072007, 700 fb-1

R(D(*))= B(B  D*tn) / B(B  D* l n) l =e,m Test of LFU R(D)SM=0.300 ±0.008 H. Na et al., Phys.Rev.D 92, 054410 (2015)

R(D*)SM =0.252 ±0.003 S.Fajfer et al., Phys.Rev.D85(2012) 094025 23123 2 use NN with M miss, D* tn sig Evis, cosqB-D* l . data sample with 280057 low M2 used to miss D* l n fit the background contribution

signal is to the NN output for data 2 right → with M miss > 0.85 GeV2

TESHEP, July 2017 B. Golob, Belle II Experiment 36/55 Introduction Future R(D(*)) Intensity Frontier

B  D*tn

R(D*)=0.302±0.030±0.011

Belle, PRD 94, 072007, 700 fb-1

current WA Belle II 5 ab-1

SM (R(D(*)))/R(D(*))[%] A. Zupanc, MIAPP November 2016

-1 R(D) 4.5  @ 5 ab m e 2 semil. tag Nm/Ne (Br /Br ) 7  @ 20 ab-1 N /N Brm/Bre had. tag R(D*) m e 3 independent meas.  (e/m)  5% (hadron tag stat t →l & t → h;  (t/e,m)  11% semil. tag t → l ) stat L [ab-1] (semil. tag) TESHEP, July 2017 B. Golob, Belle II Experiment 37/55 Introduction Future R(D(*)) Intensity Frontier

B  D*tn

R(D*)=0.302±0.030±0.011

Belle, PRD 94, 072007, 700 fb-1

current WA Belle II 50 ab-1

SM (R(D(*)))/R(D(*))[%] A. Zupanc, MIAPP November 2016

-1 R(D) 4.5  @ 5 ab m e 2 semil. tag Nm/Ne (Br /Br ) 7  @ 20 ab-1 N /N Brm/Bre had. tag R(D*) m e 3 independent meas.  (e/m)  5% (hadron tag stat t →l & t → h;  (t/e,m)  11% semil. tag t → l ) stat L [ab-1] (semil. tag) TESHEP, July 2017 B. Golob, Belle II Experiment 38/55 Introduction Future ( ) Intensity Frontier R(D * ) Intensity Frontier what we do not know deviations from the SM predicitions

R(D(*)) 2-3  deviation from SM; contribution of charged Higgs boson? u D(*)0 B+ b c

+ (H+) W t+ n

TESHEP, July 2017 B. Golob, Belle II Experiment 39/55 Introduction Future

Intensity Frontier DCPV B0 K+  Intensity Frontier →  what we hope to know in the future deviations from the SM predicitions

Direct CPV in B → K decays Belle, Nature 452, 332 (2008), 480 fb-1 Mbc

+ d  u K higher order processes contribute differently to 0 u + s B B 0 +  + + 0 + B → K  & B → K  W+ W u b s K+ b 0 difficult to calculate u u → model independent sum rule + - + 0 -0.147±0.028 AK= A(K  )- A(K  )= M. Gronau, PLB627, 82 (2005); D. Atwood, A. Soni, PRD58, 036005 (1998)

0 + - IK B (B → K  ) || 0

TESHEP, July 2017 B. Golob, Belle II Experiment 40/55 Introduction Future

Intensity Frontier DCPV Intensity Frontier what we hope to know in the future deviations from the SM predicitions

Direct CPV in B → K decays

Belle 2 K00 50 ab-1

B. Golob, K. Trabelsi, P. Urquijo,, Belle2-note-ph-2015-002

TESHEP, July 2017 B. Golob, Belle II Experiment 41/55 Introduction Future

Intensity Frontier dark matter Intensity Frontier J. Thaler, BLV 2015 what we hope to know in the future search for Dark matter B Factories: search for Dark Matter (mc <~ 10 GeV) interacting with SM through light mediator; dark photon A‘ couples to g through kinetic mixing e; R. Essig et al., JHEP 1311 , 167 (2013) as such provides a posibility of WIMP‘s e+ annihilation to SM particles g* A‘* cc  A‘A‘ SM; e e- posibility of dark Higgs h‘, coupled to A‘ by a‘ ;

e+ A‘ other possible mediators; g* A‘* e a‘ e- h‘

TESHEP, July 2017 B. Golob, Belle II Experiment 42/55 Introduction Future

Intensity Frontier dark matter Intensity Frontier what we hope to know in the future g e+ search for Dark matter B Factories: a e+e-  A‘ g (radiative production) e+

2 2 2 a  e a /E CMS e- g* e A‘ c A‘ invisible:

(cc if mc < mA‘/2 ) c A. Bondar et al., BELLE2-NOTE-PH-2015-003 (2015)

M A'  s  2 sEcut

TESHEP, July 2017 B. Golob, Belle II Experiment 43/55 Introduction Future Energy Frontier Intensity Frontier Summary Summary so far

In general SM in perfect condition, both Energy Frontier & Intensity frontier measurements confirm its predictions;

Higgs boson discovered, CPV in accordance with CKM matrix;

Nature keeps sending hints of deviations from SM (@ few );

Most recent di-photon excess and R(D(*));

Additional (mainly experimental) efforts needed to provide definite answers on those hints

Vipava, May 2016 B. Golob, HEP Experiments 44/55 Introduction Future Energy Frontier Intensity Frontier Future Future plans

100 fb-1 5 ab-1 20 ab-1

35 ab-1 50 ab-1

http://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC%20schedule%20beyond%20LS1%20MTP%202015_Freddy_June2015.pdf

Vipava, May 2016 B. Golob, HEP Experiments 45/55 Introduction Future Energy Frontier Intensity Frontier Future Future plans

• Int. Linear 2018 2019 2020 2021 Collider (ILC) might be built in

late 20‘s

Vipava, May 2016 B. Golob, HEP Experiments 46/55 Introduction Future Energy Frontier Intensity Frontier Future Future plans

China:

• CEPC ( e+e-: 90-250 GeV) PC – Higgs Factory: Precision study of Higgs(mH, J , couplings) – Z & W factory: precision test of SM – Flavor factory: b, c, t and QCD studies • SppC (pp: 50-100 TeV) – Directly search for new physics beyond SM – Precision test of SM • e.g., h3 & h4 couplings Yifang Wang, IHEP, ALCW2015, April 23, 2015

dream scenario: CEPC construction 2021-2027 SppC construction 2035-2042

Vipava, May 2016 B. Golob, HEP Experiments 47/55