Magnetoresistive Random Access Memory (MRAM) by James Daughton Copyright © 2/4/00
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multilevel-Cell Phase-Change Memory - Modeling and Reliability Framework
MULTILEVEL-CELL PHASE-CHANGE MEMORY - MODELING AND RELIABILITY FRAMEWORK THÈSE NO 6801 (2016) PRÉSENTÉE LE 14 JANVIER 2016 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR LABORATOIRE DE SYSTÈMES MICROÉLECTRONIQUES PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Aravinthan ATHMANATHAN acceptée sur proposition du jury: Prof. G. De Micheli, président du jury Prof. Y. Leblebici, Dr M. Stanisavljevic, directeurs de thèse Dr E. Eleftheriou, rapporteur Dr R. Bez, rapporteur Dr J. Brugger, rapporteur Suisse 2016 All birds find shelter during a rain . But eagle avoids rain by flying above the clouds . Problems are common, but attitude makes the difference . — Dr. A. P.J. Abdul Kalam To my parents and wife. Acknowledgements This accomplishment would not have been possible without the wonderful people who have inspired me on my journey towards the PhD. This PhD challenge would have been more of an academic title than a great adventure if not for them. I consider myself fortunate to have spent the last four years of my life in a great research atmosphere for learning, and also working with some exceptional individuals during the course of my doctoral studies. I am greatly indebted to my supervisor, Prof. Yusuf Leblebici, who gave me the independence to pursue my ideas freely, while at the same time mentoring by example. I am especially grateful to my manager, Dr. Evangelos Eleftheriou, for giving me this wonderful opportunity to pursue my PhD thesis with IBM Research. His energy and enthusiasm have been an inspiration for me to aim ever higher in my pursuits. -
Nanotechnology ? Nram (Nano Random Access
International Journal Of Engineering Research and Technology (IJERT) IFET-2014 Conference Proceedings INTERFACE ECE T14 INTRACT – INNOVATE - INSPIRE NANOTECHNOLOGY – NRAM (NANO RANDOM ACCESS MEMORY) RANJITHA. T, SANDHYA. R GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE 13. containing elements, nanotubes, are so small, NRAM technology will Abstract— NRAM (Nano Random Access Memory), is one of achieve very high memory densities: at least 10-100 times our current the important applications of nanotechnology. This paper has best. NRAM will operate electromechanically rather than just been prepared to cull out answers for the following crucial electrically, setting it apart from other memory technologies as a questions: nonvolatile form of memory, meaning data will be retained even What is NRAM? when the power is turned off. The creators of the technology claim it What is the need of it? has the advantages of all the best memory technologies with none of How can it be made possible? the disadvantages, setting it up to be the universal medium for What is the principle and technology involved in NRAM? memory in the future. What are the advantages and features of NRAM? The world is longing for all the things it can use within its TECHNOLOGY palm. As a result nanotechnology is taking its head in the world. Nantero's technology is based on a well-known effect in carbon Much of the electronic gadgets are reduced in size and increased nanotubes where crossed nanotubes on a flat surface can either be in efficiency by the nanotechnology. The memory storage devices touching or slightly separated in the vertical direction (normal to the are somewhat large in size due to the materials used for their substrate) due to Van der Waal's interactions. -
ROSS: a Design of Read-Oriented STT-MRAM Storage for Energy
ROSS: A Design of Read-Oriented STT-MRAM Storage for Energy-Efficient Non-Uniform Cache Architecture Jie Zhang, Miryeong Kwon, Chanyoung Park, Myoungsoo Jung, and Songkuk Kim School of Integrated Technology, Yonsei Institute Convergence Technology, Yonsei University [email protected], [email protected], [email protected], [email protected], [email protected] Abstract high leakage power. With increasing demand for larger caches, SRAM is struggling to keep up with the density Spin-Transfer Torque Magnetoresistive RAM (STT- and energy-efficiency requirements set by state-of-the- MRAM) is being intensively explored as a promis- art system designs. ing on-chip last-level cache (LLC) replacement for Thanks to the device-level advantages of STT-MRAM SRAM, thanks to its low leakage power and high stor- such as high-density structure, zero leakage current, and age capacity. However, the write penalties imposed by very high endurance, it comes out as an excellent candi- STT-MRAM challenges its incarnation as a successful date to replace age-old SRAM for LLC design. However, LLC by deteriorating its performance and energy effi- the performance of STT-MRAM is critically sensitive to ciency. This write performance characteristic unfortu- write frequency due to its high write latency and energy nately makes STT-MRAM unable to straightforwardly values. Therefore, an impulsive replacement of SRAM substitute SRAM in many computing systems. with high-density STT-MRAM, simply for increasing In this paper, we propose a hybrid non-uniform cache LLC capacity, can deteriorate cache performance and in- architecture (NUCA) by employing STT-MRAM as a troduce poor energy consumption behavior. -
Non-Volatile Memory Databases
15-721 ADVANCED DATABASE SYSTEMS Lecture #24 – Non-Volatile Memory Databases Andy Pavlo // Carnegie Mellon University // Spring 2016 @Andy_Pavlo // Carnegie Mellon University // Spring 2017 2 ADMINISTRIVIA Final Exam: May 4th @ 12:00pm → Multiple choice + short-answer questions. → I will provide sample questions this week. Code Review #2: May 4th @ 11:59pm → We will use the same group pairings as before. Final Presentations: May 9th @ 5:30pm → WEH Hall 7500 → 12 minutes per group → Food and prizes for everyone! CMU 15-721 (Spring 2017) 3 TODAY’S AGENDA Background Storage & Recovery Methods for NVM CMU 15-721 (Spring 2017) 4 NON-VOLATILE MEMORY Emerging storage technology that provide low latency read/writes like DRAM, but with persistent writes and large capacities like SSDs. → AKA Storage-class Memory, Persistent Memory First devices will be block-addressable (NVMe) Later devices will be byte-addressable. CMU 15-721 (Spring 2017) 5 FUNDAMENTAL ELEMENTS OF CIRCUITS Capacitor Resistor Inductor (ca. 1745) (ca. 1827) (ca. 1831) CMU 15-721 (Spring 2017) 6 FUNDAMENTAL ELEMENTS OF CIRCUITS In 1971, Leon Chua at Berkeley predicted the existence of a fourth fundamental element. A two-terminal device whose resistance depends on the voltage applied to it, but when that voltage is turned off it permanently remembers its last resistive state. TWO CENTURIES OF MEMRISTORS Nature Materials 2012 CMU 15-721 (Spring 2017) 7 FUNDAMENTAL ELEMENTS OF CIRCUITS Capacitor Resistor Inductor Memristor (ca. 1745) (ca. 1827) (ca. 1831) (ca. 1971) CMU 15-721 (Spring 2017) 8 MERISTORS A team at HP Labs led by Stanley Williams stumbled upon a nano-device that had weird properties that they could not understand. -
Fast Non-Volatile RAM Products Superior Price and Performance from a Source You Can Trust
Fast Non-Volatile RAM Products Superior price and performance from a source you can trust www.freescale.com/MRAM The Future of Non-Volatile Read/Write Memory is Magnetic Freescale Semiconductor delivers the world’s non-volatile for greater than 20 years. Commercial MRAM Products Selector Guide Freescale MRAM Features first commercial magnetoresistive random SRAM-compatible packaging assures Part Number Density Configuration Voltage Speed Grades Temperature Package RoHS Compliant • 35 ns read/write cycle time access memory (MRAM) products. Our alternate sourcing from other suppliers. MR2A16ATS35C 4 Mb 256 Kb x 16 3.3V 35 ns 0 to 70°C 44-TSOP Type II √ • Unlimited read/write endurance MRAM products store data using magnetic MR1A16AYS35 2 Mb 128 Kb x 16 3.3V 35 ns 0 to 70°C 44-TSOP Type II √ • 3.3V ± 10 percent power supply polarization rather than electric charge. Extended Temperature Range and MR0A16AYS35 1 Mb 64 Kb x 16 3.3V 35 ns 0 to 70°C 44-TSOP Type II √ • Always non-volatile with greater than MRAM stores data for decades while reading Superior Reliability 20-year retention and writing at SRAM speed without wear- MRAM delivers a 3 volt high-density out. MRAM products use small, simple • Magnetically shielded to greater than non-volatile RAM that operates over extended cells to deliver the highest density and best 25 oersted (Oe) temperature. MRAM does not exhibit the price/performance in the non-volatile RAM • Commercial, Industrial and Extended charge storage failure modes that limit the marketplace. With our new expanded product Temperature Options data retention or endurance of line, we serve a growing portion of the other technologies. -
Recent Developments of Magnetoresistive Sensors for Industrial Applications
Sensors 2015, 15, 28665-28689; doi:10.3390/s151128665 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Recent Developments of Magnetoresistive Sensors for Industrial Applications Lisa Jogschies, Daniel Klaas, Rahel Kruppe, Johannes Rittinger, Piriya Taptimthong, Anja Wienecke, Lutz Rissing and Marc Christopher Wurz * Institute of Micro Production Technology, Centre for Production Technology, Leibniz Universitaet Hannover, Garbsen 30823, Germany; E-Mails: [email protected] (L.J.); [email protected] (D.K.); [email protected] (R.K.); [email protected] (J.R.); [email protected] (P.T.); [email protected] (A.W.); [email protected] (L.R.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-511-762-7486; Fax: +49-511-762-2867. Academic Editor: Andreas Hütten Received: 31 August 2015 / Accepted: 5 November 2015 / Published: 12 November 2015 Abstract: The research and development in the field of magnetoresistive sensors has played an important role in the last few decades. Here, the authors give an introduction to the fundamentals of the anisotropic magnetoresistive (AMR) and the giant magnetoresistive (GMR) effect as well as an overview of various types of sensors in industrial applications. In addition, the authors present their recent work in this field, ranging from sensor systems fabricated on traditional substrate materials like silicon (Si), over new fabrication techniques for magnetoresistive sensors on flexible substrates for special applications, e.g., a flexible write head for component integrated data storage, micro-stamping of sensors on arbitrary surfaces or three dimensional sensing under extreme conditions (restricted mounting space in motor air gap, high temperatures during geothermal drilling). -
Magnetic Storage- Magnetic-Core Memory, Magnetic Tape,RAM
Magnetic storage- From magnetic tape to HDD Juhász Levente 2016.02.24 Table of contents 1. Introduction 2. Magnetic tape 3. Magnetic-core memory 4. Bubble memory 5. Hard disk drive 6. Applications, future prospects 7. References 1. Magnetic storage - introduction Magnetic storage: Recording & storage of data on a magnetised medium A form of „non-volatile” memory Data accessed using read/write heads Widely used for computer data storage, audio and video applications, magnetic stripe cards etc. 1. Magnetic storage - introduction 2. Magnetic tape 1928 Germany: Magnetic tape for audio recording by Fritz Pfleumer • Fe2O3 coating on paper stripes, further developed by AEG & BASF 1951: UNIVAC- first use of magnetic tape for data storage • 12,7 mm Ni-plated brass-phosphorus alloy tape • 128 characters /inch data density • 7000 ch. /s writing speed 2. Magnetic tape 2. Magnetic tape 1950s: IBM : patented magnetic tape technology • 12,7 mm wide magnetic tape on a 26,7 cm reel • 370-730 m long tapes 1980: 1100 m PET –based tape • 18 cm reel for developers • 7, 9 stripe tapes (8 bit + parity) • Capacity up to 140 MB DEC –tapes for personal use 2. Magnetic tape 2014: Sony & IBM recorded 148 Gbit /squareinch tape capacity 185 TB! 2. Magnetic tape Remanent structural change in a magnetic medium Analog or digital recording (binary storage) Longitudinal or perpendicular recording Ni-Fe –alloy core in tape head 2. Magnetic tape Hysteresis in magnetic recording 40-150 kHz bias signal applied to the tape to remove its „magnetic history” and „stir” the magnetization Each recorded signal will encounter the same magnetic condition Current in tape head proportional to the signal to be recorded 2. -
Perspectives of Giant Magnetoresistance
published in Solid State Physics, ed. by H. Ehrenreich and F. Spaepen, Vol. 56 (Academic Press, 2001) pp.113-237 Perspectives of Giant Magnetoresistance E.Y.Tsymbal and D.G.Pettifor Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK I. Introduction II. Origin of GMR 1. Spin-dependent conductivity 2. Role of band structure 3. Resistor model III. Experimental survey 4. Composition dependence 5. Nonmagnetic layer thickness dependence 6. Magnetic layer thickness dependence 7. Roughness dependence 8. Impurity dependence 9. Outer-boundary dependence 10. Temperature dependence 11. Angular dependence IV. Free-electron and simple tight-binding models 12. Semiclassical theory 13. Quantum-mechanical theory 14. Tight-binding models V. Multiband models 15. Ballistic limit 16. Semiclassical theory 17. Tight-binding models 18. First-principle models VI. CPP GMR VII. Conclusions 1 I. INTRODUCTION the GMR effect.9 In these materials ferromagnetic precipitates are embedded in a non-magnetic host metal film. The randomly-oriented magnetic moments of the precipitates can be aligned by the Giant magnetoresistance (GMR) is one of the most fascinating discoveries in thin-film applied magnetic field which results in a resistance drop. The various types of systems in which GMR magnetism, which combines both tremendous technological potential and deep fundamental physics. is observed are shown in Fig.2. Within a decade of GMR being discovered in 1988 commercial devices based on this phenomenon, such as hard-disk read-heads, magnetic field sensors and magnetic memory chips, had become R available in the market. These achievements would not have been possible without a detailed R understanding of the physics of GMR, which requires a quantum-mechanical insight into the a AP electronic spin-dependent transport in magnetic structures. -
High Sensitivity Differential Giant Magnetoresistance (GMR) Based Sensor for Non-Contacting DC/AC Current Measurement
Article High Sensitivity Differential Giant Magnetoresistance (GMR) Based Sensor for Non-Contacting DC/AC Current Measurement Cristian Mușuroi, Mihai Oproiu, Marius Volmer * and Ioana Firastrau 1 Department of Electrical Engineering and Applied Physics, Transilvania University of Brasov, 29 Blvd. Eroilor, 500036 Brasov, Romania; [email protected] (C.M.); [email protected] (M.O.); [email protected] (I.F.) * Correspondence: [email protected] Received: 10 December 2019; Accepted: 3 January 2020; Published: 6 January 2020 Abstract: This paper presents the design and implementation of a high sensitivity giant magnetoresistance (GMR) based current sensor with a broad range of applications. The novelty of our approach consists in using a double differential measurement system, based on commercial GMR sensors, with an adjustable biasing system used to linearize the field response of the system. The work aims to act as a fully-operational proof of concept application, with an emphasis on the mode of operation and methods to improve the sensitivity and linearity of the measurement system. The implemented system has a broad current measurement range from as low as 75 mA in DC and 150 mA in AC up to 4 A by using a single setup. The sensor system is also very low power, consuming only 6.4 mW. Due to the way the sensors are polarized and positioned above the U- shaped conductive band through which the current to be measured is flowing, the differential setup offers a sensitivity of about between 0.0272 to 0.0307 V/A (signal from sensors with no amplifications), a high immunity to external magnetic fields, low hysteresis effects of 40 mA, and a temperature drift of the offset of about −2.59×10−4 A/°C. -
MRAM (Magnetoresistive Random Access Memory)
MRAM (MagnetoResistive Random Access Memory) By : Dhruv Dani 200601163 Shitij Kumar 200601084 Team - N Flow of Presentation Current Memory Technologies Riddles Introduction Principle, Structure and Working Working Modes Schematic Overview MRAM v/s Other Memory Elements Applications in Embedded Systems Case Studies Supported Microcontrollers and Companies Constraints References Current Memory Technologies Volatile When the power is switched off the information is lost. Restarting: programs and data need to be reloaded resulting in increase of idle time. Non -Volatile Can retain stored information permanently Stores information that does not require frequent changing. Read/Write/Erase cycles consume a lot of time. Commonly Known Memories Volatile – Static RAM (SRAM), Dynamic RAM (DRAM) Non –Volatile – Flash, EEPROM Riddle - 1 A car component manufacturing company ‘X’ has to built Air Bag systems for a range of cars. The requisites of building such a system are that it has to interact with the various sensors which detect and record passenger weight and are employed in other safety devices on the vehicle which perform various crucial tasks like detecting the impact of the possible collision. Such a real time system requires the memory to be susceptible to continuous reads, writes and overwrites in each clocked interval. As an embedded engineer for this company X which kind of memory would you use to implement such a system? Riddle - 2 The Defense Research and Development Organization of a nation ‘C’ has to build a system which can be employed by them for their military and aerospace applications. These systems at present require constant power supply to maintain various kinds databases consisting of confidential information. -
Non-Volatile Memory Technology Continue to Scale Up
MEMORY Non-volatile Memory Technology Continue to Scale Up The emergence of new Non-Volatile memory technology promises to improve performance, efficiency that matches with ideal characteristics. The article reviews some of new non-volatile memory technologies. PADAM RAO RAM, DRAM and Flash are three Landscape dominating memory technologies and With respect to ideal characteristics of memory each technology has some advantages technology described above, till now all known and disadvantages. The ideal memory S memory/storage technologies address only some technology should have low power of the characteristics. Static RAM (SRAM) is very consumption, high performance, high reliability, fast, but it's expensive, has low density and is not high density, low cost, and the ability to be used in any semiconductor memory application. persistent. Dynamic RAM (DRAM) has better Besides computers, today’s portable electronics densities and is cheaper (but still expensive) at the have become computationally intensive devices as cost of being a little slower, and it's not persistent as the user interface has migrated to a fully well. Disks are cheap, highly dense and persistent, multimedia experience. To provide the but very slow. Flash memory is between DRAM and performance required for these applications, the disk; it is a persistent solid-state memory with higher portable electronics designer uses multiple types of densities than DRAM, but its write latency is much memories: a medium-speed random access higher than the latter. memory for continuously changing data, a high- Fortunately, it is possible to design a memory system speed memory for caching instructions to the CPU, that incorporates all these different technologies in and a slower, non-volatile memory for long-term a single memory hierarchy. -
Qt2t0089x7 Nosplash Af5b9567
UNIVERSITY OF CALIFORNIA Los Angeles Interface Engineering of Voltage-Controlled Embedded Magnetic Random Access Memory A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical and Computer Engineering by Xiang Li 2018 © Copyright by Xiang Li 2018 ABSTRACT OF THE DISSERTATION Interface Engineering of Voltage-Controlled Embedded Magnetic Random Access Memory by Xiang Li Doctor of Philosophy in Electrical and Computer Engineering University of California, Los Angeles, 2018 Professor Kang Lung Wang, Chair Magnetic memory that utilizes spin to store information has become one of the most promising candidates for next-generation non-volatile memory. Electric-field-assisted writing of magnetic tunnel junctions (MTJs) that exploits the voltage-controlled magnetic anisotropy (VCMA) effect offers great potential for high density and low power memory applications. This emerging Magnetoelectric Random Access Memory (MeRAM) based on the VCMA effect has been investigated due to its lower switching current, compared with traditional current-controlled devices utilizing spin transfer torque (STT) or spin-orbit torque (SOT) for magnetization switching. It is of great promise to integrate MeRAM into the advanced CMOS back-end-of-line (BEOL) processes for on-chip embedded applications, and enable non-volatile electronic systems with low static power dissipation and instant-on operation capability. To achieve the full potential of MeRAM, it is critical to design magnetic materials with high voltage-induced ii writing efficiency, i.e. VCMA coefficient, to allow for low write energy, low write error rate, and high density MeRAM at advanced nodes. In this dissertation, we will first discuss the advantage of MeRAM over other memory technologies with a focus on array-level memory performance, system-level 3D integration, and scaling at advanced nodes.