Timing of Metamorphosis in a Freshwater Crustacean: Comparison with Anuran Models Saran Twombly Ecology, Vol. 77, No. 6. (Sep., 1996), Pp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Growing a Wild NYC: a K-5 Urban Pollinator Curriculum Was Made Possible Through the Generous Support of Our Funders
A K-5 URBAN POLLINATOR CURRICULUM Growing a Wild NYC LESSON 1: HABITAT HUNT The National Wildlife Federation Uniting all Americans to ensure wildlife thrive in a rapidly changing world Through educational programs focused on conservation and environmental knowledge, the National Wildlife Federation provides ways to create a lasting base of environmental literacy, stewardship, and problem-solving skills for today’s youth. Growing a Wild NYC: A K-5 Urban Pollinator Curriculum was made possible through the generous support of our funders: The Seth Sprague Educational and Charitable Foundation is a private foundation that supports the arts, housing, basic needs, the environment, and education including professional development and school-day enrichment programs operating in public schools. The Office of the New York State Attorney General and the New York State Department of Environmental Conservation through the Greenpoint Community Environmental Fund. Written by Nina Salzman. Edited by Sarah Ward and Emily Fano. Designed by Leslie Kameny, Kameny Design. © 2020 National Wildlife Federation. Permission granted for non-commercial educational uses only. All rights reserved. September - January Lesson 1: Habitat Hunt Page 8 Lesson 2: What is a Pollinator? Page 20 Lesson 3: What is Pollination? Page 30 Lesson 4: Why Pollinators? Page 39 Lesson 5: Bee Survey Page 45 Lesson 6: Monarch Life Cycle Page 55 Lesson 7: Plants for Pollinators Page 67 Lesson 8: Flower to Seed Page 76 Lesson 9: Winter Survival Page 85 Lesson 10: Bee Homes Page 97 February -
Egg Cannibalism by Passion Vine Specialist Disonycha Chevrolat Beetles
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.005611; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 1 SCIENTIFIC NOTE 2 3 Egg cannibalism by passion vine specialist Disonycha Chevrolat beetles 4 (Coleoptera: Chrysomelidae: Galerucinae: Alticini) 5 6 7 8 Colin R. Morrison1,2*, Wyatt Armstrong2, Lawrence Gilbert2 9 10 1 Graduate Program in Ecology, Evolution and Behavior, The University of Texas at Austin, 11 Austin, TX 78723 USA 12 2 Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78723 USA 13 14 15 16 17 * To whom correspondence should be addressed. 18 19 20 21 22 23 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.005611; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 2 24 Abstract 25 Cannibalistic behavior is now recognized to be an important component of nutritional ecology in 26 both carnivorous and herbivorous species, including many beetle families (Englert and Thomas 27 1970; Beaver 1974; Dickinson 1992; Bartlett 1987; Alabi et al. 2008). This habit was historically 28 viewed by an incidental outcome of unnaturally crowded laboratory situations with little 29 ecological importance (Fox 1975), but it is increasingly acknowledged that cannibalism 30 represents a potentially advantageous behavior (Richardson et al. -
Forest Health Technology Enterprise Team Biological Control of Invasive
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control Biological Control of Invasive Plants in the Eastern United States Roy Van Driesche Bernd Blossey Mark Hoddle Suzanne Lyon Richard Reardon Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2002-04 Department of Service August 2002 Agriculture BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES Technical Coordinators Roy Van Driesche and Suzanne Lyon Department of Entomology, University of Massachusets, Amherst, MA Bernd Blossey Department of Natural Resources, Cornell University, Ithaca, NY Mark Hoddle Department of Entomology, University of California, Riverside, CA Richard Reardon Forest Health Technology Enterprise Team, USDA, Forest Service, Morgantown, WV USDA Forest Service Publication FHTET-2002-04 ACKNOWLEDGMENTS We thank the authors of the individual chap- We would also like to thank the U.S. Depart- ters for their expertise in reviewing and summariz- ment of Agriculture–Forest Service, Forest Health ing the literature and providing current information Technology Enterprise Team, Morgantown, West on biological control of the major invasive plants in Virginia, for providing funding for the preparation the Eastern United States. and printing of this publication. G. Keith Douce, David Moorhead, and Charles Additional copies of this publication can be or- Bargeron of the Bugwood Network, University of dered from the Bulletin Distribution Center, Uni- Georgia (Tifton, Ga.), managed and digitized the pho- versity of Massachusetts, Amherst, MA 01003, (413) tographs and illustrations used in this publication and 545-2717; or Mark Hoddle, Department of Entomol- produced the CD-ROM accompanying this book. -
Literature on the Chrysomelidae from CHRYSOMELA Newsletter, Numbers 1-41 October 1979 Through April 2001 May 18, 2001 (Rev
Literature on the Chrysomelidae From CHRYSOMELA Newsletter, numbers 1-41 October 1979 through April 2001 May 18, 2001 (rev. 1)—(2,635 citations) Terry N. Seeno, Editor The following citations appeared in the CHRYSOMELA process and rechecked for accuracy, the list undoubtedly newsletter beginning with the first issue published in 1979. contains errors. Revisions and additions are planned and will be numbered sequentially. Because the literature on leaf beetles is so expansive, these citations focus mainly on biosystematic references. They Adobe Acrobat® 4.0 was used to distill the list into a PDF were taken directly from the publication, reprint, or file, which is searchable using standard search procedures. author’s notes and not copied from other bibliographies. If you want to add to the literature in this bibliography, Even though great care was taken during the data entering please contact me. All contributors will be acknowledged. Abdullah, M. and A. Abdullah. 1968. Phyllobrotica decorata de Gratiana spadicea (Klug, 1829) (Coleoptera, Chrysomelidae, DuPortei, a new sub-species of the Galerucinae (Coleoptera: Chrysomel- Cassidinae) em condições de laboratório. Rev. Bras. Entomol. idae) with a review of the species of Phyllobrotica in the Lyman 30(1):105-113, 7 figs., 2 tabs. Museum Collection. Entomol. Mon. Mag. 104(1244-1246):4-9, 32 figs. Alegre, C. and E. Petitpierre. 1982. Chromosomal findings on eight Abdullah, M. and A. Abdullah. 1969. Abnormal elytra, wings and species of European Cryptocephalus. Experientia 38:774-775, 11 figs. other structures in a female Trirhabda virgata (Chrysomelidae) with a summary of similar teratological observations in the Coleoptera. -
2Bakereickwort1975.Pdf PDF Document, 1.0 MB
DEVELOPMENT AND BIONOMICS OF CHRYSOMELOBIA LABZDOMERAE (ACARI: TARSONEMINA; PODAPOLIPIDAE), A PARASITE OF THE MILKWEED LEAF BEETLE (COLEOPTERA: CHRYSOMELIDAE) THOMASC. BAKER^ and GEORGEC. EICKWORT Entomology Department, Cornell University, Ithaca, New York Abstract Can. Ent, 107: 627-638 (197.5) Adult females of Chrysomelobia labidomerae Eickwort lay eggs on the upper surfaces of the hind wings of Labidomera clivicollis (Kirby), The eggs hatch in approximately 7 days and male and female larvae feed at the base of the wings and in the meso-metathoracic crevice and swell to about twice their original length,,For about the second half of the approximately 7-day larval stadium, the larvae are inactive (pharate adults) and are usually cemented to the undersurfaces of the elytra, Inactive female larvae are accompanied by adult males that apparently copulate with the newly emerged adult females,, The pharate adult is enclosed in a cuticular sac that may represent a calyptostatic nymphal instar, Adult females feed on the beetle's abdominal terga and sometimes also occur on its venter where they do not feed., Females disperse from host to host when the beetles copulate. The species is anhenotokous. Mites overwinter on the diapausing adult beetles and do not infest the immature stages of their host. Even at high population levels, the mites do not noticeably affect the longevity or fecundity of their hosts,, Introduction Chrysomelobia labidomerae Eickwort is a common subelytral ectoparasite of adult milkweed leaf beetles, Labidomera clivicollis (Kirby) (Fig. I), in North America. Chrysomelobia exhibits many characteristics that are primitive for the Podapolipidae (Regenfuss 1968, 1973; Eickwort 1975) and knowledge of the biology of its species should aid in understanding the evolution of this family of highly specialized insect parasites. -
The Story of an Organism: Common Milkweed
THE STORY OF AN ORGANISM: COMMON MILKWEED Craig Holdrege All I am saying is that there is also drama in every bush, if you can see it. When enough men know this, we need fear no indifference to the welfare of bushes, or birds, or soil, or trees. We shall then have no need of the word “conservation,” for we shall have the thing itself. Aldo Leopold (1999, p. 172) I had casually observed common milkweed (Asclepias syriaca, Asclepiadaceae) but never paid too much attention to it. True, I was fascinated by its big globes of flowers and, in the fall, by its beautiful seeds that floated through the air on their tufts of white silk. I also knew that common milkweed is the main food plant for monarch butterfly larvae. But it was only when I was preparing for the 2006 summer course at The Nature Institute and when I noticed the flowers of common milkweed beginning to open, that I looked closely at them for the first time. I realized that the plant has a highly complex flower structure and, in addition, observed how the flowers were being visited by many different insects. Milkweed had finally caught my attention, and I decided that we should focus on it for our initial plant study in that weeklong course. This study proved to be particularly intense. Milkweed drew us all into its world of refined structures. It took us a good while just to get clear about the flower parts and their relation to more “normal” flowers. (There were a number of trained biologists in the course.) We also observed interaction with insects and saw how flies sometimes became caught in the flowers and died. -
Literature Cited in Chrysomela from 1979 to 2003 Newsletters 1 Through 42
Literature on the Chrysomelidae From CHRYSOMELA Newsletter, numbers 1-42 October 1979 through June 2003 (2,852 citations) Terry N. Seeno, Past Editor The following citations appeared in the CHRYSOMELA process and rechecked for accuracy, the list undoubtedly newsletter beginning with the first issue published in 1979. contains errors. Revisions will be numbered sequentially. Because the literature on leaf beetles is so expansive, Adobe InDesign 2.0 was used to prepare and distill these citations focus mainly on biosystematic references. the list into a PDF file, which is searchable using standard They were taken directly from the publication, reprint, or search procedures. If you want to add to the literature in author’s notes and not copied from other bibliographies. this bibliography, please contact the newsletter editor. All Even though great care was taken during the data entering contributors will be acknowledged. Abdullah, M. and A. Abdullah. 1968. Phyllobrotica decorata DuPortei, Cassidinae) em condições de laboratório. Rev. Bras. Entomol. 30(1): a new sub-species of the Galerucinae (Coleoptera: Chrysomelidae) with 105-113, 7 figs., 2 tabs. a review of the species of Phyllobrotica in the Lyman Museum Collec- tion. Entomol. Mon. Mag. 104(1244-1246):4-9, 32 figs. Alegre, C. and E. Petitpierre. 1982. Chromosomal findings on eight species of European Cryptocephalus. Experientia 38:774-775, 11 figs. Abdullah, M. and A. Abdullah. 1969. Abnormal elytra, wings and other structures in a female Trirhabda virgata (Chrysomelidae) with a Alegre, C. and E. Petitpierre. 1984. Karyotypic Analyses in Four summary of similar teratological observations in the Coleoptera. Dtsch. Species of Hispinae (Col.: Chrysomelidae). -
Science Journals
RESEARCH ARTICLE EVOLUTIONARY BIOLOGY 2016 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed Darwinian sex roles confirmed across the under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). animal kingdom 10.1126/sciadv.1500983 Tim Janicke,1* Ines K. Häderer,2 Marc J. Lajeunesse,3 Nils Anthes2 Since Darwin’s conception of sexual selection theory, scientists have struggled to identify the evolutionary forces underlying the pervasive differences between male and female behavior, morphology, and physiology. The Darwin- Bateman paradigm predicts that anisogamy imposes stronger sexual selection on males, which, in turn, drives the evolution of conventional sex roles in terms of female-biased parental care and male-biased sexual dimorphism. Al- though this paradigm forms the cornerstone of modern sexual selection theory, it still remains untested across the animal tree of life. This lack of evidence has promoted the rise of alternative hypotheses arguing that sex differences are entirely driven by environmental factors or chance. We demonstrate that, across the animal kingdom, sexual Downloaded from selection, as captured by standard Bateman metrics, is indeed stronger in males than in females and that it is evolution- arily tied to sex biases in parental care and sexual dimorphism. Our findings provide the first comprehensive evidence that Darwin’s concept of conventional sex roles is accurate and refute recent criticism of sexual selection theory. INTRODUCTION (usually the female) becomes a limiting resource for the less caring Understanding the numerous behavioral, morphological, and physio- sex (usually the male) so that the latter competes for access to the http://advances.sciencemag.org/ logical differences between the sexes constitutes a central theme in many former (10). -
Tracking List
Tracked Taxa List: Current as of Invertebrates 2021-May-17 This list contains the tracked invertebrate animal taxa known by the Saskatchewan Conservation Data Centre (SKCDC) to occur within Saskatchewan, as of the date provided above. If you notice any errors or omissions, please contact [email protected]. For more information about how the SKCDC generates these lists and what determines when a species is tracked by the SKCDC, visit: http://biodiversity.sk.ca/lists.htm Conservation ranks/status are provided for each species. For details on each, refer to the following resources: ◦ Subnational (S), National (N) and Global (G) Ranks: www.biodiversity.sk.ca/ranking.htm ◦ Government of Saskatchewan Wild Species at Risk Regulations: https://publications.saskatchewan.ca/#/products/1609 ◦ COSEWIC: https://www.cosewic.ca/index.php ◦ SARA; Government of Canada Species at Risk public registry: https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry.html SYNONYMS: This list is being provided by the SKCDC as a tool to facilitate users in determining the current, accepted taxonomy. If a name is currently out of use in Saskatchewan, it’s current synonym is provided, indented in the line below the accepted name. In this row, we are unable to distinguish between true synonyms and misapplied names used as synonyms. For example, Cryptantha fendleri is an accepted name for a vascular plant that is currently found in Saskatchewan. This name, however, has also been misapplied to both Cryptantha kelseyana and Cryptantha minima in the past. Therefore, it appears as a synonym to those two species. -
Chrysochus Auratus (Coleoptera: Chrysomelidae) Absolved As Pecan Pest
The Great Lakes Entomologist Volume 21 Number 3 - Fall 1988 Number 3 - Fall 1988 Article 7 October 1988 Chrysochus Auratus (Coleoptera: Chrysomelidae) Absolved as Pecan Pest Charles E. Williams Virginia Polytechnic Institute and State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Williams, Charles E. 1988. "Chrysochus Auratus (Coleoptera: Chrysomelidae) Absolved as Pecan Pest," The Great Lakes Entomologist, vol 21 (3) Available at: https://scholar.valpo.edu/tgle/vol21/iss3/7 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Williams: <i>Chrysochus Auratus</i> (Coleoptera: Chrysomelidae) Absolved as 1988 THE GREAT LAKES ENTOMOLOGIST 127 CHRYSOCHUS AURATUS (COLEOPTERA: CHRYSOMELIDAE) ABSOLVED AS PECAN PEST Charles E. Williams' ABSTRACT Chrysochus auratus, the dogbane beetle, has been erroneously implicated as a pecan defoliator in the early literature. Alternative scenarios suggest other chrysomelid species that may have been responsible for the defoliation. Despite the importance of the host plant to the ecology and life history of phytophagous insects, knowledge of host plants for many insects remains fragmentary. Compounding this paucity of information are blatantly false host plant records which, despite their erroneous nature. are often perpetuated through citation in published works. During a recent review of the literature concerning the dogbane beetle, Chrysochus auratus Fabricius (Coleoptera: Chrysomelidae), I discovered such a reference. -
Systematics of Eucolaspis (Coleoptera: Chrysomelidae) in New Zealand and Ecology of Hawke’S Bay Lineage
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Systematics of Eucolaspis (Coleoptera: Chrysomelidae) in New Zealand and ecology of Hawke’s Bay lineage A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology at Massey University, Manawatu, New Zealand Prasad R.C. Doddala 2012 Abstract Eucolaspis Sharp 1886 includes a group of native leaf beetle species, one or more of which infest exotic fruit crops. Economic losses suffered by organic apple orchards in Hawke’s Bay prompt a revisit to ecological basics of the beetle. Taxonomic, behavioural and ecological knowledge gaps are addressed in the current research project. Phylogenetic analysis, based on cytochrome oxidase subunit 1 region of mitochondrial DNA, revealed that only one genetic lineage infests apples in Hawke’s Bay and that there are only three putative species in mainland New Zealand with another separate species on Three Kings Islands. These findings are well supported by differences in male genitalia shape. Morphometric analyses also supported the phylogeny to some extent. The current findings on host location show that Eucolaspis sp. “Hawke’s Bay” beetles use plant odours to detect and discriminate host and non-host plants. The beetles were attracted to fresh leaf / fruit odour of apple and blackberry, but not to either clover or broad-leaved dock. The beetles were not able to distinguish between damaged and undamaged host plants and between closely related species of host plants just by olfaction. -
Red-Tail Biodiversity Survey Final Report
Red-tail Biodiversity Survey Final Report White River Woods and McVey Memorial Forest 10–11 June 2017 RESULTS OF THE 2017 RED-TAIL LAND CONSERVANCY BIODIVERSITY SURVEY DELAWARE AND RANDOLPH COUNTIES, INDIANA Compiled from the Science Team Reports Assembled by Don Ruch (Indiana Academy of Science) Table of Contents Title Page………………………………………………………………………….………… 1 Table of Contents…………………………………………………………………………… 2 General Introduction and Summary of Results..…………………………………..……….. 3-4 Maps…………………………………………………………………………………….…... 5-8 Histories of McVey Memorial Forest and White River Woods …………………….……… 9-10 Geomorphlogical Assessment ……………………………………………………………… 11 Cultural Resources Assessment ……………………………………………………………. 12 Results Title Page …………………………………………………………………………... 13 Ant Team Results …………………….……………….……………………………………. 14 Aquatic Macroinvertebrate Team Results …………………….……………….…………… 15-19 Bat Team Results ……………….….………………………..……………………………… 20-25 Bee Team Results …………………….……………….……………………………………. 26-30 Beetle Team Results ………………………………………………...……………………… 31-36 Bird Team Results ……………………………………..…………………………………… 37-42 Butterfly and Odonate (Dragonflies and Damselflies) Team Results ……………………… 43-50 Fish Team Results ……………………………………………………….…………………. 51-56 Freshwater Mussel Team Results …………………………………………………………... 57-61 Herpetofauna Team Results ………………………………………………………………… 62-65 Mammal Team Results ……………………………………………………………………… 66-67 Moth Team Results …………………………………………………………………………. 68-69 Mushroom, Fungi, and Slime Mold Team Results …………………………………………. 70-74 Non-vascular Plants