Red-Tail Biodiversity Survey Final Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Appendix 3. Thousand Islands National Park Taxonomy Report
Appendix 3. Thousand Islands National Park Taxonomy Report Class Order Family Genus Species Arachnida Araneae Agelenidae Agelenopsis Agelenopsis potteri Agelenopsis utahana Anyphaenidae Anyphaena Anyphaena celer Hibana Hibana gracilis Araneidae Araneus Araneus bicentenarius Larinioides Larinioides cornutus Larinioides patagiatus Clubionidae Clubiona Clubiona abboti Clubiona bishopi Clubiona canadensis Clubiona kastoni Clubiona obesa Clubiona pygmaea Elaver Elaver excepta Corinnidae Castianeira Castianeira cingulata Phrurolithus Phrurolithus festivus Dictynidae Emblyna Emblyna cruciata Emblyna sublata Eutichuridae Strotarchus Strotarchus piscatorius Gnaphosidae Herpyllus Herpyllus ecclesiasticus Zelotes Zelotes hentzi Linyphiidae Ceraticelus Ceraticelus atriceps 1 Collinsia Collinsia plumosa Erigone Erigone atra Hypselistes Hypselistes florens Microlinyphia Microlinyphia mandibulata Neriene Neriene radiata Soulgas Soulgas corticarius Spirembolus Lycosidae Pardosa Pardosa milvina Pardosa moesta Piratula Piratula canadensis Mimetidae Mimetus Mimetus notius Philodromidae Philodromus Philodromus peninsulanus Philodromus rufus vibrans Philodromus validus Philodromus vulgaris Thanatus Thanatus striatus Phrurolithidae Phrurotimpus Phrurotimpus borealis Pisauridae Dolomedes Dolomedes tenebrosus Dolomedes triton Pisaurina Pisaurina mira Salticidae Eris Eris militaris Hentzia Hentzia mitrata Naphrys Naphrys pulex Pelegrina Pelegrina proterva Tetragnathidae Tetragnatha 2 Tetragnatha caudata Tetragnatha shoshone Tetragnatha straminea Tetragnatha viridis -
Lepidoptera of North America 5
Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains, -
A Checklist of the Vascular Flora of the Mary K. Oxley Nature Center, Tulsa County, Oklahoma
Oklahoma Native Plant Record 29 Volume 13, December 2013 A CHECKLIST OF THE VASCULAR FLORA OF THE MARY K. OXLEY NATURE CENTER, TULSA COUNTY, OKLAHOMA Amy K. Buthod Oklahoma Biological Survey Oklahoma Natural Heritage Inventory Robert Bebb Herbarium University of Oklahoma Norman, OK 73019-0575 (405) 325-4034 Email: [email protected] Keywords: flora, exotics, inventory ABSTRACT This paper reports the results of an inventory of the vascular flora of the Mary K. Oxley Nature Center in Tulsa, Oklahoma. A total of 342 taxa from 75 families and 237 genera were collected from four main vegetation types. The families Asteraceae and Poaceae were the largest, with 49 and 42 taxa, respectively. Fifty-eight exotic taxa were found, representing 17% of the total flora. Twelve taxa tracked by the Oklahoma Natural Heritage Inventory were present. INTRODUCTION clayey sediment (USDA Soil Conservation Service 1977). Climate is Subtropical The objective of this study was to Humid, and summers are humid and warm inventory the vascular plants of the Mary K. with a mean July temperature of 27.5° C Oxley Nature Center (ONC) and to prepare (81.5° F). Winters are mild and short with a a list and voucher specimens for Oxley mean January temperature of 1.5° C personnel to use in education and outreach. (34.7° F) (Trewartha 1968). Mean annual Located within the 1,165.0 ha (2878 ac) precipitation is 106.5 cm (41.929 in), with Mohawk Park in northwestern Tulsa most occurring in the spring and fall County (ONC headquarters located at (Oklahoma Climatological Survey 2013). -
Coleoptera) (Excluding Anthribidae
A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCULIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis TAMI ANNE CARLOW Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1997 Major Subject; Entomology A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCVLIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATYPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis by TAMI ANNE CARLOW Submitted to Texas AgcM University in partial fulltllment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Horace R. Burke (Chair of Committee) James B. Woolley ay, Frisbie (Member) (Head of Department) Gilbert L. Schroeter (Member) August 1997 Major Subject: Entomology A Faunal Survey and Zoogeographic Analysis of the Curculionoidea (Coleoptera) (Excluding Anthribidae, Platypodinae, and Scolytinae) of the Lower Rio Grande Valley of Texas. (August 1997) Tami Anne Carlow. B.S. , Cornell University Chair of Advisory Committee: Dr. Horace R. Burke An annotated list of the Curculionoidea (Coleoptem) (excluding Anthribidae, Platypodinae, and Scolytinae) is presented for the Lower Rio Grande Valley (LRGV) of Texas. The list includes species that occur in Cameron, Hidalgo, Starr, and Wigacy counties. Each of the 23S species in 97 genera is tteated according to its geographical range. Lower Rio Grande distribution, seasonal activity, plant associations, and biology. The taxonomic atTangement follows O' Brien &, Wibmer (I og2). A table of the species occuning in patxicular areas of the Lower Rio Grande Valley, such as the Boca Chica Beach area, the Sabal Palm Grove Sanctuary, Bentsen-Rio Grande State Park, and the Falcon Dam area is included. -
Lathys Stigmatisata (Menge, 1869), Ballus Rufipes (Simon, 1868), Synageles Hilarulus (C.L
Lathys stigmatisata (Menge, 1869), Ballus rufipes (Simon, 1868), Synageles hilarulus (C.L. Koch, 1846), Phrurolithus nigrinus (Simon, 1878) and Phycosoma inornatum (O. Pickard-Cambridge, 1861): five spiders new to the fauna of Luxembourg (Araneae: Theridiidae, Dyctiniidae, Phrurolithidae, Salticidae) with records of other rare species Raoul Gerend 35, rue de Hellange L-3487 Dudelange, Luxembourg ([email protected]) Gerend, R., 2020. Lathys stigmatisata (Menge, 1869), Ballus rufipes(Simon, 1868), Synageles hilarulus (C.L. Koch, 1846), Phrurolithus nigrinus (Simon, 1878) and Phycosoma inornatum (O. Pickard-Cambridge, 1861): five spiders new to the fauna of Luxembourg (Araneae: Theridiidae, Dyctiniidae, Phrurolithidae, Salticidae) with records of other rare species. Bul- letin de la Société des naturalistes luxembourgeois 122 : 211-215. Published online 26 August 2020 (ISSN 2716-750X). Abstract. Five spider species are recorded for the first time from Luxembourg. Their habi- tats are described. New data are presented for another three species. The importance of the former open-cast iron ore quarries of southwestern Luxembourg for thermophilous spiders is emphasised. 1. Introduction 2. Material and methods The first catalogue of the spider fauna of Lux- Spiders were collected using a range of con- embourg published in 2019 (Kreuels et al.) ventional methods which shall be specified lists 495 species while the authors estimate in the respective species’ paragraph. The that roughly 600 to 700 species should rea- spiders were then preserved in 70% isopro- sonably be expected to occur in the Grand- panol or 70% ethanol. All the material is Duchy. They consider Luxembourg’s spider kept in the author’s collection. Identifica- fauna to be rather under-recorded, due to a tions are based on Roberts (1996), Bee et lack of systematic collecting throughout the al. -
Specialist and Bumble Bees
PLANTS THAT ATTRACT SPECIALIST BEES AND BUMBLE BEES Specialist Bees seek flower pollen from a specific plant or plant species. This dependence poses a risk to their survival. Specialist Bee Families include: Andrenidae, Apidae, Colletidae, Halictidae, Megachilidae and Melittidae. Choosing plants for specialist bees also benefits bumble bees and other generalist bee pollinators who visit and pollinate these flowers. Highlighted plants support Specialist bees. Herbaceous Plants Hosting Agastache foeniculum Purple Anise Hyssop Bumble bees Amsonia tabernaemontanta Bluestar Bumble bees Angelica atropurpurea Purple-stemmed Angelica Bumble bees Arabis lyrata Lyrate Rockcress Specialist bee(s) Asclepias sps. Milkweeds; Butterfly Weed Bumble bees Baptisia sps. Wild Indigos Bumble bees Bidens sps. Beggar-ticks Specialist bee(s) Boltonia asteroides Thousand-flower Aster Specialist bee(s) Campanula rotundifolia Bluebell Bellflower Bumble bees Campanula sps. Bellflowers Specialist bee(s), Bumble bees Campanulastrum americanum American Bellflower Specialist bee(s) Cardamine concatenata Cutleaf Toothwort Specialist bee(s) Cardamine diphylla Crinkleroot Specialist bee(s) Chamaecrista fasciculata Partridge Sensitive Pea Bumble bees Chelone glabra White Turtlehead Bumble bees Chrysogonum virginianum Golden Star Specialist bee(s) Cirsium discolor Field Thistle Specialist bee(s), Bumble bees Claytonia caroliniana Carolina Spring Beauty Specialist Mining bee(s) Claytonia virginica Virginia Spring Beauty Specialist bee(s) Comatrum (Potenilla) palustre Marsh Cinquefoil 2 Specialist bees Coreopsis sps. Tickseeds Specialist bee(s) **Coriandrum sativum Coriander (cilantro) Bumble bees Curcurbitaceae sps. Squash, Pumpkin, Cucumber, Melon Specialist bee(s) Desmodium canadense Showy Tick Trefoil Specialist bee(s) Dicentra cucullaria Dutchman's Breeches Bumble bees Doellingeria umbellata Flat-topped Aster Specialist bee(s) Echinacea pallida Pale Purple Coneflower Specialist bee(s) Echinaca purpurea Purple Coneflower Bumble bees Epigaea repens Trailing Arbutus Specialist bee(s) Erigeron sps. -
Growing a Wild NYC: a K-5 Urban Pollinator Curriculum Was Made Possible Through the Generous Support of Our Funders
A K-5 URBAN POLLINATOR CURRICULUM Growing a Wild NYC LESSON 1: HABITAT HUNT The National Wildlife Federation Uniting all Americans to ensure wildlife thrive in a rapidly changing world Through educational programs focused on conservation and environmental knowledge, the National Wildlife Federation provides ways to create a lasting base of environmental literacy, stewardship, and problem-solving skills for today’s youth. Growing a Wild NYC: A K-5 Urban Pollinator Curriculum was made possible through the generous support of our funders: The Seth Sprague Educational and Charitable Foundation is a private foundation that supports the arts, housing, basic needs, the environment, and education including professional development and school-day enrichment programs operating in public schools. The Office of the New York State Attorney General and the New York State Department of Environmental Conservation through the Greenpoint Community Environmental Fund. Written by Nina Salzman. Edited by Sarah Ward and Emily Fano. Designed by Leslie Kameny, Kameny Design. © 2020 National Wildlife Federation. Permission granted for non-commercial educational uses only. All rights reserved. September - January Lesson 1: Habitat Hunt Page 8 Lesson 2: What is a Pollinator? Page 20 Lesson 3: What is Pollination? Page 30 Lesson 4: Why Pollinators? Page 39 Lesson 5: Bee Survey Page 45 Lesson 6: Monarch Life Cycle Page 55 Lesson 7: Plants for Pollinators Page 67 Lesson 8: Flower to Seed Page 76 Lesson 9: Winter Survival Page 85 Lesson 10: Bee Homes Page 97 February -
STATES 00000000A F 24Hr Lawn Insect Killer 32Oz.RTS
92564-17_BioAdvanced SBS 24 hr Lawn Insect Killer_20170928_80_92564_.pdf 24 Hour Lawn Insect Killer READY-TO-SPRAY Mosquitoes KILLS Listed Insects in 24 Hours Ants Fleas KILLS Over * Ticks 500 Insects Chinch Bugs Mata los insectos de la lista en 24 horas Mata más de 500 insectos* Active Ingredients: Mole Crickets Cyfluthrin . 0.75% Other Ingredients . 99.25% Total 100.00% KEEP OUT OF REACH OF CHILDREN See back panel booklet for additional CAUTION precautionary statements *Listed insects NET CONTENTS 32 FL OZ (946ml) OPEN (continuación) Resealable Label VID 24 Hour for Directions & PARA MEJORES RESULTADOS: No regar las hojas dentro de una hora luego de la aplicación. Para evitar daños graves, eliminar las plagas Precautions comienzos de la temporada antes de que se multipliquen. Lawn Insect ® Las personas y las mascotas pueden volver a ingresar al área tratada una vez que se haya secado. Killer READY-TO-SPRAY This product kills listed outdoor pests by contact. Keeping your garden and lawn free of listed pests ALMACENAMIENTO Y ELIMINACIÓN has never been easier. This product is ready to spray. Just attach this bottle to your hose according to ALMACENAMIENTO DEL PESTICIDA directions. Water automatically mixes with the concentrate as you spray. Almacenar en el contenedor original y en un lugar fresco y seco, fuera del alcance de los niños, preferentemente en un armario bajo llave. READ THE LABEL FIRST! Indicaciones MANIPULACIÓN DEL CONTENEDOR en español Si está vacío: • Contenedor no reusable. No volver a rellenar ni utilizar este contenedor. • Colocar el contenedor vacío en la basura o entregarlo para QUICK FACTS después de las reciclar si fuera posible. -
Host Specificity and Variation in Oviposition Behaviour of Milkweed
Ecological Entomology (2020), DOI: 10.1111/een.12899 Host specificity and variation in oviposition behaviour of milkweed stem weevils and implications for species divergence LINA M. ARCILA HERNÁNDEZ,1 STEVEN R. DAVIS2 and ANURAG A. AGRAWAL1 1Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, U.S.A. and 2Department of Invertebrate Zoology, American Museum of Natural History, New York City, New York, U.S.A. Abstract. 1. An herbivore’s life-history strategy, including optimization of resource use, is constrained by its evolutionary history and ecological factors varying across the landscape. 2. We asked if related and co-distributed herbivore species maintain consistency of host preference and oviposition behaviours along the species’ range. We surveyed two putative species of milkweed stem weevils, Rhyssomatus lineaticollis and R. annectens, which co-occur alongside their hosts, Asclepias syriaca and A. incarnata. 3. We confirmed the two species status of weevils, supported by differences in morphology and a bilocus gene phylogeny. Furthermore, we found that species divergence recapitulated the weevils current host plant use. 4. We found oviposition variation within and between species. R. annectens poked the stem haphazardly or girdled it before oviposition. Meanwhile, R. lineaticollis primarily trenched stems in the north, but poked or girdled in the south. Variation in oviposition patterns could be a response to variation in host plant defenses. 5. In nature, weevils strictly oviposited on their respective host plants, while in bioassays, R. lineaticollis exhibited strong preference for A. syriaca and R. annectens fed equally on both host plants. 6. Overall, our results support that milkweed stem weevils are strict specialists but might be undergoing changes in host use. -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
Lepidoptera: Tortricidae: Tortricinae) and Evolutionary Correlates of Novel Secondary Sexual Structures
Zootaxa 3729 (1): 001–062 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3729.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:CA0C1355-FF3E-4C67-8F48-544B2166AF2A ZOOTAXA 3729 Phylogeny of the tribe Archipini (Lepidoptera: Tortricidae: Tortricinae) and evolutionary correlates of novel secondary sexual structures JASON J. DOMBROSKIE1,2,3 & FELIX A. H. SPERLING2 1Cornell University, Comstock Hall, Department of Entomology, Ithaca, NY, USA, 14853-2601. E-mail: [email protected] 2Department of Biological Sciences, University of Alberta, Edmonton, Canada, T6G 2E9 3Corresponding author Magnolia Press Auckland, New Zealand Accepted by J. Brown: 2 Sept. 2013; published: 25 Oct. 2013 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 JASON J. DOMBROSKIE & FELIX A. H. SPERLING Phylogeny of the tribe Archipini (Lepidoptera: Tortricidae: Tortricinae) and evolutionary correlates of novel secondary sexual structures (Zootaxa 3729) 62 pp.; 30 cm. 25 Oct. 2013 ISBN 978-1-77557-288-6 (paperback) ISBN 978-1-77557-289-3 (Online edition) FIRST PUBLISHED IN 2013 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2013 Magnolia Press 2 · Zootaxa 3729 (1) © 2013 Magnolia Press DOMBROSKIE & SPERLING Table of contents Abstract . 3 Material and methods . 6 Results . 18 Discussion . 23 Conclusions . 33 Acknowledgements . 33 Literature cited . 34 APPENDIX 1. 38 APPENDIX 2. 44 Additional References for Appendices 1 & 2 . 49 APPENDIX 3. 51 APPENDIX 4. 52 APPENDIX 5. -
Butterflies and Moths of Cumberland County, New Jersey, United
Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail