The Permo-Carboniferous Oslo Rift Through Six Stages and 65 Million Years

Total Page:16

File Type:pdf, Size:1020Kb

The Permo-Carboniferous Oslo Rift Through Six Stages and 65 Million Years 52 by Bjørn T. Larsen1, Snorre Olaussen2, Bjørn Sundvoll3, and Michel Heeremans4 The Permo-Carboniferous Oslo Rift through six stages and 65 million years 1 Det Norske Oljeselskp ASA, Norway. E-mail: [email protected] 2 Eni Norge AS. E-mail: [email protected] 3 NHM, UiO. E-mail: [email protected] 4 Inst. for Geofag, UiO. E-mail: [email protected] The Oslo Rift is the northernmost part of the Rotliegen- des basin system in Europe. The rift was formed by lithospheric stretching north of the Tornquist fault sys- tem and is related tectonically and in time to the last phase of the Variscan orogeny. The main graben form- ing period in the Oslo Region began in Late Carbonif- erous, culminating some 20–30 Ma later with extensive volcanism and rifting, and later with uplift and emplacement of major batholiths. It ended with a final termination of intrusions in the Early Triassic, some 65 Ma after the tectonic and magmatic onset. We divide the geological development of the rift into six stages. Sediments, even with marine incursions occur exclusively during the forerunner to rifting. The mag- matic products in the Oslo Rift vary in composition and are unevenly distributed through the six stages along the length of the structure. Introduction The Oslo Palaeorift (Figure 1) contributed to the onset of a pro- longed period of extensional faulting and volcanism in NW Europe, which lasted throughout the Late Palaeozoic and the Mesozoic eras. Widespread rifting and magmatism developed north of the foreland of the Variscan Orogen during the latest Carboniferous and contin- ued in some of the areas, like the Oslo Rift, all through the Permian period. We review the geological development of the Oslo Rift through its six stages of development (Ramberg and Larsen, 1978, Sundvoll et al., 1990, Olaussen et al., 1994), focusing on the four first—their lavas, sediments and tectonic structure, and briefly put it into the plate tectonic framework of NW Europe. The Variscan orogeny, the Tornquist line and the Oslo Rift Figure 1 Simplified geological map of the Oslo Graben area. The Oslo Rift sediments exhibit great similarities to the Lower Brown—includes both volcanics, sediments and large dykes related Rotliegendes in the Northern European Permian Basin and in Katte- to the Oslo Graben; Carboniferous-Permian age. Red—large gat and may be regarded as a prolonged northern arm of the North- Permian batholithic intrusions. Small blue dots—Permian gabbroic ern Permian Basin. The Skagerrak Graben is the southern part of the intrusions. Green—Lower Palaeozoic sediments. Yellow—the Oslo Rift and is the link between the two tectonic systems (Heere- Caledonian thrust front. White—Pre-Cambrian basement rocks. mans et al., 2004). Abbreviations for different areas: Brum. = Brumunddal, Krok. = Recent reviews of post-Variscan tectonics in Western Europe Krokskogen, and for the caldera volcanoes; Øy = Øyangen, He = (McCann et al., 2006; Ziegler et al., 2006) have described the genetic Heggelia, Ni = Nittedal, Bæ = Bærum, Gl = Glitrevann, Dr = relations and the timing between the Variscan orogeny and subse- Drammen, Sa = Sande, Hi = Hillestad and Ra = Ramnes. March 2008 53 Figure 2 Simplified tectonic overview of West Europe with the Variscan front, the Tornquist fault system and the Oslo Rift. Also shown are the pre-rift configurations with the Caledonian structures and the boundary of the Fennoscandian Craton. quent large, mostly NW-SE striking, wrench fault systems. The largest and northernmost is the Sorgenfrei-Tornquist Zone (Figure 2) that strikes across Scania (Skåne) into the North Sea (north of the Ringkøping-Fyn High), developing at least partly as a dextral strike- slip fault system. North of this fault, extensional stress fields devel- Figure 3 The graben segments and the graben polarity, the oped widespread rifting, being linked to the late stages of the master faults, the accommodation structures and the transfer fault orogeny and to the strike-slip faulting (Heeremans et al., 1997). Rifts in the Oslo Rift. Abbreviations of the structural nomenclature: formed both inside the orogen and in the foreland to the north, even R.F. = Rendalen fault, S.H. = Solberg Horst, R.H.F = extending into the Fennoscandian Craton. The northernmost and the Randsfjorden-Hunnselv Fault, K.K.T.F. = Krokkleiva- largest of these structures was the Oslo Rift. Kjaglidalen Transfer Fault, E.T.F. = Ekeberg. Transfer Fault. Warr (2000) divided the development of the Variscan orogenic O.F. = Oslofjord Fault, and L.A.Z. = Langesund Accommodation system in NW Europe into four phases, separated both in time and in Zone. Li = Lillehammer, H = Hamar, D = Drammen, K = different areas. The last of the four phases is named the Asturian Kongsberg, M = Moss, S = Skien, La = Larvik. phase and is generally Westphalian to Early Permian in age. Both Ziegler et al. (2006) and McCann et al. (2006) described it as the Finally, the offshore Skagerrak Graben represents the southern- consolidation phase of the Variscan Fold belt and gave an age most part of the Oslo Rift, and abuts towards the NW-SE trending 305Ma as the critical decline of the Variscan orogeny and the onset Sorgenfrei-Tornquist Zone in the south. The two Akershus and Vest- of rifting. Latest Carboniferous to earliest Permian was the time for fold graben segments form the classical Oslo Graben which is the onset of the Oslo Rift, leading up to its climax of both tectonic 220 km long and about 60 km wide. Adding the 100 km long Ren- and magmatic activity (Sundvoll et al., 1990; Heeremans et al., dalen Graben in the north, and the 180 km offshore Skagerrak 1997). Graben in the south makes the total length of Oslo Rift about 500 km. The Skagerrak Graben is broader than the other segments to the north, and is composed of several more or less overlapping The Oslo Rift architecture and grabens (Heeremans et al., 2004). The rift axis here strikes NE-SW, perpendicular to the Sorgenfrei-Tornquist fault system. nomenclature The architecture of the Oslo Rift is very much like that of other well The petrogenesis of a high volcanicity rift known rift structures. Most have polarity off-set of grabens along the length of the rift axis, as described e.g. by Rosendahl (1987). The Larsen and Sundvoll (1984) summarized the Oslo Graben part of the Oslo Graben (Figure 3) was subdivided into two rift segments with Oslo Rift as a north-south trending Permo-Carboniferous high-vol- opposite subsidence polarity (Ramberg and Larsen, 1978). The canicity continental rift system, much like the recent East African Akershus Graben segment has an E-verging master fault (the Rands- rifts of Kenya and Ethiopia. The high volume of volcanics filling the fjord-Hunnselv Fault) to the north, while the Vestfold Graben seg- rift is a feature common to both, and distinguishes them from other ment has a W-verging master fault (the Oslofjord Fault) to the south. continental low-volcanicity rifts such as the Baikal Rift and the These two half grabens have their accommodation zone around the Viking Graben. These two categories of rifts are useful descriptive city of Oslo, with a joining fault to the west of Oslo in the Kjagli- end-members (Barberi et al., 1982). dalen-Krokkleiva Transfer Fault (Heeremans et al., 1997). Today, A thorough analysis of the available data from the Oslo Rift we add the third Rendalen Graben segment to the north of the Aker- was undertaken by Neumann et al. (2004). They discussed the shus Graben, also with a west-verging master fault system, the Ren- magma origin and concluded that at least three mantle components dalen Fault (Skjeseth, 1963; Larsen et al., 2006). The accommoda- have contributed to the petrogenesis of the basaltic magmas, the old- tion, or transfer system, between the Akershus Graben and the Ren- est apparently being derived from an enriched mantle source. This dalen Graben is represented by the NE-SW trending Solberg Horst, source was most likely located in the lithospheric mantle and might beside lake Mjøsa. have been metasomatically altered by older carbonatitic fluid-rich Episodes, Vol. 31, No. 1 54 melts (Anthony et al., 1989). The main mantle source for the basaltic magmatism was a prevalent depleted mantle. It may represent the composition of the base of the local lithospheric mantle, and the asthenosphere beneath, which partly melted in response to localized thinning of the lithosphere due to the extension. Anthony et al. (1989) also suggested an alternative scenario involving a mantle plume, with depleted characteris- tics, actively up-welling beneath the lithosphere. The most primitive lavas appear to involve low degree partial melting of one or more sublithospheric mantle sources. The rising man- tle-derived magmas were modified by shallow-level processes, including magmatic differentiation, general fractional crys- tallisation, magma mixing and lithospheric contamination that masked the geochemical signature of the mantle source. Large volumes of mantle-derived basaltic magma formed chambers near the Moho at c. 36 km depth. This also led to anatectic melting in the Precambrian host-rocks. Initial Sr isotopic ratios significantly above 0.7039 are typical of the syenitic and granitic rocks and imply influence of crustal contamination in the lower crust (Sundvoll et al., 1990). After 280 Ma, the rocks show a clear trend of increasing ini- tial ratios; mantle signature is only present in the larvikites and the rhomb-porphyry and basalt lavas. Sundvoll et al. (1990) interpreted the Sr-initial ratios to reflect the relative importance of mantle- versus crustal-derived melts. At c. 280 and 275 Ma, the magmatism became dominated by melts (syenitic and granitic) containing a larger crustal component. The mantle source had slowly become inactive, but mantle- derived magmas were still undergoing fractional crystallisa- tion in magma chambers in the lower crust giving rise to evolved rocks such as larvikites and late rhomb porphyry lavas, and to basaltic central volcanoes with shallower crustal magma chambers at c.
Recommended publications
  • National Treasure of Global Significance. Dimension-Stone Deposits in Larvikite, Oslo Igneous Province, Norway
    National treasure of global significance. Dimension-stone deposits in larvikite, Oslo igneous province, Norway Tom Heldal1, Idunn Kjølle2, Gurli B. Meyer1 and Sven Dahlgren3 1Geological Survey of Norway (NGU), 7491 Trondheim, Norway. 2Directorate of mining, 7491 Trondheim, Norway. 3Geological advisor, Buskerud, Telemark and Vestfold, Fylkeshuset, 3126 Tønsberg, Norway. E-mail: [email protected] Larvikite has for more than a hundred years been appreciated as one of the world’s most attractive dimension stones, and at present, its production and use is more extensive than ever. The main reason for the continuous success of larvikite on the world market is the blue iridescence displayed on polished surfaces, which is caused by optical interference in microscopic lamellae within the ternary feldspars. The larvikite complex consists of different intrusions, defining several ring- shaped structures, emplaced during a period of approximately five million years. Following this pattern, several commercial subtypes of larvikite, characterised by their colour and iridescence, have been mapped. Four of these subtypes are being exploited at the present time and define the most important reserves in the short run. Some other subtypes are less attractive in the present market situation, but may provide an interesting potential for the future. However, the industrial value of the larvikite also depends on other geological features, such as various types of dykes, faults and fractures, ductile deformation zones, late-stage magmatic and hydrothermal alteration and deep weathering. When combining the distribution pattern of such features with the map of the larvikite subtypes, it is possible to delineate various types of larvikite deposit that are considered to have commercial value in the short or long term.
    [Show full text]
  • Fagrapport Sykehuset Innlandet Deltema 6 Infrastruktur
    ADRESSE COWI AS Karvesvingen 2 Postboks 6412 Etterstad 0605 Oslo TLF +47 02694 WWW cowi.no DESEMBER 2020 HELSE SØR-ØST RHF SAMFUNNSANALYSE SYKEHUSSTRUKTUR INNLANDET - DELTEMA INFRASTRUKTUR OPPDRAGSNR. DOKUMENTNR. A209187 - VERSJON UTGIVELSESDATO BESKRIVELSE UTARBEIDET KONTROLLERT GODKJENT 1.0 2020-12-03 Fagrapport Øystein Berge Marius Fossen Øystein Berge SAMFUNNSANALYSE SYKEHUSSTRUKTUR INNLANDET 2 DELTEMA INFRASTRUKTUR DOKUMENTINFORMASJON Rapporttittel: Samfunnsanalyse Sykehusstruktur Innlandet Deltema Infrastruktur Dato: 03.12.2020 Utgave: Endelig Oppdragsgiver: Helse Sør-Øst RHF Kontaktperson hos Rune Aarbø Reinaas Helse Sør-Øst RHF: Konsulent: COWI AS og Vista Analyse Prosjektleder hos Øystein Berge, COWI konsulent: Utarbeidet av: Øystein Berge Sidemannskontroll: Marius Fossen Godkjent av: Øystein Berge SAMFUNNSANALYSE SYKEHUSSTRUKTUR INNLANDET 3 DELTEMA INFRASTRUKTUR INNHOLD 1 Sammendrag 4 2 Innledning 5 2.1 Bakgrunn 5 2.2 Alternativene 6 2.3 0-alternativet 7 3 Metode og kunnskapsgrunnlag i denne fagrapporten 8 4 Dagens situasjon og beskrivelse av 0-alternativet 9 5 Konsekvenser av ulike alternativer 11 5.1 Alternativ Biri-Hamar 11 5.2 Alternativ Biri-Elverum 11 5.3 Alternativ Moelv-Lillehammer 12 5.4 Alternativ Moelv-Gjøvik 13 5.5 Alternativ Brumunddal-Lillehammer 13 5.6 Alternativ Brumunddal-Gjøvik 14 6 Samlet vurdering 15 7 Bibliography 16 SAMFUNNSANALYSE SYKEHUSSTRUKTUR INNLANDET 4 DELTEMA INFRASTRUKTUR 1 Sammendrag Det er lite som skiller alternativene fra hverandre. Alle stedene utnytter eksisterende og kommende infrastrukturen på en god måte. Alle alternativene for Mjøssykehuset vil utnytte den nye E6en, men kun Moelv og Brumunddal kan utnytte kan jernbaneforbindelsen, og kommer derfor bedre ut. Blant de fire byene som er aktuelle for akuttsykehus har alle jernbanetilgang. Men hyppigst avganger er det på Hamar og i Lillehammer.
    [Show full text]
  • Graveyard Geology
    GRAVEYARD GEOLOGY A Guide to Rocks in Graveyards and Cemeteries Wendy Kirk Department of Earth Sciences, David Cook University College London & Aldersbrook Geological Society London Geodiversity Partnership Introduction Walk around graveyards and cemeteries (in this case, those of London and the southeast of England) and it becomes apparent that, prior to the latter part of the twentieth century, many memorials were made out of just a few different rock types. These were chosen for reasons of appearance, cost, workability and ease of transport to the cemetery, as well as for resistance to weathering and dependence on local regulations. In the last few decades, a range of different, interesting and beautiful stones have appeared, many brought in from abroad, enhancing the diversity of materials used. The intention of this guide is to help a non-specialist identify the main rock types, to recognize some of the varieties and to know where some of these might have come from. Graveyards are a wonderful resource for those with an interest in geology at any level, wildlife, plants, history or sculpture. We hope you gain as much pleasure as we have done. First things first A useful place to start is to be able to distinguish between igneous, sedimentary and metamorphic rocks. Igneous rocks form from melted rock called magma. If this erupts at the surface, it is called lava. It cools and crystallizes quickly, so the grains are too small to see even with a hand lens (magnifying glass). If the lava erupt explosively to form a spray, the cooled fragments are known as volcanic ash.
    [Show full text]
  • Agenda 2030 in Asker
    Agenda 2030 in Asker Voluntary local review 2021 Content Opening Statement by mayor Lene Conradi ....................................4 Highlights........................................................................................5 Introduction ....................................................................................6 Methodology and process for implementing the SDGs ...................8 Incorporation of the Sustainable Development Goals in local and regional frameworks ........................................................8 Institutional mechanisms for sustainable governance ....................... 11 Practical examples ........................................................................20 Sustainability pilots .........................................................................20 FutureBuilt, a collaboration for sustainable buildings and arenas .......20 Model projects in Asker ...................................................................20 Citizenship – evolving as a co-creation municipality ..........................24 Democratic innovation.....................................................................24 Arenas for co-creation and community work ....................................24 Policy and enabling environment ..................................................26 Engagement with the national government on SDG implementation ...26 Cooperation across municipalities and regions ................................26 Creating ownership of the Sustainable Development Goals and the VLR ..........................................................................
    [Show full text]
  • Rangering K.Gr. 13 Totalt
    Rangering K.gr. 13 Totalt Grunnskole Pleie og omsorg Barnevern Barnehage Hamar 4 Fjell 30 Moss 11 Moss 92 Asker 6 Grimstad 34 Tønsberg 17 Halden 97 Oppegård 13 Bodø 45 Kongsberg 19 Gjøvik 104 Lier 22 Røyken 67 Nedre Eiker 26 Lillehammer 105 Sola 29 Gjøvik 97 Nittedal 27 Ringsaker 123 Lillehammer 37 Kristiansund 107 Skedsmo 49 Tønsberg 129 Kongsberg 38 Horten 109 Sandefjord 67 Steinkjer 145 Ski 41 Kongsberg 113 Lørenskog 70 Stjørdal 146 Moss 55 Karmøy 114 Lier 75 Porsgrunn 150 Nittedal 55 Hamar 123 Oppegård 86 Kristiansund 170 Tønsberg 56 Steinkjer 137 Karmøy 101 Kongsberg 172 Elverum 59 Skedsmo 168 Røyken 104 Bodø 173 Bodø 69 Haugesund 186 Ski 112 Horten 178 Skedsmo 72 Moss 188 Porsgrunn 115 Nedre Eiker 183 Lørenskog 74 Lier 191 Horten 122 Hamar 185 Molde 88 Sola 223 Sola 129 Asker 189 Kristiansund 97 Ullensaker 230 Harstad 136 Haugesund 206 Steinkjer 98 Sarpsborg 232 Haugesund 151 Arendal 207 Ringsaker 100 Arendal 234 Asker 154 Sarpsborg 232 Røyken 108 Askøy 237 Arendal 155 Sandefjord 234 Ålesund 116 Gj.sn. k.gr. 13 238 Hamar 168 Harstad 237 Askøy 121 Lørenskog 254 Ringerike 169 Gj.sn. k.gr. 13 240 Horten 122 Oppegård 261 Gj.sn. k.gr. 13 174 Lier 247 Grimstad 125 Halden 268 Lillehammer 174 Rana 250 Porsgrunn 133 Elverum 274 Ullensaker 177 Skien 251 Gj.sn. k.gr. 13 139 Nedre Eiker 276 Molde 182 Elverum 254 Skien 151 Ringerike 283 Askøy 213 Askøy 256 Haugesund 165 Ålesund 288 Bodø 217 Sola 273 Arendal 176 Ski 298 Ringsaker 225 Grimstad 278 Nedre Eiker 179 Harstad 309 Skien 239 Molde 306 Gjøvik 210 Skien 311 Eidsvoll 252 Ski 307 Ringerike
    [Show full text]
  • Camilla Brautaset 26 Petra Hyncicova 27 Ane Johnsen 28 Jesse Knori 29-30 Anne Siri Lervik 31 Lucy Newman 32-33 Christina Rolandsen 34
    Women’s Nordic Camilla Brautaset 26 Petra Hyncicova 27 Ane Johnsen 28 Jesse Knori 29-30 Anne Siri Lervik 31 Lucy Newman 32-33 Christina Rolandsen 34 25 2017 colorado buffaloes Camilla Brautaset A A A 5-5 Senior Women’s Nordic Oslo, Norway (Oslo Handelsgym/Heming Ski Club) 3 Letters; 2014 as a freshman, 2015 as a sophomore, 2016 as a junior Career at Colorado— 2016 (Junior)— An experienced veteran, she enters her senior campaign with 30 races under her belt - the most by any Buffalo on the women’s Nordic team entering the 2017 season. SEASON BY SEASON RESULTS She finished all 10 races through the RMISA Championships and had seven top 20 finishes. 2014 CL FS She placed ninth in the classic race at the RMISA Championships for her top finish of the season in her very last meet. Her top freestyle result was 12th place in the freestyle at New 2M0e1x5ic o(.S Sohpeh womaso ar me)e— mber of the National Collegiate All-Academic Ski Team for maintaining above a 3.5 grade point average and participating at the RMISA Championships/NCAA West Regional. Utah Invitational ̶̶ Montana State Invitational 8 11 She competed and finished 10 events, with four top 20 and two top Colorado Invitational 23 11 2150 1ap4p (eFarreasnhcmesa. Ant) —the New Mexico Invitational, she placed tenth in the 10k classic. She placed eleventh in the 10k classic at the Utah Invitational. She was a member of CU’s 4.0 Club and is N20ew15 Mexico Invitational C45L FS a part of the National All Academic Ski Team.
    [Show full text]
  • Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zr and Ti Mineral Assemblages in Miaskitic and Agpaitic Pegmatites in the Larvik Plutonic Complex
    MINERALOGIA, 44, No 3-4: 61-98, (2013) DOI: 10.2478/mipo-2013-0007 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex Tom ANDERSEN1*, Muriel ERAMBERT1, Alf Olav LARSEN2, Rune S. SELBEKK3 1 Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N-0316 Oslo Norway; e-mail: [email protected] 2 Statoil ASA, Hydroveien 67, N-3908 Porsgrunn, Norway 3 Natural History Museum, University of Oslo, Sars gate 1, N-0562 Oslo, Norway * Corresponding author Received: December, 2010 Received in revised form: May 15, 2012 Accepted: June 1, 2012 Available online: November 5, 2012 Abstract. Agpaitic nepheline syenites have complex, Na-Ca-Zr-Ti minerals as the main hosts for zirconium and titanium, rather than zircon and titanite, which are characteristic for miaskitic rocks. The transition from a miaskitic to an agpaitic crystallization regime in silica-undersaturated magma has traditionally been related to increasing peralkalinity of the magma, but halogen and water contents are also important parameters. The Larvik Plutonic Complex (LPC) in the Permian Oslo Rift, Norway consists of intrusions of hypersolvus monzonite (larvikite), nepheline monzonite (lardalite) and nepheline syenite. Pegmatites ranging in composition from miaskitic syenite with or without nepheline to mildly agpaitic nepheline syenite are the latest products of magmatic differentiation in the complex. The pegmatites can be grouped in (at least) four distinct suites from their magmatic Ti and Zr silicate mineral assemblages.
    [Show full text]
  • Se Næringsanalysen Her (.Pdf)
    Nittedal Kommune Næringsanalyse Nittedal kommune COWI AS Grensev. 88 Postboks 6412 Etterstad 0605 Oslo Telefon 02694 www.cowi.no Nittedal Kommune Næringsanalyse Nittedal kommune Dokumentnr. A008188-1 Versjon Endelig Utgivelsesdato 29. mars 2010 Utarbeidet ARHT, ETBH Kontrollert KGLI Nærings og Handelsanalyse Nittedal kommune 1 Innholdsfortegnelse 1 Sammendrag 2 1.1 Problemstilling 2 1.1 Næringslivet i dag 2 1.2 Fremtidig næringsutvikling 3 1.3 Anbefalinger 8 2 Innledning 10 3 Status næringsliv i Nittedal 11 3.1 Befolkning 11 3.2 Utdanningsnivå 15 3.3 Pendling 18 3.4 Sysselsetting 22 3.5 Inntekt 26 3.6 Nyetableringer 27 3.7 Oppsummering 28 4 Nittedals muligheter for å tiltrekke seg næringsliv 30 4.1 Innledning 30 4.2 Drivkrefter for næringsutvikling 30 4.3 Analysemodell 32 4.4 Fremskrivninger 34 5 Konklusjoner 42 5.1 Vekst er sannsynlig… 42 5.2 … men kommer ikke av seg selv 43 C:\Documents and Settings\ARHT\My Documents\Næringsanalyse_Nittedal.DOCX . Nærings og Handelsanalyse Nittedal kommune 2 1 Sammendrag 1.1 Problemstilling I denne rapporten analyseres styrker og mangler ved tilbudet av næring i Nitte- dal kommune i dag. I tillegg belyses hvilke nyetableringer innen enkeltbransjer det er potensial for i kommunen ut i fra markedsgrunnlaget lokalt og regionalt. Analysene inneholder vurderinger av hvilke konsekvenser nyetableringer innen handel og næring vil få, blant annet for allerede etablerte forretningsdrivende og for infrastruktur. 1.1 Næringslivet i dag Næringslivet i Nittedal kommune har både egne karakteristika og fellestrekk sett i forhold til næringsstrukturen i andre kommuner i Akershus. Særtrekkene er først og fremst knyttet til • Høy pendlerandel : en stor andel av befolkningen har arbeidssted utenfor kommunen.
    [Show full text]
  • Omverdensanalyse for NAV Vestfold Og Telemark
    Omverdensanalyse for NAV Vestfold og Telemark November 2020 1 SAMMENDRAG AV OMVERDENSANALYSEN (Omskrevet til Vestfold og Telemark fra den sentrale omverdensanalysen) Omverdensanalysen er inndelt i seks samfunnsområder: Demografi, brukerforventninger, teknologi, arbeidsmarked, helse og levekår og politiske trender. Den største endringen fra tidligere «spådommer» gjelder at det trolig blir svakere befolkningsvekst enn tidligere antatt. Dette gjør at de direkte konsekvenser for NAV også blir mer beskjedne. Koronautbruddet ventes å framskynde mange av de store omstillingene fylket, og landet, står overfor i arbeidslivet. • Svakere befolkningsvekst, sterkere aldring: Befolkningsveksten ventes å bli vesentlig lavere enn tidligere, men vi forventer fortsatt vekst i fylket og med forholdsvis store ulikheter mellom kommunene. De direkte konsekvensene for NAV blir beskjedne for de fleste NAV-ansatte jobber med ytelser/tjenester rettet mot personer i yrkesaktiv alder. Veksten i alderspensjonister vil bli håndterbar. • Økte forventninger til koordinerte tjenester og tilpasset service: Brukernes forventninger vil øke, særlig til tjenester personlig tilpasset den enkeltes behov og livssituasjon på tvers av NAV og offentlig sektor. Digitaliseringen vil stille større krav til spisskompetanse, rådgivning og relasjonskompetanse i de gjenværende personlige brukermøtene, da vi forventer at denne gruppen blir «tyngre». • Datadrevne tjenester gir nye muligheter: I tillegg til digitalisering og automatisering av de fleste tjenester og ytelser, vil algoritmiske systemer og analyser i sanntid gi store muligheter til å tenke nytt om tjenester bygget på personlig tilpasning, anbefalinger til brukere og ansatte samt bruk av nudging («dulting») som mykt virkemiddel for å påvirke adferd. Mulighetene må avveies mot hensynet til personvern og etikk. • Raskere omstillingstakt på arbeidsmarkedet: Teknologisk utvikling, fortsatt høy globalisering og det grønne skiftet vil øke omstillingstakten, og arbeidstakere må forvente å skifte karrierevei og oppdatere kompetansen sin oftere.
    [Show full text]
  • Norway's 2018 Population Projections
    Rapporter Reports 2018/22 • Astri Syse, Stefan Leknes, Sturla Løkken and Marianne Tønnessen Norway’s 2018 population projections Main results, methods and assumptions Reports 2018/22 Astri Syse, Stefan Leknes, Sturla Løkken and Marianne Tønnessen Norway’s 2018 population projections Main results, methods and assumptions Statistisk sentralbyrå • Statistics Norway Oslo–Kongsvinger In the series Reports, analyses and annotated statistical results are published from various surveys. Surveys include sample surveys, censuses and register-based surveys. © Statistics Norway When using material from this publication, Statistics Norway shall be quoted as the source. Published 26 June 2018 Print: Statistics Norway ISBN 978-82-537-9768-7 (printed) ISBN 978-82-537-9769-4 (electronic) ISSN 0806-2056 Symbols in tables Symbol Category not applicable . Data not available .. Data not yet available … Not for publication : Nil - Less than 0.5 of unit employed 0 Less than 0.05 of unit employed 0.0 Provisional or preliminary figure * Break in the homogeneity of a vertical series — Break in the homogeneity of a horizontal series | Decimal punctuation mark . Reports 2018/22 Norway’s 2018 population projections Preface This report presents the main results from the 2018 population projections and provides an overview of the underlying assumptions. It also describes how Statistics Norway produces the Norwegian population projections, using the BEFINN and BEFREG models. The population projections are usually published biennially. More information about the population projections is available at https://www.ssb.no/en/befolkning/statistikker/folkfram. Statistics Norway, June 18, 2018 Brita Bye Statistics Norway 3 Norway’s 2018 population projections Reports 2018/22 4 Statistics Norway Reports 2018/22 Norway’s 2018 population projections Abstract Lower population growth, pronounced aging in rural areas and a growing number of immigrants characterize the main results from the 2018 population projections.
    [Show full text]
  • Vestfold W-B Brunlanes
    Vestfold W-B Brunlanes Farkostens Meter Tonn Matr Bygge Motor Eierens (den korresponderende reder) nummer type og navn Lengde Bredde Dybde Br Nt &r Merke Byggear H K navn og postadresse Vestfold V-B Btunlanes - tilsynsmann Johs Stapnes, Rødberg, 3250 Larvik 1 å Snngg Sabb Henning Andersen. 3266 Nevlunghamn 2 å Sabb Sabb Severin B.Strand. 3265 Helgeroa 3 å Truls Sleipn R.B.Christiansen, 3265 Helgeroa 4 å Tom Marna Johs.Jakobsen, Stokksund, 3970 Langesund 5 å Havsul Johns Thorbjørn Warvågen. 3266 Nevlunghamn 7 kr Sjøviksand Wichm Trygve Jacobsen, 3266 Nevlunghamn 8 6 Neptun Ford Finn Jensen, 3266 Nevlunghamn 9 å Knurr Evinr Finn Jensen. 3266 Nevlunghamn 10 å Tilla BMC Eilef Olsen. 3265 Helgeroa 1 1 å Lillegutt Sabb Olaf Kristoffersen, 3265 Helgeroa 12 s Ravn Rapp Erl~ngJacobsen. 3266 Nevlunghamn 13 kr Chrioni BMW Gunnar Gustavsen, 3266 Nevlunghamn 14 å Øystein Evinr Gunnar Jensen, 3266 Nevlunghamn 15 Havdønn Volvo 8jørn Larsen. 3266 Nevlunghamn 17 å Anne Sabb Thore Kristensen. 3266 Nevlunghamn 18 å Ann Christin Johns Bjørn Larsen. 3266 Nevlunghamn 19 å Stjerna Marna Jens Jacobsen. Stokkøya, 3265 Helgeroa 20 a Guri 2 FM Hans Lund, 3266 Nevlunghamn 21 å Sleipner Sabb Olaf Kristoffersen. 3265 Helgeroa 22 kr Alamein Rapp Avald Johansen mfl. 3265 Helgeroa 23 å Terna FM Peder Marthinsen. 3266 Nevlunghamn 24 å Ballaklava Volvo Fred Johansen, 3265 Helgeroa 26 å Luna Sabb Reidar Gundersen. 3266 Nevlunghamn 28 kr Fanny Wichm fugen Jensen, 3266 Nevlunghamn 29 s Gunn Stabil Gunnar Jacobsen, 3266 Nevlunghamn 30 kr Havd~nn Volvo Arild Dag Larsen mfl, 3266 Nevlunghamn 31 å Ella Johns Alvin Johannessen, Stokkøya, 3265 Helgeroa 32 å Kaia 2 FM Gunv.Gustavsen, 3266 Nevlunghamn 34 å Lrllegutt Marna Albert Johansen, 3265 Helgeroa 36 å Lena Marna Arild Dag Larsen, 3266 Nevlunghamn 37 å Napesklær Sabb Ivar Kristensen, 3266 Nevlunghamn 39 Arne Marna Gunnar Jacobsen.
    [Show full text]
  • Informasjonsskriv Nr. 1/2020 – Statistikk 2019
    Informasjonsskriv nr. 1/2020 – statistikk 2019 Antall klagesaker behandlet i 2019 fordelt på NAV-kontor i Oslo og Viken (Lov om sosiale tjenester i NAV og forvaltningsloven) Oslo Navn Antall Nav Vestre Aker 15 Nav Østensjø 31 Nav St. Hanshaugen 46 Nav Grunerløkka 31 Nav Gamle Oslo 85 Nav Søndre Nordstrand 38 Nav Nordstrand 6 Nav Nordre Aker 23 Nav Alna 51 Nav Frogner 54 Nav Bjerke 39 Nav Stovner 64 Nav Grorud 22 Nav Sagene 19 Nav Ullern 12 Totalsum 536 Viken Navn: Antall Navn Antall Nav Ski 18 Nav Røyken 11 Nav Lørenskog 87 Nav Ringerike 15 Nav Ullensaker 49 Nav Hobøl/Spydeberg 4 Nav Oppegård 5 Nav Moss 34 Nav Aurskog-Høland 9 Nav Vestby 4 Nav Rælingen 17 Nav Lier 7 Nav Frogn 3 Nav Halden 23 Nav Nittedal 10 Nav Rakkestad 7 Nav Skedsmo 58 Nav Trøgstad 5 Nav Bærum 14 Nav Rygge 7 Nav Enebakk 13 Nav Hole 2 Nav Nes 16 Nav Numedal (Rollag) 10 Nav Ås 6 Nav Råde 6 Nav Nannestad 3 Nav Skiptvet 3 Nav Nesodden 5 Nav Hurum 2 Nav Asker 28 Nav Modum 12 Nav Eidsvoll 14 Nav Kongsberg 12 Nav Sørum 8 Nav Øvre Eiker 13 Nav Gjerdrum 3 Nav Ål 2 Nav Askim 17 Nav Marker 1 Nav Fredrikstad 94 Nav Gol og Hemsedal 5 Nav Drammen 56 Nav Nes (Buskerud) 2 Nav Nedre Eiker 17 Nav Våler 2 Nav Sigdal 2 Nav Aremark 1 Nav Sarpsborg 23 Totalsum 773 Nav Eidsberg 8 Totalt for Oslo og Viken 1309 Gjennomsnitt saksbehandlingstid. Fra NAV-kontoret mottok klagesaken og frem til oversendelse av saken til Fylkesmannen Oslo Navn Gj.snitt Nav Vestre Aker 4,6 Nav Østensjø 3,2 Nav St.
    [Show full text]