<<

Influence of hydrogen on and stress induced cracking of stainless steel

Ulf Kivisäkk

Doctoral Thesis

Division of Corrosion Science School of Chemical Science and Royal Institute of Technology, KTH

AB Sandvik Materials Technology R&D Sandviken, Sweden

Sandviken 2010

TRITA-CHE Report 2010:10 ISSN 1654-1081 ISBN 978-91-7415-598-3

Cover illustration:

Hydrogen evolution during activation of a duplex stainless steel specimen before uniform corrosion testing.

Som med tillstånd av Kungliga Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen, fredagen den 7 maj klockan 10.00 i Sal F3, Kungliga Tekniska Högskolan, Lindstedtsvägen 26, Stockholm.

Fakultetsopponent är Professor Roy Johnsen från Norges Teknisk- Naturvitensakpelige Univeristet, Trondheim, Norge.

Sammanfattning

Väte är det minsta elementet i periodiska systemet. Trots detta kan väte orsaka stora förändringar av ett materials egenskaper. I denna avhandling har några aspekter av vätes inverkan på bland annat korrosion och väteförsprödning studerats för några material som används inom industrin.

Under senare år har flera haverier för applikationer inom ”Olja och gas” inträffat. Dessa haverier har ofta skett på havsbotten i samband med att man applicerat ett s.k. katodiskt skydd för att skydda kolstål och andra låglegerade material. Katodiskt skydd innebär att man skyddar materialet med hjälp av offeranoder eller genom att en påtryckt ström blockerar de flesta korrosionsreaktionerna. Detta katodiska skydd resulterar i en potentialsänkning av ytan vilket gör att vatten sönderfaller till vätgas och syrgas. Under denna reaktion kan väte tränga in i materialet och förändra materialegenskaperna. En vanligt förekommande högre legerad material grupp som används inom dessa applikationer är duplexa rostfria stål. Duplexa rostfria stål har en mikrostruktur som består av ungefär lika delar austenit och ferrit och kombinerar bra korrosionsmotstånd med hög mekanisk hållfasthet och god svetsbarhet. På grund av att duplexa rostfria stål innehåller ferrit kan dessa material vara känsliga för väteförsprödning.

De tidigare nämnda haverierna har tillskrivits en form av väteförsprödning som inbegriper samverkan mellan väte och plastisk deformation. I detta arbete har sambandet mellan lågtemperaturkryp och väteförsprödning studerats. Resultaten visar att för duplexa stål med en grov mikrostruktur så sammanträffar den lägsta lastnivån där väteförsprödning inträffar med den lastnivå där material börjar utsättas för krypdeformation. Det har också framkommit att för duplexa rostfria stål med en finkornig mikrostruktur så initieras inte väteförsprödning även om materialet utsätts för krypdeformation. En modell för denna typ av väteförsprödning har formulerats som tar hänsyn till de observerade skillnaderna i deformation mellan faserna samt skillnaden mellan grov- och finkornigt material.

Rostfria ståls beständighet mot korrosion är ofta avhängigt av att de kan bilda en passivfilm, det vill säga en tunn oxidfilm som skyddar materialet i den korrosiva miljön. I många fall ger avsaknad av denna passivfilm höga korrosionshastigheter om inte legeringens bulksammansättning är korrosionsresistent i sig själv. I oorganiska syror såsom saltsyra och svavelsyra kan rostfria stål drabbas av jämn avfrätning, s.k. allmänkorrosion. Provning av allmänkorrosion sker ofta genom att mäta viktsförlusten efter exponering i en provlösning. Innan provningen påbörjas aktiveras ofta materialytan genom att avlägsna passivfilmen. Aktiveringen sker genom att provet utsätts för en reducerande miljö där vätgasbildning kan observeras på provet. I detta arbete har inverkan av två typer av aktiveringsmetoder på korrosionshastigheten av superduplexa stål studerats. Resultatet visar att aktivering kan överskugga skillnader i resultat som tidigare har tillskrivits tillsatser av koppar och wolfram i superduplexa stål.

Daggpunktskorrosion är en korrosionsform som uppträder när gaser kondenserar och här kan till exempel saltsyra bildas lokalt. Detta kan resultera i en mycket korrosiv miljö som angriper rostfria stål. Inom ramen för detta arbete har en uppställning för att prova daggpuktskorrosion utvecklats, där det bildas ett kondensat med ungefär 1 % saltsyra. Uppställningen gav korrosionshastigheter som är i samma nivå som vid fältprovning.

Abstract

Hydrogen is the smallest element in the periodical table. It has been shown in several studies that hydrogen has a large influence on the corrosion and cracking behaviour of stainless steels. Hydrogen is involved in several of the most common cathode reactions during corrosion and can also cause embrittlement in many stainless steels. Some aspects of the effect of hydrogen on corrosion and hydrogen-induced stress cracking, HISC, of stainless steels were studied in this work. These aspects relate to activation of test specimens for uniform corrosion testing, modification of a test cell for dewpoint corrosion testing and the mechanism of hydrogen-induced stress cracking.

The results from uniform corrosion testing of superduplex stainless steels indicated that there is a large difference between passive and activated surfaces in hydrochloric acid and in lower concentrations of sulphuric acid. Hence, initial activation of the test specimen until hydrogen evolution can have a large influence on the results. This may provide another explanation for the differences in iso-corrosion curves for superduplex stainless steels that have previously been attributed to alloying with and/or tungsten. In concentrated sulphuric acid, potential oscillations were observed; these oscillations activated the specimen spontaneously. Due to these potential oscillations the influence of activation was negligible in this acid.

An experimental set-up was developed for testing dewpoint corrosion of stainless steels in a condensate containing 1 % hydrochloric acid. There was an existing experimental set-up that had to be modified in order to avoid azeotroping of the water and hydrogen chloride system. A separate flask with hydrochloric acid was included in the experimental set-up. The final set-up provided reasonably good agreement with field exposures in contrary to much higher corrosion rates in the original set-up.

Relaxation and low temperature creep experiments have been performed with several stainless steels in this work. The aim was to understand how creep and relaxation relates to material properties and the relative ranking between the tested materials. For low temperature creep with a load generating stresses below the yield strength, as well relaxation at stress levels above and below the yield strength, the same ranking with respect to changes in mechanical properties of the steel grades was found. For low temperature creep with a load level above the yield strength, the same ranking was not obtained. This effect can most probably be explained by annihilation and generation of dislocations. During low temperature creep above the yield strength, dislocations were generated. In addition, low temperature creep experiments were performed for one superduplex stainless steel in two different product forms with different austenite spacing in the microstructure. The superduplex material experienced low temperature creep at a lower load level for the material with large austenite spacing compared to the one with smaller austenite spacing. Also this difference is influenced by dislocations. In a material with small austenite spacing the dislocations have more obstacles that they can be locked up against.

Studies of the fracture surfaces of hydrogen induced stress cracking, HISC, tested duplex stainless steels showed that HISC is a hydrogen-enhanced localised plasticity, HELP, mechanism. Here a mechanism that takes into account

the inhomogeneous deformation of duplex stainless steels was proposed. This mechanism involves an interaction between hydrogen diffusion and plastic straining. Due to the different mechanical properties of the phases in a superduplex stainless steel, plastic straining due to low temperature creep can occur in the softer ferrite phase. A comparison between low temperature creep data showed that for the coarser grained material, HISC occurs at the load level when creep starts. However, in the sample with small austenite spacing, HISC did not occur at this load level. Microhardness measurements indicated that the hydrogen level in the ferrite was not high enough to initiate cracking in the coarser material. The proposed mechanism shows that occurrence of HISC is an interaction between local plasticity and hydrogen diffusion.

Keywords: hydrogen, corrosion, , stainless steels, uniform corrosion, activation, dewpoint corrosion, low temperature creep, plastic deformation, microhardness

Table of contents Page

Sammanfattning Abstract Table of contents Supporting papers Contribution to papers 1. Introduction 1 1.1 Background 1 1.2 Stainless steel 2 1.3 Corrosion forms 3 1.4 Hydrogen in corrosion reactions of stainless steels 4 2. Aims of this work 7 3. Test material 7 4. Experimental 8 4.1 Corrosion testing by mass loss experiments 8 4.2 Loaded specimens 8 4.3 Cathodic polarisation 9 4.4 Registration of potential 9 4.5 Mechanical properties 9 4.6 Microscopic evaluation 9 5. Influence of activation in uniform corrosion testing 10 5.1 Scope of the work 10 5.2 Experimental results 10 5.3 Influence on material selection 13 5.4 The influence of activation on the iso-corrosion curves 14 5.5 Effect of copper and tungsten as alloying elements 16 on corrosion in hydrochloric acid and sulphuric acid 5.6 Conclusions 18 6. Dewpoint corrosion 18 6.1 Scope of the work 18 6.2 Background 18 6.3 Results 19 6.4 Discussion 21 6.5 Conclusions 22 7. Hydrogen induced stress cracking 22 7.1 Scope of the work 22 7.2 Change of mechanical properties during 22 environmentally-assisted cracking experiments 7.3 Hydrogen interaction during plastic deformation 27 7.4 Conclusions 32 8. Conclusions 33 9. Further work 33 10. Acknowledgments 34 11. References 34

Supporting papers

In what follows the papers of this thesis will be referred to by the roman numerals I to VI. This thesis includes the following papers:

Paper I Kivisäkk U., Difference in hydrochloric and sulphuric acid iso-corrosion curves of superduplex stainless steels due to activation of test specimens, Corrosion, Vol. 61, 2005, pp. 602-608

Paper II Kivisäkk U., A test method for dewpoint corrosion of stainless steels in dilute hydrochloric acid, Corrosion Science, Vol. 45, 2003, pp. 485-495

Paper III Kivisäkk U., Chai G., Influence of test method and relaxation on the result from stress corrosion cracking tests of stainless steels in dilute neutral chlorides, Corrosion, Vol. 59, 2003, pp. 828-835

Paper IV Kivisäkk U.H., Wallin E., Results from low temperature creep and relaxation experiments of four different stainless steels, Corrosion’2008, NACE International, Houston, 2008, paper no. 08487

Paper V Chai G., Ronneteg S., Kivisäkk U., Peng R.L., Johansson S., Mechanisms of Hydrogen Induced Stress Crack Initiation and Propagation in Super Duplex Stainless Steels, Steel Research Int., Vol. 80, 2009, pp. 482-487

Paper VI Kivisäkk U., Investigation of low-temperature creep and microhardness of a superduplex stainless steel and the relationship of these properties to the microstructure and the mechanism for HISC, Submitted to Materials Science and Engineering A

Contribution to papers

Paper I My contribution to the work was planning the experiments compiling the results and drawing the conclusions. I performed the electrochemical experiments but the immersion testing was carried out by a technician under my supervision.

Paper II My contributions to the work were planning the experiments, designing the modification of the test cell, compiling the results and make the conclusions. The testing was carried out by a technician under my supervision.

Paper III In this work my contribution was to compile and analyse the results from the stress corrosion cracking experiments that was done by a technician. Further, I initiated the relaxation experiments and made the discussion of the influence of these on the stress corrosion cracking experimental results.

Paper IV The relaxation and low temperature creep experiments were done in a diploma work that I initiated and supervised. Further my contribution was to initiate to the micro hardness and TEM results, which were carried out by others, compiling and analysing these results in combination to the relaxation and low temperature experiments.

Paper V I contributed to the planning and analysing of the HISC experiments. In addition I generated the idea of studying the inhomogeneous mechanical properties of the duplex material and its influence on the mechanism on HISC as well contributed to the analyse of the results.

Paper VI In this work I planned and supervised the experimental work and compiled and analysed the results.

1. Introduction 1.1 Background Corrosionstillcauseshighcostsinindustry,andsurveyshaveshownthatthe costmaybeover3%ofanation’sgrossdomesticproduct[1].Duringmyfirst yearsattheCorrosionLaboratoryatABSandvikMaterialsTechnology,Irealised thattherewasaneedformorefundamentalorientedcorrosionresearch.One majorobservationwasthattherewerelimitationsinthetestmethodsand standardsusedforcorrosiontesting.Theselimitationsraisedquestionsthat neededtobeinvestigatedfurther,whichmainlyinvolvedsuitablecorrosiontest methodsforstainlesssteels.Thetestmethodswererelatedtouniformcorrosion testinginacidsandstresscorrosioncrackingexperiments,asdiscussedinpaper IandIII.Furthermore,notestmethodwasavailablefordewpointcorrosionin hydrochloricacid.Also,unexpectedfailuresinthefieldoccurredduetohydrogen embrittlementinduplexstainlesssteelssubjectedtocathodicprotection[2]. Researchwasneededtostudywhysomeduplexstainlesssteelfailedwhen experiencesshowedthatseamlessduplexstainlesssteelswasverygoodandhad nofailures. Superduplexstainlesssteelhadthenbeenonthemarketforabout10yearsand hadbecomeaworkhorseinmanyapplications.Severalgradesofsuperduplex stainlesssteelswereavailableandcomparisonsoftestdatafromdifferentgrades hadbeenmade[3,4].However,withuniformcorrosion,itseemedthatnogood standardisedtestmethodwasavailable.Inparticular,theinfluenceofthe activationoftestspecimensonthecorrosionratewasnotclear.Asa consequence,wrongconclusionsconcerningtherelativeperformanceofthe materialsweremade,asdemonstratedinPaperI.Therein,theobserved differenceswereattributedtoalloyingcontentratherthanvariancesintest methods.Secondly,developmentofthefirsthyperduplexstainlesssteelwas ongoingatthattime.Theaimwastodevelopamaterialforoverheadcondensers inrefinerieswherehydrochloricacidisoftencondensed.However,therewasno testmethodavailableatthattimefortestingthiskindofcorrosion.Furthermore, itwasfoundthatduringstresscorrosioncrackingtestswithubend,theresults deviatedfromthedesigncurvesbasedonserviceexperienceandconstantload testing[5].Thisdemonstratedthenecessityofinvestigatingwhetherthechange inloadingwithtimewasthereasonforthedifferencesinresultsforthetwo typesofspecimens. Duplexstainlesssteelincombinationwithcathodicprotectionhasbeenusedfor morethan20yearinseawater.Inalmostallcases,duplexstainlesssteelhas beenaverygoodmaterialchoice.However,somefailureshavebeen encounteredrelatingtohydrogeninducedstresscracking,HISC,overthepast years[2].Thepotentialsthatareusedforcathodicprotectionarearound1000 to1100mV SCE .Atthesepotentials,waterreductiontakesplaceontheprotected duplexstainlesssteels.Atomichydrogenwillbepresentatthesurfaceasan intermediatespeciesduringthewaterreduction,whichcandiffuseintothe materialandcausecracking. Duringthelastdecade,intensivediscussionsstartedaboutfailuresthathad occurredduetohydrogeninducedstresscracking.Thecausesofthecracking wereinvestigatedandonemajorobservationwasthatplasticdeformationwas

1 involved[2].Atthattime,nodistinctionbetweenlowtemperaturecreepand relaxationpropertieswasmade.However,resultsfrominvestigationofthe differencebetweenubendsandconstantloadspecimensindicatedthatlow temperaturecreepandrelaxationaffectedthematerialdifferently[PaperIII]. Hence,studyingtherelaxationandlowtemperaturecreeppropertiesofdifferent stainlesssteelscouldcontributetounderstandinghydrogeninducedstress crackinginduplexstainlesssteels. Thetestmethodsthatwereusedduringmaterialselectionofthefailedpartsdid notpredictthefailures[6].Insubsequentyears,extensiveworktodefineatest methodandgeneratedesignguidelineswasstarted.Forduplexstainlesssteel subjectedtocathodicprotection,HISCstartstoinitiateatacertainloadlevel[7 10].Severaltestprogramshavefoundthatduplexstainlesssteelswithfiner microstructureshavebetterresistanceagainstHISCthancoarsergrained materials[79,11,12].Itappearedanaustenitespacinglimit,definedasthe ferriteunitsize,of30mseparatedtheduplexmaterialsthatweremore resistantagainstHISCfromthemoresusceptible[13].Inaddition,allfield failureshadoccurredwithduplexstainlesssteelswithcoarsemicrostructures.It wasobviousthatanunderstandingofthereasonforthedifferentbehaviourwas needed. Duplexstainlesssteeltubingisusedforflowlinesandraisersthatareusedin offshoreoilproduction.Theseflowlinesandraisersareusedsubsea,andinmost cases,theyaresubjecttocathodicprotection.Hence,hydrogeninducedstress crackingisapossibleproblem.Insidearaiser,brinemaybepresent,sochloride stresscorrosioncrackingcanpotentiallytakeplace.Furthermore,hydrochloric acid,likelywithcorrosioninhibitors,maybeusedduringwellstimulations.Hence, uniformcorrosionresistancemaybeimportantinaraiser.Overheadcondensers, aspreviouslymentioned,areusedinrefineries.Inrefineries,thecrudeoil producedoffshoreisprocessedtoproductssuchaspetrol.SandvikMaterials Technologyproducesseamlessstainlesssteeltubingthatisusedinthesetough applications. Intheabovementionedissues,hydrogenisaveryimportantaspect.Inuniform corrosioninacids,dewpointcorrosionduetohydrogenchlorideandchloride stresscorrosioncracking,thecathodicpartofthecorrosionreactionisthe reductionofhydrogenions.Duringactivationoftestspecimens,hydrogen evolutiontakesplaceonthesurface.Indevelopingatestmethodfordewpoint corrosioninhydrogenchloridesystems,theevaporationandcondensationof hydrochloricacidareimportant.Naturally,hydrogenplaysanimportantrolein thiscase.Inhydrogeninducedstresscracking,thecathodereactionisthe sourceofthehydrogenthatentersthematerialandcausesembrittlement,which leadstofailure. 1.2 Stainless steels Stainlesssteelsarealloysthatcontainmorethan12%chromium,andtherefore havetheabilitytoformathinprotectiveoxidelikelayer,thepassivefilm.The passivefilmismainlyenrichedwithchromium,butalloyingwithotherelements suchasmolybdenumandnitrogenispossible.Stainlesssteelsareoftendivided intocategoriesbasedontheirmicrostructure.Themostcommonstructuresare ferritic,austenitic,martensiticandduplexstainlesssteels.Thelattercontains

2 bothferriteandausteniteinapproximatelyequalamounts.Infigure1,imagesof typicalaustenitic,ferriticandausteniticmicrostructuresareshown.Infigure1a) thetypicaltwinsinanausteniticstructureareshown.Infigure1b)chromium carbidescanbeseen,duetothelowsolubilityofcarbontheseareoftenpresent inferriticsteel.Figure1c)illustratesthedualphasestructureofferriteand austeniteinaduplexstainlesssteel.

a)Austeniticsteel b)Ferriticsteel c)Duplexstainlesssteel Figure1. Typicalmicrostructuresforaustenite,ferriteandduplexsteel.

Forstainlesssteel,pittingresistanceequivalent,PRE,isoftenusedasanindexof thepittingcorrosionresistance.PREiscalculatedfromthecompositionofthe stainlesssteel,see(1)[14].ForanalloythathasaPREabove40,superisoften usedasprefix,e.g.,superduplexandsuperausteniticstainlesssteels. PRE=%Cr+3.3x(%Mo+0.5x%W)+16x%N (inweight%) (1) Thepassivefilmisformedwhenastainlesssteelcomesincontactwithair.This isaprocessthatstartsinstantlyandthepassivefilmgrowsslowlywithtime. Dependingonthesurroundingatmosphere,itnormallyresultsinafilm approximately13nmthickthatcontainsmostlyiron,chromiumoxidesand hydroxides[15,16].Incontrasttooxidesthatareformedascorrosionproducts, thepropertiesofthepassivelayerdonotsignificantlychangeafterthefirst24 hoursunlessexposedtoanewenvironment[15,17].Apassivelayerisnotonly formedinairorgaseousatmospherebutalsoinmanyliquids. 1.3 Corrosion forms Stainlesssteelscansufferfromseveralcorrosiontypesiftheenvironmentistoo harsh.Examplesofsuchcorrosiontypesareuniformcorrosion,pitting,crevice corrosion,intergranularcorrosion,dewpointcorrosionandenvironmentally assistedcracking.Below,threecorrosiontypesthatarerelevanttothisworkare discussed. Uniformcorrosionischaracterisedbyauniformattackovertheentiresurfaceof thematerialwhenexposedtoacorrosivemedia.Becausethecorrosionis uniform,acorrosionratecanbedefined,whichisoftenexpressedinmm/year, milsperyear(mpy)org/m 2h.Themostcommonenvironmentswherestainless steelsuffersfromuniformcorrosionarestronglyacidicoralkalinesolutions[18]. Inreducingacidssuchashydrochloricacidanddiluteorintermediate concentrationsulphuricacid,thedominatingcathodereactionishydrogen evolution.

3 Dewpointcorrosionisacorrosiontypethatoccursinacidicenvironmentsandis similartouniformcorrosion.Itoccurswhenagaseousphasecondensesona surfacethathasalowertemperaturethanthedewpointofthesurrounding gasphase.Duetoevaporation,thesaltconcentrationofthedropletincreases withtime.Hence,amoreaggressivesolutionisformedanddewpointcorrosion mayoccur[19].Oneexamplewheredewpointcorrosioncanoccurisinrefinery overheadcondensers,inwhichhydrogenchloridecancondensateinside.The samekindofcorrosioncanalsobefoundingastoliquidheatexchangersin boilerswherefluegasiscondensed[20].Also,ingassystemsforhydrogen chloride,thiskindofcorrosioncanoccurifmoistureispresent[21]. Environmentallyassistedcrackingrequiresbothaloadandacorrosive environmenttoappear[22].Therefore,testmethodsforenvironmentally assistedcrackingmustintroducealoadorstrainonthespecimen. Environmentallyassistedcrackinginstainlesssteelscanoccurinseveral environmentsandmaterialcombinations.Twoofthesecombinationsarechloride stresscorrosioncrackingandhydrogeninducedstresscrackinginduplex stainlesssteels,HISC.Thecathodereactioninchloridestresscorrosioncracking istheevolutionofhydrogen,asdescribedlaterinreaction4.Inhydrogen inducedstresscracking,thecathodereactionduetothecathodicprotection generatesatomichydrogenthatentersthematerial. 1.4 Hydrogen in corrosion reactions of stainless steels Hydrogenisthelightestelementintheperiodictable,andatambientpressure andtemperature,isagaswithtwoatoms,H 2.Inair,thehydrogencontentis verylow,butwatercontains11weight%hydrogenandtheEarth’scrust contains0.14%hydrogen,mostlyascrystallinewater,butalsoasoiland hydrocarbons[23]. Hydrogencanenterthemetallatticeofsteelinterstitiallyasmonoatomic hydrogen.Onesourceofhydrogenentryinishydrogengas.Theamount ofhydrogenthatdissolvesisdirectlyproportionaltothesquarerootofthe hydrogenpressure.Anothersourceofhydrogenishydrogenevolutionthattakes placeduetoelectrochemicalprocessesinasolution.Inthiscase,thedissolved amountofhydrogeninironandnickelisdirectlyproportionaltothesquareroot ofthecathodicchargingcurrentdensity.Theabsorptionofhydrogenonthe surfacecanbedescribedasinthereactionbelow[24].

k3 → + + − + →k1 H e M MH (ads ) MH (abs ) ←  ↓ k 3 (2)

+ MH → 2MH →k 2 H + M (ads ) (ads ) 2

Inastainlesssteel,thehydrogendiffusionandsolubilityareverydifferentfor ferriteandaustenitestructures.AsillustratedinTable1,thediffusivityof hydrogenismuchhigherinaferriticalloythaninanausteniticalloy,butthe solubilityisopposite[25]. Duplexstainlesssteelcontainsbothferriteandaustenite.Atypicalmacroscopic hydrogendiffusioncoefficientforaduplexstainlesssteelisaround1.5x10 14

4 m2s1[25].Thisdiffusioncoefficientvarieswiththeorientationofthehydrogen fluxrelativetotheaustenitephaseorientation.Itishigherwhenthehydrogen fluxisorientedparalleltotheausteniteandferritestructuresthanwhen perpendicular[26]. Table 1. The diffusivity and solubility for hydrogen in an austenitic and a ferritic steel grade [25]. Austenite Ferrite Property Type 301 Type 29-4-2 Diffusivity [m 2s-1] 3.1 x 10 -16 1.1 x 10 -11 Solubility [ppm in equilibrium with H 2S(g) at 1 atm] 70.1 0.74 Hydrogenaffectsthemechanicalpropertiesofferriteandaustenitedifferently. Theductilityofferriteisreducedsignificantlybyhydrogen,buttheductilityof austeniteisusuallyunaffected.Embrittlementduetohydrogenismuchmore pronouncedinferritethanaustenite.Studiesofspecimensprechargedwith hydrogenindicatethatferriteexperiencesmorecrackingthanaustenite.The yieldandtensilestrengthofbothausteniteandferriteareusuallyunaffectedby hydrogen[27] Austeniticalloysareconsideredclosetoimmunetohydrogenembrittlement,but ferriticalloysaresusceptibletohydrogenembrittlement,atleastwhenpolarised topotentialsbelow800mV SCE .Hydrogenincreasesthehardnessofsteelsand hencethetensilestrength.Ithaspreviouslybeenshownthatahigherhydrogen contentlevelinduplexstainlesssteelsleadstoahigherintensityofhydrogen embrittlement[28].KumarandBalaubramaniamhaveshownthatthe microhardnessisrelatedtothehydrogencontentatthesamepoint[29].In anotherinvestigationbyRodychowdhuryetal.,itwasfoundthatferritehada higherhardnessthanaustenitebeforehydrogencharging,buttheorderwas reversedafterhydrogencharging.Furthermore,thedifferenceinhardness increasedwithchargingtime[30]. Hydrogenisanimportantelementincorrosion,whichcanbeillustratedbythe factthatcorrosionplayedanessentialrolewhenhydrogenwasdiscovered.In 1671,RobertBoyleobservedthataflammablegaswasformedwhenpureiron wasdissolvedinhydrochloricorsulphuricacid.Thisgaswaslatershowntobe hydrogengas.However,thediscoveryofhydrogeniscreditedtoCavendishand hisinvestigationsonthedissolutionofmetalsinhydrochloricandsulphuricacid [23]. Inwetcorrosionprocessesthatareofelectrochemicalnature,hydrogenisvery important.Almostallformsofwetcorrosionarecontrolledbyelectrochemical reactions,includinguniformcorrosion,pitting,crevicecorrosion,intergranular corrosionandstresscorrosioncracking.Electrochemicalcorrosionhasbothone anodeandonecathodereaction,andthecorrosionreactionisthesumofthetwo. Theanodereactionisthedissolutionofmetals(seereaction3).Severaldifferent cathodereactionsarepossible,andthreeofthemostcommoninvolvehydrogen. Inacidicenvironments,thereactionsinreactionsequations4and5occurs;in neutraloralkalinesolutions,thereactioninequation6occur[31].These cathodereactionsaretheonesthattakeplaceduringpittingandcrevice

5 corrosionofstainlesssteels,whichisthemostcommonfailureforstainless steelsandisoftenthelimitingfactorfortheuseofthiskindofmaterial. Anodereaction: x+ − Me → Me + xe (3) Cathodereactions: + + − → (4) 2H 2e H 2 + + + − → (5) O2 4H 4e 2H 2O + + − → − (6) O2 2H 2O 4e 4OH Uniformcorrosionisthemostcommonfailureinchemicalplants.InaGerman survey,uniformcorrosionwasfoundtobethecauseof1/3ofthefailures[31]. Forstainlesssteel,uniformcorrosionoftenoccursinacidicmedia;thereforea verycommoncathodereactionisformationofhydrogengas,accordingto reaction4. Asidefrombeingoneofthemostimportantcathodereactionsinwetcorrosion, hydrogenproductionalsoplaysaroleinatmosphericcorrosion,eventhough oxygenreductionisconsideredtobethemaincathodereactioninatmospheric corrosion[32].Muchmoreimportantisthephenomenonofhydrogendamage,a failureofmetalscausedbyinteractionbetweenhydrogenandthemetal. Corrosionduetocondensinggaseshasbeenaproblemforindustry.Thereason isthecomplexityofplants,wheremanydifferentcombinationsoftemperature, chemicalconditionsandconstructionfeaturescanleadtodewpointcorrosion [33]. Itshouldbenotedthathydrogengascannotdiffusethroughametal,but hydrogenatomscan.Hydrogeninametalcancauseblisteringorcracking. Hence,inadditiontobeapartofthecorrosionreaction,hydrogendamagecan causethefailureofmetals[31].Severaltypesofhydrogendamageexistand someofthemarediscussedbelow. Metallicmaterialscansufferfromhydrogenenvironmentalembrittlementinhigh pressuregaseoushydrogenatambienttemperature,butstandardaustenitic stainlesssteelsseemtoberesistanttohydrogenenvironmentalembrittlement. However,thesekindsofausteniticstainlesssteelsmayexperiencehydrogen embrittlementifthehydrogencontentonthesurfaceishigh[34].Overthe years,severalreviewsofhydrogenembrittlementhavebeenpublished[3437]. Ferriteandmartensitearemorepronetohydrogenembrittlementthanaustenite. Duplexstainlesssteelscontainapproximately50%austeniteand50%ferrite, whichmakesthiskindofmaterialmoresusceptibletohydrogenembrittlement thanapureaustenite[27]. Inenvironmentscontaininghydrogensulphideintheoilandgasindustry, severalformsofhydrogenrelatedmechanismsexist,andenvironmentallimits fordifferentmaterialsarecoveredbystandardsfortheseapplications[14,38].In

6 thesameindustry,somefailureshaveoccurredoncathodicallyprotected martensiticandduplexstainlesssteelsduetoamechanismthat,inthemiddleof thelastdecade,wasnamedhydrogeninducedstresscracking,HISC[13].To mitigateHISC,theindustryissueddesignrulesinarecommendedpracticefor duplexstainlesssteels[13].Thesedesignrulesweremadeafterseveralfailures duetoHISCofcathodicallyprotectedsubseacomponentsmadeofduplex stainlesssteels.Asidefromthedifficultyofretrievingandreplacingthese components,suchfailurescanalsogeneratenegativeimpactsonthe environment. Hydrogenenhancedlocalisedplasticity,oftencalledHELP,hydrogenenhanced decohesionandadsorptioninduceddislocationemissionarethreemajor mechanismsofhydrogenembrittlementinmetals.Thedetailedmechanismof HISCinduplexstainlesssteelisnotfullyunderstood.Oltraetal.hasstudied[39] thecrackingmechanismsofausteniteinduplexstainlesssteels.Atransitionof thecrackpropagationfromtheferritetotheausteniteinduceslocalised microcrackingoftheausteniticgrains,followingthemechanismofHELP.The movementofthedislocationsisenhancedbyhydrogen,andthedislocations accumulateinfrontofthediffusionzoneandproduceavirtualobstacle.The fractureprocessresultsfromacompetitionbetweenthekineticsofdislocation emissionandthekineticsofdiffusion.Atacriticallevel,acrackcanpropagate intotheaustenite.HISCcantakeplaceintheferrite,butalsobeinitiatedasa resultofthedislocationaccumulationintheadjacentaustenitephase[39].A cohesivezonemodellingapproachtohydrogencrackinghasbeenusedtomodel HISCina25CrduplexandcorrelatetheresultstoHISCtesting.However,the modeldoesnotdescribetheinteractionbetweenthemicromechanicsand hydrogen.Specialcohesiveelementsthatconsiderthetransientchangesin hydrogenareusedinthemodel.Thehydrogenfractureismodelledbyreducing therequiredcohesiveenergyforfractureasafunctionofthehydrogencontent. [4042] 2. Aims of this work Theabovediscussedquestions,wheretheinfluenceofhydrogenisimportant, havebeendividedintothreethemes: • Thefirstthemeisinvestigationoftheactivationoftestspecimensduring uniformcorrosionofsuperduplexstainlesssteelsinhydrochloricandsulphuric acids. • Thesecondthemeisdewpointcorrosiontestingofstainlesssteelsinavapour containing1%hydrochloricacid. • Thethirdthemeisinvestigationofthemechanismofhydrogeninducedstress crackingofduplexstainlesssteels.Thisthemecontainsinvestigationsofthe changeofloadingconditionswithtimeduetolowtemperaturecreepand relaxation,andinvestigationsofthefracturesurfaceandmicrohardnessin ferriteandaustenite.

7 3. Test material Table2showsthenominalcompositionoractualcompositionofallthe investigatedstainlesssteels.Mostofthetestmaterialwasobtainedfromcold workedandsolutionannealedmaterial,inmostcasesfromseamlesstubes.In additiona25Crextrudedseamlesstubewasused.Inordertostudytheinfluence ofthemicrostructuresdegreeofcoarseness,barmaterialof22Cr,25Crand29Cr werealsoincluded.Bothsmallandlargediameterbarswereincludedforsomeof thegrades,thediameterofthebargivesthecoarsenessofthestructure.

Table 2. The nominal chemical composition in weight-% for investigated steel, for 13 Cr, 25 Cr-Cu, 25 Cr Cu/W the actual composition are shown .

Name UNS Type Cr Si Mn P S Cr Ni Mo Cu W N number 316L S30403 Austenitic <0.03 0.5 1.3 <0.030 <0.015 18.5 10 - - - - 304L S31603 Austenitic <0.03 0.4 1.7 <0.040 <0.015 17.5 13 2.6 - - - 904L N08904 Austenitic <0.02 <0.5 <1.8 <0.025 <0.015 20 25 4.5 1.5 - - 13Cr - Martensitic 0.01 0.14 0.42 0.012 <0.001 12.1 6.5 2.5 0.05 - - 6 Mo S31254 Austenitic <0.02 <0.8 <1.0 <0.030 <0.010 20 18 6.1 0.7 - 0.20 B66 S31266 Austenitic <0.03 - 3 - - 24 22 6 1 2 0.40 Alloy N08028 Austenitic <0.02 <0.6 2.0 <0.025 <0.015 27 31 3.5 1.0 - - 28 23Cr S32304 Duplex <0.03 <1.0 <2.0 <0.035 <0.015 22.5 4.5 - - - 0.1 22Cr S32205 Duplex <0.03 <1.0 <2.0 <0.030 <0.015 22 5 3.2 - - 0.18 25Cr S32750 Duplex <0.03 <0.8 <1.2 <0.035 <0.015 25 7 4 - - 0.3 25Cr- S32520 Duplex 0.02 - 1.0 0.024 0.001 25.1 6.5 3.7 1.7 - 0.24 Cu 25Cr- S32760 Duplex 0.02 0.3 0.6 - 0.001 25.3 7.1 3.8 0.6 0.6 0.22 Cu/w 29Cr S32906 Duplex <0.03 <0.3 <1.0 <0.030 <0.015 29 7 2.3 <0.8 - 0.35

4. Experimental Severalexperimentaltechniqueswereusedinthiswork,andthemostimportant onesarebrieflydescribedbelow. 4.1 Corrosion testing by mass loss experiments Immersiontestexperimentswereperformedinthermostaticbaths,wheretwo specimenswereexposedin450mlbeakersinthreeperiodsof1+3+3days.The corrosionratewasevaluatedfromthemeanmasslossofthelasttwoperiods (fordetailsseePaperI).Furtherspecimensweretestedinadewpointcorrosion cell,wherethemasslosswascalculatedafter3daysofexposure(fordetailssee PaperII). 4.2 Loaded specimens Stresscorrosioncrackingexperimentsweremadebyusingconstantloador constantstrain.Theconstantloadexperimentsweremadeusingdeadweightin a3%sodiumchloridesolutionatatemperatureof4°C,intheseexperiments tensiletestspecimenswereused.Fortheconstantstrainexperiments,Ubends, whichisaflatspecimenthatisbendedlikeaUandfixedwithaboltandnutin theends,wereusedandthesewereexposedinautoclavesatelevated temperatureandpressure(seepaperIII).Afterexposure,thespecimensinboth

8 methodswerevisuallyexaminedforcrackinginastereomicroscope.Constant loadwasalsousedinthelowtemperaturecreepexperiments,wherethe elongationwithtimewasregistered.Standardcreeptestmachineswithdead weightwereusedforthisandtwodialindicatorswereusedtomeasurethe elongation.Intherelaxationexperiments,thespecimenswereinsertedina tensilemachine,subjectedto8.1%strainandtheloadwasregisteredwithtime. Aslowstrainratetestingmachine,oftencalledSSRT,wasusedfortheconstant strainexperimentof22Crundercathodicprotection.Theelongationwas increaseduntilthesetloadwasreachedandthenheldconstant. 4.3 Cathodic polarisation Duringseveralexperiments,cathodicpolarisationwasusedthroughactivationor cathodicprotection.Intheimmersiontest,activationwithandhydrochloric acidwereapplied.Inthecaseofactivationwithzinc,thespecimenswere touchedwithazincroduntilvisualhydrogenevolutionoccurred,seePaperIand coverillustration.Duringactivationwithhydrochloricacid,thespecimenswere activatedinboiling26%hydrochloricaciduntilhydrogenevolution.The specimenswerethenrinsedindistilledwaterandimmersedinthetestsolution, seePaperI.IntheconstantloadandconstantstrainexperimentsforHISC, cathodicprotectionwasappliedbypolarisationto1050mV SCEorlesswitha potentiostat,seePaperV. 4.4 Registration of potential Apotentiostatwasusedtoregisterthefreecorrosionpotentialinsulphuricacid. DuringtheHISCexperimentsacomputerisedloggerwasusedtoregisterthe potentialofthespecimenversusthereferenceelectrode.Inbothcasesthe referenceelectrodeswereinaseparatcompartmentatroomtemperatureand connectedtothetestsolutionwithasaltbridge. 4.5 Mechanical properties Inordertodeterminethemechanicalpropertiesofthematerial,standardtensile testingwasperformed.Themicrohardnesswasmeasuredinbothferriteand austeniteasVickershardnesswithaloadof50ginpaperVand25ginPaperVI. 4.6 Microscopic evaluation Themicrostructurewasinvestigatedwithlightopticalmicroscopyandthe austenitespacingwasdeterminedforduplexstainlesssteelsbypointcounting accordingtothemethodinDNVRPF112.Fracturedsurfacesfrom environmentalassistedcrackingexperimentswereinvestigatedbyscanning electronmicroscopy,SEM,inordertodeterminetheinitiationsitesforcracking. Thedislocationstructuresintheindividualphasesforthespecimensthathad beensubjecttoconstantloadandconstantstrainexperimentswereinvestigated. Thiswasperformedwithananalyticaltransmissionmicroscope,ATEM,aswellas withanelectronbackscattereddiffractiontechnique,EBSD,inSEM.

9 5. Influence of activation in uniform corrosion testing 5.1 Scope of the work Todemonstratetheinfluenceofactivationontheuniformcorrosiontestresults, threesuperduplexstainlesssteelswerestudied.Beforeimmersiontesting,two differentactivationmethodswereusedandcomparedwithspecimensupon whichnoactivationwasperformed,activationwithzincandwithhydrochloric acid. 5.2 Experimental results Uniformcorrosiondataformaterialselectionmayconvenientlybeexpressedas isocorrosioncurves.Inthesecurves,acertaincorrosionrate,often0.1 mm/year,isplottedversusthetemperatureandconcentrationofthetest solution.Therateof0.1mm/yearisagenerallyacceptedcorrosionratewith respecttouniformcorrosioninservice[43].Inthiswork,allisocorrosioncurves representacorrosionrateof0.1mm/year. TheresultsfromtheuniformcorrosionexperimentsinPaperIstronglyindicated thatwhetherornotthespecimenwassubjectedtoacathodereactionwhere hydrogenevolves,activationhaslargeeffectontheoutcomes.Inhydrochloric acid,largedifferenceswerefounddependingonactivation.Infigure2results fromPaperIareshownfor25Crand25CrCu/Wwithdifferentformsof activationcomparedwithisocorrosioncurvesfromtheliterature[18,4].Itis clearthatthedifferencebetweentheactivatedandnonactivatedspecimenswas significantforbothgrades.Theactivatedspecimensshowedhighercorrosion ratesthanthenonactivatedspecimensunderthemoreaggressiveconditions. Themoreaggressiveconditionsweretheoneswiththehighestconcentrationsof hydrochloricacidand/orthehighesttemperatures. Infigure3,theisocorrosioncurvesfor25CrCu/W[4,44]indicateabetter performanceinsulphuricacidthandidthecorrosionratesshowninPaperI.In figure4,theisocorrosioncurvesfor25Crand25CrCu[45]andtheresultsfrom immersiontestinginsulphuricacidfor25CrCufromearlierworkareshown [46].Theresultsindicatedthattheisocorrosioncurvefor25Crrepresentedthe corrosionresistancefornonactivated25CrCuspecimensfairlywell. Oscillatingpotentialswereobservedfor25Crin90%sulphuricacidat60°C,as illustratedinfigure5[PaperI].Duringa24hourperiod,fourdipsinthefree corrosionpotentialwereobserved,andtheresultsweresimilarregardlessof whetheractivationhadbeenperformedornot.Possiblecausesforoscillating potentialsarediscussedinalatersection.

10

Figure 2. The mean corrosion rates from immersion exposures in hydrochloric acid in mm/year after different activations (Non, Zn and HCl), from Paper I. Two lines represents iso-corrosion curves from literature: the solid line 25Cr from [4] and the broken line 25Cr-Cu/W [18], a) 25Cr b) 25Cr-Cu/W

11 Figure 3. The mean corrosion rates of 25Cr-Cu/W [Paper I] from immersion exposures in sulphuric acid in mm/year after different activations (Non, Zn and HCl). Three lines represents iso- corrosion curves from literature: the solid line 25 Cr from [18], the long broken 25Cr-Cu/W [4] and the short broken 25Cr-Cu/W from [44]

Figure 4. The mean corrosion rates of 25Cr-Cu [46] from immersion exposures in sulphuric acid in mm/year after different activations (Non, Zn and HCl) [x]. Two lines represents iso-corrosion curves from literature: the solid line 25 Cr from [1] and the broken line 25Cr-Cu [45].

12

0,30

0,20

0,10

0,00

-0,10

Potential (V v.s. SCE) -0,20

-0,30

-0,40 0 5 10 15 20 25 Time (h) Figure 5. The free corrosion potential vs. SCE for 25Cr in 90% sulphuric acid at 60°C monitored during 24 hours, [Paper I] 5.3 Influence on material selection Oneimportantquestioniswhethertheobservedinfluenceofactivation,resulting inhydrogenevolutionduringthecathodicpolarisation,hasaninfluenceonwhich materialsaresuitableindifferentapplications.Inmostapplications,astainless steelmustbeinthepassivestate.Hence,thematerialshouldnotsufferfrom uniformcorrosion.Selectionofstainlesssteelswithregardtouniformcorrosion isoftenmadeonthebasisofserviceexperience,fieldorlaboratorytestingor literaturedata.Theliteraturedataareoftenintheformofisocorrosioncurves. Inliteraturethatreportsdesigndata,thetestparametersarenotalways mentioned.Itisthereforenotclearifactivationhasbeenperformedornot.The influenceofthelackoftestdetailsinisocorrosioncurvesonmaterialselectionis notfullyunderstood. Today,immersiontestingisoftenperformedtogeneratedataforisocorrosion curves,buttheexperimentalprocedurethathasbeenusedisnotalways reported[3,4,44,45,47].Thereareatleasttwostandardscoveringimmersion testingforgeneralcorrosion[48,49].However,neitherstandardisspecially adaptedfortestingstainlesssteels.Forinstance,itisnotmentionedifactivation ofthespecimenhasbeenperformedornot.Ithasbeensuggestedthatstainless steelspecimensshouldbeactivatedtoachieveresultsthatarerelevanttoactual serviceconditions[43,50].Laboratorytestingforuniformcorrosioncanalsobe performedbyusingelectrochemicaltestmethodsi.e.,in[5153].However,this willnotbefurtherdiscussedinthiswork. Thecorrosionresistanceofstainlesssteelsisdependentontheabilitytoforma passivefilmonthesurfaceintheenvironmentinwhichitisexposed[PaperI]. Fromatechnicalpointofview,theabilitytoformapassivelayerinasolution maybeimportant.Forinstance,inarealindustrialsituation,itisnotuncommon

13 thatduringinstallationormaintenance,thepassivelayerisdestroyed,suchas beingscratched,groundorwelded.Thepassivelayercanalsobedestroyedby unexpectedchangesintheprocess,suchassuddentemperatureescalationsor circumstancesresultinginmoreconcentratedprocessfluids.Ifthepassivelayer isdestroyed,thenormalserviceconditionmustbesuchthatthepassivelayer canberestored.Athirdproblemisthatthepassivelayermayberemoved duringserviceduetoerosion[PaperI].Inallofthesecases,amaterialselection basedonnonactivatedandshorttermexposuretestingmayresultin unexpectedprematurefailureoftheprocessequipment. Toobtaincorrosionratesthatrepresentwhetherstainlesssteelisableto passivateinasolution,activationofthetestspecimenbeforetestingcanbe used.Activationofatestspecimenforimmersiontestingaimstoremovethe passivelayerofthestainlesssteel.Duringactivation,thespecimenobtainsa reducingpotential[43,PaperI].Atthispotential,hydrogenevolutiontakesplace atthesurfaceandthepassivelayerisnotstable.Whenthepassivelayeris removedbeforeexposuretothetestsolutionbegins,thebulkcompositionofthe steelisinteractingwiththetestsolution.Whenthepassivelayerisremovedand thespecimenstillhasareducingpotential,acathodereactiononthesteel surfacemusttakeplace.Inmostcases,thiscathodicreactionishydrogen formation.Ifmaterialselectionisbasedonresultsobtainedusingincomparable experimentalmethods,anonoptimalmaterialselectionmaybemade.Thismay resultinlessexpensivematerialsbeingdisregarded,resultinginahighcostfor theconstruction.Anexampleofthisistheselectionofsuperduplexstainlessfor serviceinhydrochloricacidandsulphuricacid.Therefore,activationofthetest specimensbeforeimmersiontestingisrecommended,andthisactivationshould becarriedoutuntilhydrogenevolutionisvisuallyobserved.Thehydrogen evolutionduetothecathodereactionisaverygoodindicationthattheuniform testresultsarerelevantforsuchapplications. 5.4 The influence of activation on the iso-corrosion curves Aquestionisifactivationwithhydrogenevolutioncanexplaintheobserved differencesintheisocorrosioncurvesinsulphuricacidandhydrochloricacid.In figure2,theresultsareshownfor25Crand25CrCu/Wwithdifferentformsof activationinhydrochloricacid.Similarresultswerealsoobtainedfor25CrCu [PaperI].Itisclearthatthedifferencebetweennonactivatedspecimensand activatedspecimensissignificant.Theresultsclearlyindicatedthatsuperduplex stainlesssteelshaveatemperatureandconcentrationrangewherethesealloys canbepassiveifapassivelayerexistsbeforeimmersion,butifthepassivefilm itisnotpresentfromthebeginning,thealloysarenotabletopassivate.The highertheconcentrationiswhenthepassivefilmisformed,themoredefectsare presentinthefilm[54].Thismeansthatapassivefilmformedathigh concentrationsisprobablylessresistantthanafilmformedinair,butthe differenceisprobablylessatlowerconcentrations.Thismaybeanexplanation astowhyspecimenswithapassivefilmformedinairhadbettercorrosion resistancethanactivatedspecimens. Insulphuricacid,asimilarinfluenceofactivationasinhydrochloricacidwas presentindilutesulphuricacid,butnotinconcentratedsulphuricacid,seefigure 3and4.However,itisknownthatsulphuricacidchangescharacterata concentrationofabout60%.Atlowerconcentrations,itisreducing,andat

14 higherconcentrations,itisoxidising.Itisnoteworthythatinconcentrated sulphuricacid,oscillationpotentialswereobserved. Forstandardausteniticstainlesssteels,thebehaviourofthecorrosionpotential inconcentratedsulphuricacidhasbeenextensivelystudied[5559].A mechanismfortheoscillatingpotentialshasbeenproposed,itissummarised below. Stainlesssteeloftype304Lcannotpassivatespontaneouslyinarangeof concentratedsulphuricacids.Ifasteelsampleisintroducedinconcentrated sulphuricacid,hydrogenevolution,asinreaction4,andreductionof undissociatedsulphuricacidtakesplaceatE corr ,asinreaction7. + + + − → + (7) H 2 SO 4 8H 8e H 2 S 4H 2O Thisreductionresultsinactivedissolutionofthealloy.Ni 2+ isgeneratedand formsNiS.Whenthissurfacespecieshasbeenformed,thecathodereactionin thesulphuricacidtakesplaceonNiS(seereaction8).Thisreactionresultsina potentialinthepassiverangeandapassivefilmisformedonthesteelsurface. + + + − → + (8) H 2 SO 4 2H 2e SO 2 2H 2O

Inthepassiverange,itisnotpossibletoformNiS,andtheformedNiSwill slowlydissolve.Thisresultsinadecreasedcathodicreductionarea,cathodic currentandmixedpotentialonthesurface.Thisleadstoadropincorrosion potential.Whenthecorrosionpotentialhasreachedtheinitialpotential,thecycle restartsandthesurfaceisagainpassivated.Thenickelcompoundisnotstableat potentialsaboveabout23mV SCE ,butisstablebelow77mV SCE .Itshouldbe notedthatthepassivefilmisstillformedduringthedropuntilapotentialof123 mV SCE .Foran18Cr2Ni3Mo0.23Nsteel,NiSwasobservedafterimmersionin 18.4Nsulphuricacid,andCrratherthanNicontributedtothecorrosion resistance[60]. Theobservedoscillatingpotentialsinthiswork,seefigure5,seemedtobe similartotheonesobservedonausteniticType304material.Theminimum potentialobservedforthesuperduplexstainlesssteelswasapproximately50 mV SCE .ThisissimilartothepotentialforType304steel[58].Itshouldbenoted thattheNicontentin25Cris7weight%,anditisaround810weight%for Type304.Hence,itisreasonablethatthismechanismisalsovalidfor25Cr.This spontaneousactivationduetotheformationanddissolutionofNiSisprobably thereasonwhynoinfluenceofactivationwasfoundinconcentratedsulphuric acidinthiswork.Mattsuhasietal.hasobservedthatbelow0mV SCE evolutionof hydrogenonironin95%sulphuricacidoccursanditisexpectedthatasimilar reactionwilltakeplaceonastainlesssteel[59].Thus,thecathodereactionis alsoveryimportantinconcentratedsulphuricacid. Sincenoinfluenceofactivationwasfoundonanyofthethreeinvestigated superduplexalloysindilutesulphuricacid,theobservedlowcorrosionratesare likelytheresultofapassivefilm,andthehighcorrosionratesarelikelydueto theabsenceofpassivity.Theactivepassivebehaviourofstainlesssteelsindilute sulphuricacidwaspreviouslyshownbygeneratingpolarisationcurves[61].In

15 [62],Type304wasstudiedwithelectrochemicalimpedancespectroscopyin0.2 Msulphuricacidfrom20to60ºC.Itwasfoundthatthecorrosionisunder chargetransfercontrolat20and30°C,butbothchargetransferanddiffusion controlledathighertemperatures.Inactivecorrosion,thereactionisunder chargetransfercontrol,andduringpassivity,itismorediffusioncontrolled.This correspondswellwiththeimmersiondatafromtheCorrosionHandbookwhere lessthan0.1mm/yearisreportedat20°Cand>0.1mm/yearat50°Cfor 304L[18].Thisindicatesthatbelowtheisocorrosioncurve,thesteelispassive andnotabove.Itisthereforereasonablethattheinfluenceofactivationis differentbetweendiluteandconcentratedsulphuricacid. BasedonXRDstudiesof22CrduplexwithdifferentNicontents,Potgieteretal. proposedthatthepassivefilmindilutesulphuricacidconsistsofnickelchromate andchromiumoxides.Hence,theprocessdescribedaboveseemsnottohave takenplace[63].Shankar,RaoandSinghalstudiedthepassivefilmonaferritic steelgrade,type216Landtheaustenitictype316L,andfoundthatitwas enrichedinchromiumandthatnoNiwaspresent[64]. PopicandDrazicinvestigatedtheofchromiumindeaerated0.5 MsodiumsulphatewithasulphuricacidcontentinapHrangebetween0.5and 3.Theyfoundthatthreedifferenthydrogenevolutionreactionscanoccur.The firstistheelectrochemicalevolutionofhydrogengasfromH +onbarechromium, andthesecondisthereductionofH +onanoxidisedchromiumsurface.Bothof thesereactionsformstablecorrosionpotentials;inthefirstcase,withanodic activedissolution,andinthesecondcase,withanodicdissolutionofthepassive layer.ThethirdreactionthatcanoccuraccordingPopicandDrazicisachemical reaction,whichcantakeplaceatallcorrosionpotentials.Thefirstreactiontakes placeonsamplesactivatedcathodicallyandthesecondonsamplesthathave beenpassivatedinair[65].Thisindicatesthatwhetherornotactivationwith hydrogenevolutiononsuperduplexsteelhasbeenperformedcanhaveastrong influenceonthecorrosionrate.Thisisprobablythereasonwhynonactivated specimenshavealargertemperature/concentrationintervalwherelowcorrosion ratesexiststhanactivatedspecimenshave. 5.5 Effect of copper and tungsten as alloying elements on corrosion in hydrochloric acid and sulphuric acid Aquestionisiftheobservedinfluenceofactivationuntilhydrogenevolutioncan, tosomeextent;explainthedifferencesinisocorrosioncurves,whichhasbeen attributedtoothereffects.Thethreeinvestigatedsuperduplexgradeshave similaralloyingcontent,andtheonlyelementsthathaveasignificantdifference arecopperandtungsten.Someexperimentalresultsintheliteratureindicate thatsuperduplexstainlesssteelalloyedwithcopperorbothcopperandtungsten havedramaticallybettercorrosionresistancethansuperduplexwithoutthese elements,suchas25Cr.Oneexampleisin[4],wheretheadditionofcopperand tungstenwasclaimedtobethereasonforanimprovementofcorrosion resistanceinhydrochloricacidandsulphuricacidforsuperduplex. Insulphuricacid,significantimprovementhasbeenclaimedduetoalloying superduplexwithcopperintheintermediateconcentrationrange[45].In reference[4],isocorrosioncurvesinsulphuricacidfor25Crand25CrCuare compared.However,thedifferencesobservedatintermediateconcentrationsof

16 sulphuricacidseemtobesmallerthanthoseofactivation.Thesameseemstobe thecasefortheclaimedimprovementof25CrCu/Wcomparedto25Cr.Itshould benotedthatoneofthecurvesfor25CrCu/Winsulphuricaciddoesnotcontain anycomparisontoanothersuperduplexgrade[44].Therefore,theeffectof thesealloyingelementsonuniformcorrosioninhydrochloricacidandsulphuric acidisdiscussedbelow. Theinfluenceoftungstenhasbeeninvestigatedin0.1Mhydrochloricacid,andit wasfoundthattungstenhadabeneficialeffect[67].MasamuraandNishimura studiedtheinfluenceoftungsteninhighlyalloyednickelbasedalloysin15% hydrochloricacid.Theyfoundthattungstenhadhalfoftheinfluencethat molybdenumhad.Duplexstainlesssteelsexhibithighcorrosionratesregardless ofwhetherornottheycontaintungstenornot.[67]ThefindingsofMasamura indicatethatsubstitutingMowithWandmaintainingthesamePREdoesnot improvethecorrosionresistanceinhydrochloricacid. Asuperduplexstainlesssteelalloyedwithtungstenwastestedin1M hydrochloricacid.At80°C,theresultsshowedhighercurrentdensityinthe activepeakthanforasuperduplexwithouttungsten,butthepassivecurrent densitywassimilar.At60°C,theyobservedasimilarcurrentdensityinthe activepeakforbothalloys,butlowercurrentdensityinthepassiveregionfor thealloywithtungsten.Theconclusionwasthatthebeneficialeffectoftungsten decreaseswithtemperature.[68]Iftheinfluenceoftungstenonthecorrosion rateforsuperduplexstainlesssteelinhydrochloricacidisstudiedbyimmersion tests,theresultsbyKimetal.indicatethatitisimportanttoactivatethe specimensunderconditionswherehydrogenevolutiontakesplace. Foran18Cr21Ni3Mo0.23Nalloy,increasingthecopperasthealloyingelement from0.06to3.2weightpercenthadalargeinfluence[69].Theadditionof copperin1MhydrochloricacidforsuperduplexwasstudiedbyGarfiasMesiaset al.bypolarisationcurves.Theresultsclearlyshowedalargeimprovementinthe activeregionat65°Cforsuperduplexwithcoppercomparedtotheonewithout. However,inthepassiverangeofthepolarisation,almostnodifferencewas observedbetweenthealloys.At40°C,thecurrentdensityintheactiveregion wasmuchlowerforallofthealloys,atabout0.5mA/cm 2,sotheinfluenceof copperwasnotlarge[70].TheresultsbyGarfiasMesiascorrespondwelltothe resultsinthiswork. In0.5Msulphuricacidwith3.5%sodiumchlorideat25°C,Kimetal.studied theinfluenceoftungsteninduplexsteel.Theyfoundthatthecurrentdensity increasedintheactiverangeforthetungstencontainingduplex,buttungsten slightlyreducedthecurrentdensityinthepassiveregion[69].Inconcentrated sulphuricacid,therehavebeenseveralinvestigationsofthebeneficialeffectof copper,butothershavefoundnoornegativeeffects[71].However,inthe literature,fewerinvestigationshavebeenreportedconcerningtheeffectof alloyingwithtungsten. Fromtheliteraturereviewedabove,itseemsthatthedifferencesintheiso corrosioncurvesbetweenthethreesuperduplexstainlesssteelscanbeexplained bytheuseofactivationornot,ratherthandifferentalloyingelements.Itmight bethecasethatcopperandtungstenmayhaveapositiveinfluence,butitis likelymuchsmallerthantheinfluencefromactivation.Hence,activationuntil

17 hydrogenevolutionisprobablythereasonforthelargedifferencesobserved betweensuperduplexstainlesssteels.

5.6 Conclusions Activationoftestspecimensuntilhydrogenevolutiontakesplacecanhavea significantinfluenceontheuniformcorrosiontestingofsuperduplexstainless steels.Theresultsindicatedthatactivationcan,tolargeextent,explainthe previouslyreportedlargepositiveeffectsonthegeneralcorrosionresistancein sulphuricacidandhydrochloricacidonsuperduplexstainlesssteelsbythe additionofCuandW.Activationthroughhydrogenevolutiononthesurfacegave amuchlargerinfluenceontheresultsthandidthedifferencesincoppercontent, withtheexceptionofexperimentsinconcentratedsulphuricacid.Thereasonfor theexceptionisprobablythatinconcentratedsulphuricacid,oscillating potentialsleadtohydrogenevolutionduringpotentialdips,removingthepassive layer.

6. Dewpoint corrosion 6.1 Scope of the work Tobeabletostudythecorrosionrateofstainlesssteelsindewingconditions,a laboratorytestmethodwasdeveloped.Theconditionthatthedevelopedtest equipmentshouldsimulateisonewhereafinalcondensatewithabout1% hydrogenchlorideisformed. 6.2 Background AsurveymadeinSwedenshowedthatdewpointcorrosioncanoccuronstainless steelsatrelativelylowtemperaturesandconcentrationswhencondensatesfrom biofuelareformed[72].Inawasteincinerationcondenser,corrosionhasbeen reportedonsuperausteniticsteel[73].Thecorrosiontablesin[18]predictno corrosionatthetemperatureandcompositionofthecondensatewherethe corrosionwasobserved.Thesecorrosiontablesarebasedontestingoffully immersedspecimensthatareactivatedbeforetesting,asdiscussedearlier Somenonstandardisedtestmethodsfordewpointcorrosionexist.Theones knowntotheauthorareeithercomplicatedorcontainboilers,asdoseveralin [20].Themethodin[74]usesamixtureofheatedhydrochloricacidand gasoline,whichishazardous.Therehavealsobeenmethodsreportedthatare consideredtoocomplicatedtoeasyfacilitateinalaboratory[20].Several authorshaveusedimmersiontestmethodsfortestingdewpointcorrosion,such asin[7580].Utilisingfieldtestingorserviceexperience,asin[81,82],is anotherapproachtocharacterisingdewpointcorrosion.In[82],atestmethodis describedwherespecimensweremountedonarackthatwasplacedonacooling coilinafurnace.Sincethetemperatureofthespecimenswaslowerthanthegas temperature,condensationtookplace.Inthefinalexperiment,2Mhydrogen chloridewaspumpedintothefurnaceatarateof40ml/h,resultingina predictedlevelof3.6%hydrogenchloride.[82] Condensatesatdifferenttemperatureswereobtainedfromthreewaste incinerationplantsinSweden[82].Atatemperatureof4045°C,acondensate

18 containingabout1%chlorideswasfoundinmanycases,andinamajorityofthe cases,theconcentrationofsulphatewasmuchlowerthanthatofchlorides [82]. Hence,theinvestigatedenvironmentcanberelevantforwasteincineration plants.Fieldexposureshavealsobeenmadeinoneplantwherethecondensate hadatemperatureof45°CandapHaround0.5,withapproximate1% chlorides.Eventhoughitwasdifficulttoestablishtheexacttemperatureatthe locationoftherack,acomparisoncanbemadewiththeresultsinthiswork.The corrosionrateofAlloy28wasabout0.5mm/year,andforAlloyB66,0.30.8 mm/year,whileveryhighcorrosionratesfortheausteniticType317Lwere found.FieldtestingwasalsodoneinaplantlocatedinGermanywherea condensatewithabout10%hydrogenchlorideatatemperatureof6365°C wasfound.ThecorrosionrateofAlloy28was1.66mm/year[82].However,it shouldbenotedthatinbothexposures,combinationspecimenswithbothcrevice weldsandaflatareawereused. Slaimanetal.developedacellforcorrosiontestsinasystemofhydrochloric acidandgasoline(seefigure6a))[74].Itisacirculatingsystemwhereamixture ofhydrochloricacidandpetrolisheatedandevaporates.Thespecimensare locatedinacooledcondenserandthevapourcondensesonthetestspecimen. Thevapouristhenbroughtbacktotestsolution,andthecorrosionrateis calculatedbasedontheweightloss. Concentratedhydrochloricaciddissolvedinwaterismoreorlessfully dissociated.Duetothefactthatmixturesofhydrogenchlorideandwaterare azeotropic,0%,20.2%or38%aretheonlypossibleconcentrationsofhydrogen chlorideinthegasphasewhensuchamixtureevaporates.Therefore,ithas beendifficulttosimulateanenvironmentwithwaterandthedesired concentrationofhydrogenchlorideinsteamusingthesetupofSlaimanetal. [74].Aconsequenceoftheazeotropyofwateristhattheexperimental procedureusedbySlaimanetal.cannotbeusedforthissystem. 6.3 Results AnapproachtomixingtwodifferentvapourswasusedinPaperIItoachievea finalcondensateofabout1%hydrochloricacid.Thiswasmadebyintroducinga separateevaporatingflaskforconcentratedhydrochloricacid,seefigure6b). Additionalwaterwasusedintheflaskpresentintheoriginalsetup,as illustratedinfigure6.Itshouldbenotedthatthevolumehydrogenchloridethat isrecirculatedintotheflaskintheloopisnothighenoughtoevaporatethe solutionintheflask.Thevolumeofeachgasinthecellisregulatedbythe temperatureofthesolution,areaofthesolutionsurfaceanddiameterofthe tubefromtheflask.

19 Heat Reflux condenser exchanger 3 4 5 1 2 Specimens

T Tap for sample of Flask condensate T with test solution Heating Flask with 38% HCl mantel Heating device a) Original set-up. b) Modified set-up.

Figure 6. The original cell used for dewpoint corrosion testing by Slaiman et al. [74] and the modified cell developed in Paper II. Theresultsillustratedinfigure7demonstratethatthemodificationmadetotake intoaccounttheazeotropyofthesystemprovidedmuchlowercorrosionrates [PaperII].Thefigureshowsresultsfromspecimenscooledto40°C.Itshouldbe notedthatposition1istheinletandposition5intheoutletoftheheat exchanger.Thismeansthatadecreasingtrendofthecorrosionratescanbe observedalongthecondenser.

Figure 7. The corrosion rates in mm/year results from the original set up [74] and the modified set-up with a cooling temperature of 40°C. Position 3 was a reference specimen of Type 304 L except for the run in which the original set-up and Alloy 28 were used. [Paper II] Theresultsfromexperimentswithamodifiedcellthatgaveareturncondensate of1%areshowninfigure8[PaperII].Specimen3wasalwaysa340L specimen,andthescatterbetweentheexperimentswasnottoohigh,which indicatedthatthereproducibilityoftheexperimentswasrathergood.Thetrend ofthecorrosionratebetweenthetestmaterialswasthatthehighestalloyed

20 material,AlloyB66,hadthelowestcorrosionrate,andthelowestalloyed,Type 304L,hadthehighest.

Figure 8. The results from the modified set-up for the dewpoint corrosion testing as corrosion rates in mm/year with a cooling temperature of 40°C. Positio n 3 was a reference specimen of Type 304L. The return condensate is about 1 % hydrochloric acid. Results from paper A. 6.4 Discussion Themodificationofthetestsetuptakesintoconsiderationthenatureofthe reactionwhenthedissociatedhydrogenchlorideevaporates.Thisresultsinatest methodthatcantestdewpointcorrosionforasystemwithafinalcondensateof about1%hydrochloricacid.Thecoolingtemperatureof40°Cisprobablybelow thedewpoint,sinceavapourthatcontains8.5%waterandmorethan50ppm hydrogenchloridehasadewpointabove40°C.Thedewpointincreaseswith waterandhydrogenchloridecontent[83].Decreasedcorrosionrateswere observedthefurtherfromtheinletthespecimenwaslocated.Thisdemonstrates thathigherconcentrationsofhydrochloricacidarelikelypresentinthefirst condensatecomparedwithlatercondensates. Theresultsfromthedewpointcellwerecomparedtoresultsfromimmersion testswiththesamemethodologyasdiscussedpreviously.However,inthiscase noactivationofthespecimenswasperformedfortworeasons.Thefirstwasthat thesurfacewasnotcontinuouslywet,andthereforetherewasanopportunityto formapassivelayerinair.Thesecondisthatitwasdifficulttoactivatethe specimensinthedewpointcell.Thecorrosionrateintheimmersionexperiments was0.3to0.4mm/yearat40°Cwith1%hydrochloricacid.Theothertwoalloys hadacorrosionrateof0.0mm/year.Asillustratedinfigure6,muchhigher corrosionrateswerefoundforallsteelsinthemodifieddewpointcell.Evenin position5,wherethelastcondensateisformed,whichshouldhavethe condensatewiththelowestconcentrationofacid,relativelyhighcorrosionrates wereobserved.Thisdemonstratesthatthedewpointcellgivesresultsthat cannotbepredictedbyimmersionexperimentsregardlessofwhetheractivation isperformed.

21 Thecelldevelopedinthisworkformsagasphasethatgivesareturncondensate ofabout1%hydrochloricacid.Infigure9,itisindicatedthatthescatterofthe corrosionrateofspecimen3thatwasalwaysatype304Lspecimenwasnottoo high.Thisindicatedthatthereproducibilityoftheexperimentwasrathergood. Hence,acellhasbeendevelopedforcorrosiontestingofcorrosionresistant alloysatdewpointconditionswithafinalcondensateof1%hydrogenchloride. Whentheresultsfromthisworkarecomparedtothefieldexposuresdiscussed abovethecorrosionratesinthosecorrelatewellwiththeresultsfromthe modifieddewpointcellinthiswork. 6.5 Conclusions Amodifiedsetupfortestingdewpointcorrosionincondensatecontainingwater andapproximately1%hydrochloricacidhasbeendeveloped.Themain modificationwastoavoidevaporationoftheazeotropicconcentrationof hydrogenchlorideandwaterbyintroducingaseparateflaskforhydrochloric acid.Thecorrosionratesobtainedcorrelatedtoresultsreportedfromfield tests.

7. Hydrogen-induced stress cracking

7.1 Scope of the work Relaxationexperimentswereperformedtoexplainthedifferencebetweendesign curvesbasedonservicedataorconstantloadtestingandtheresultsfromu bendtesting.Investigationofrelaxationandlowtemperaturecreepproperties forseveralsteelgradesweremadetodemonstratethedifferenceinranking betweenthegrades.Theinteractionbetweenthemicromechanicsandhydrogen diffusioninduplexstainlesssteelwasinvestigatedtoexplaintheresultsof differentproductformsinHISCtesting. 7.2 Change of mechanical properties during environmentally-assisted cracking experiments

Forenvironmentallyassistedcrackingofstainlesssteels,severalcorrosiontest standardsareavailable,aspresentedin[8490].Someofthesestandardscan beusedwithdifferenttypesofloading,e.g.,constantload,constantstrainor constantstrainrate.BothASTMG36andNACETM0177giveavarietyoftest specimensthatcanbeusedforthispurpose[86,87].Inconstantloadtests, tensilespecimensareoftenused,andinconstantstrainexperiments,bothu bendsandcringscanbeused.Insomestandards[85,88]thatuseubendsas testspecimens,theubendgeometryisdefined,butinothers[89,90],theu bendisnotdefined.Itisthereforenotobviouswhichloadingtypeorspecimen shouldbeusedinatestprogram[91]. Overtheyears,testdataforstresscorrosioncrackinginstainlesssteelshave beengenerated,suchasdesigncurvesinneutralchlorides[5].Thesedesign curvesweregeneratedbycompilingserviceexperienceforstandardaustenitic stainlesssteels,Type304LandType316L,andconstantloadtestdata.Infigure 8,theresultsfromtheubendtestprograminneutralchloridesisshownas ratiosvisualisedinpreexistingdesigncurves.Itshouldbenotedthatboththe

22 ubendtestsandtheconstantloadtestingwereperformedinthesame autoclaves. ForType304L,theubendexperimentsinPaperIIIresultedinmuchhigher crackingtemperaturesthanthedesigncurves(seefigure9).Incontrast,904L showedcrackingintheubendtestattemperaturesnearthedesigncurvebased onconstantloadtesting(seefigure10).

Figure 9. The results form the u-bend exposures [Paper III] for 304L in neutral chloride solutions shown as ratios of cracked specimens and inserted in the design curves based on service experiences from [5]. ● – failure, о – pass

Figure 10. The results form the u-bend exposures [Paper III] for 904L in neutral chloride solutions shown as ratios of cracked specimens and inserted in the design curves based on constant load testing from [5]. ● – failure, о– pass

23 Sincethesameequipmentandtestprocedures,exceptforspecimentype,were usedintheworkinPaperIIIaswhenthedesigncurvesweregenerated,the onlyassumeddifferencesaretheformofloadingandthatthematerialoriginated fromdifferentheats.However,thedifferenceinheatisassumedtonotbethe explanationforthedeviatingresults.InrelaxationexperimentsincludedinPaper III,itwasfoundthattherelaxationpropertiesforthetestedmaterialswerevery different.Forinstance,theresultsindicatedthatType304Lhadarelaxationof 25to35%after100hours,butType904Lhadonlyaround8%.Withthis differenceinrelaxation,thedifferencesbetweenthetwotestmethodsmaybe understood.Whenrelaxationtakesplace,theloaddecreaseswithtime,and thereforetheseverityofthetestwilldecreasetoacertaindegreedependingon thetestmaterial. TheresultsinPaperIIIindicatedthatthetypeofloadingusedduringchloride stresscorrosioncrackingtestingofstainlesssteelisveryimportant.Iftestdata fromconstantstrainspecimensareusedforaserviceconditionwhereaconstant loadisapplied,afailuremayoccur.Ontheotherhand,iftheserviceconditions areoftheconstantstraintype,constantloaddatamaybetooconservativeand amoreexpensivematerialthanneededmightbeselected.Oneapplicationin whichstandardausteniticsteelgrades,suchas304Lor316L,areoftenusedat highertemperaturesofaround100°Cisininstrumentandhydraulictubing.In thisapplication,exposuretoconstantstrainconditionsiscommon,andno crackingoccurs,butheatexchangertubingexposedtoaconstantloadsuffers fromstresscorrosioncrackingattemperaturesaslowas4060°C[92,93].This differenceinserviceisinlinewiththefindingsinthiswork. Asshownabove,relaxationcanoccurforconstantstrainspecimens.Duringa constantloadexperiment,lowtemperaturecreepmayoccur.Someinformation aboutlowtemperaturecreepcanbefoundintheliterature[7,8,9496].Duplex stainlesssteelscanbesubjectedtolowtemperaturecreep,butthisisdependent ontheloadlevel.Inaguideline,itismentionedthatduplexstainlesssteel experiences“coldcreep”atstressesbelowtheyieldstrengthofthematerial[97]. Infigure11,resultsfromlowrelaxationandlowtemperaturecreepexperiments areshown,takenfromPaperIV. Thereasonwhyduplexstainlesssteelcanexperiencelowtemperaturecreepat loadsbelowtheyieldstrengthisthattheplasticdeformationisnotequalinboth phases.Forthe25Crmaterial,aschematicstressstraincurveisshowninfigure 12.Thiscurveshowsthatthestrengthisnotequalinthetwophases.Fromthe exampleinthecurve,itisevidentthattheaustenitephasehaslowerstrength thantheferritephaseatsmallstrains.Hence,evenbelowtheyieldstrength, plasticdeformationoftheferritetakesplace.

24

a)

b)

Figure 11. Results from Paper IV. a) Calculated relaxation of the load at 720 h based on the relaxation experiments at fixed strains at 2% and corresponding to an initial load at 90% of the yield strength. b) The measured low temperature creep after 720 h dead weight testing at 90% of the yield strength and a load corresponding to an initial strain of 2%.

25 Figure 12. Schematic stress strain curve for 25Cr denoted DSS in the figure, α is ferrite and γ is austenite [Paper V].

Inthelowtemperaturecreepexperiments,theausteniticType304Lhadmuch lesscreepthantheduplex25Cr,butexperiencedamuchhigherdegreeof relaxation.AnATEMstudyindicatedthatfor304L,thenumberofdislocations decreasedwithtimefortherelaxationspecimen,whereasthenumberof dislocationsincreasedforthelowtemperaturecreepspecimen(seePaperIV). Figure13showsATEMimagesoftheaustenitephaseintheduplex25Cr specimensthatwasusedintherelaxationandlowtemperaturecreep experimentsinPaperIV.Theimagesindicatedthatthenumberofdislocations hadincreasedaftertherelaxationexperiment.Afterthelowtemperaturecreep experiment,theimagesindicatedthatevenmoredislocationswerepresentthan aftertherelaxationexperiment.Asindicatedinfigure12,atthisstrainlevel,the austeniticphaseisprobablythesofterphase.Hence,theausteniticphaseisthe phasethatshouldexperiencelowtemperaturecreep. Sincethenumberofdislocationsdecreasedfor304Laftertherelaxationtestbut increasedfor25Cr,itisnaturalthat304Lexperiencedamuchlargerdegreeof relaxationthan25Cr.Thiswasalsofoundintherelaxationexperiments.The rankingofbothmaterialswastheoppositeinthelowtemperaturecreep experiment.Inthiscase,theATEMimagesmayindicatethattheduplexhasa higheramountofdislocationsthantheaustenitic304Lafterthecreep experiment.Ifthatisthecase,itisnotsurprisingthatduplexgradesexperience morelowtemperaturecreepthantheausteniticgrades. Thisstronglyindicatesthatduringconstantloadexperiments,dislocationsare generatedthroughoutthewholeexperimentiftheloadisabovetheyield strength.Onthecontrary,itisindicatedthatduringconstantstrainexperiments abovetheyieldstrength,thenumberofdislocationsdecreasewithtimedueto annihilationofthedislocations.Itshouldalsobenotedthattheresultsindicate thattheloadingconditionisoflessimportancebelowtheyieldstrength. However,duetolowtemperaturecreepandrelaxation,plasticdeformationcan takeplaceataloadbelowtheyieldstrength.

26

a) b) c) Figure 13. Dislocation structure in the austenite in 25Cr specimens tested in Paper IV as obtained through ATEM. a) before exposure b) after relaxation at a initial load corresponding to 2% strain c) after low temperature creep at load corresponding to an initial strain of 2%

7.3 Hydrogen interaction during plastic deformation Ashasbeenshownabove,plasticdeformationonboththeatomicand macroscopiclevelstakesplaceinserviceaswellasintests.Differenttest methodsprovidedifferentstressandstrainsituations,andtherebyrepresent differentfieldsituations.Whenhydrogendiffusionispresentduringplastic deformation,thephenomenonofhydrogeninducedstresscrackingcantake place. Hydrogeninducedstresscrackinginmaterialswithdifferentmicrostructureswas studiedinPaperV.Inthispaper,threesamplesfrombarmaterialwereincluded, largeandsmalldiameterbarsfrom25Crandsmalldiameterbarfrom29Cr.In table3,theresultsareshown,aswellastheresultswithanextrudedtubeof 25Crfromearlierwork[9].

Table 3. Result from constant load HISC tests at 4°C, from Paper V and [9]. Materials Material form Austenite spacing Failure load [m] [% of the yield strength] 25Cr Large diameter bar 42 ≥93 Small diameter bar 16 No failure up to 120 Extruded tube 10 No failure up to 130 29Cr Bar 30 ≥120 Forthefailedsamples,thefracturemechanismwasinvestigatedwithSEMin PaperV.Theinvestigationshowedthatcrackswerepresentatthesurface.The crackswerelargeratthesurfaceandbecamenarrowerwiththedistancefrom thesurface.Thehydrogenconcentrationishigherthesurface,seePaperV,than inthebulkofthematerialandthistogetherwithnarrowercracksindicatedthat HISCisahydrogendiffusioncontrolledprocess. Thecrackinitiationwaslocatedateithertheferritegrainboundariesoratthe phaseboundaries,seeFigure14and15[PaperV].Inthefirstcase,whichwas foundinthe25Crlargediameterbarwithlargeaustenitespacing,smallporesor voidswereformedwithsubsequentsmallcracksintheferritephase.Thecrack

27 initiationatthephaseboundarieswasfoundforallthreeoftheinvestigated specimens.Inthiscase,poresorvoidswereformedatthephaseboundaries, andthensmallcrackswereinitiatedintheferritephase.Thisindicatedthatthe firststepofHISCistheformationofhydrogenporesorvoidsatthephase boundaries.Itshouldbenotedthatgrainboundarieshaveanoncrystal structurethatcanaccumulatemorehydrogenthanthematrix.

Figure 14. Figure 15. Crack initiation in at pores located for at grain Crack initiation at pores located at phase boundaries a HISC tested specimen of 25Cr boundaries in the ferrite for a HISC tested large diameter bar, from Paper V. specimen of 29Cr, from Paper V. In table3,itisveryobviousthattheresistancefor25CragainstHISCwasvery differentfordifferentproductforms.Materialwithsmalleraustenitespacinghad muchbetterresistancethanmaterialwithlargeraustenitespacing.Asdiscussed earlier,thisphenomenonhasbeenreportedearlier,anditisalsoacknowledged inthedesigncodeagainstHISC[13]. Lowtemperaturecreepexperimentswereperformed,seePaperVI,on specimensobtainedfromthesame25Crtubeandsamplesfromalargediameter barof25CrthatwereHISCtestedinPaperVand[9].Lowtemperaturecreep wasobservedforbothmaterials,butthebarmaterialwithlargeraustenite spacingexperiencedmuchhighercreepstrainthanthetubewithsmaller austenitespacing.Inaddition,thestrainsweremuchlowerforthetubematerial. Forthelargediameterbarsample,lowtemperaturecreepwasobservedat90% oftheyieldstrength,andforthisspecimen,theincreaseofhardnessinthe austenitewasabout2.8%,but3.5%intheferrite,seePaperVI.Theincrease ofhardnesswasduetodeformationhardening.Togetherwiththehighnumber ofdislocationsintheferritephase,thisindicatesthattheaustenitewillnot deformfurther,althoughtheferritecreeps.Moraesetal.foundthattheferrite wasmorestrainedthantheaustenitewhentheystudiedcathodicpolarised duplexinthiosulphatesolution.Itwasalsofoundthatthedeformationhadtobe plastictoinitiatehydrogenembrittlement[98].Hence,aninteractionbetween theincreaseofdislocationsbycreepandhydrogenbydiffusioncausesHISCin thelargediameterbarmaterial. Forthelargediameterbar25Crmaterial,significantlowtemperaturecreep occurredatasimilarloadlevelwhereHISCstartedtoappear,seetable3and Figure16.Thisindicatedthatplasticdeformationbylowtemperaturecreepisa prerequisiteforHISC.However,withthetubematerial,noHISCwasfoundat

28 theloadlevelwheresignificantlowtemperaturecreepwasobserved.This indicatedthatfor25Crataspecifiedcathodicpolarisation,theoccurrenceof plasticdeformationisnottheonlyfactorthatdetermineswhetherHISCtakes place.

Figure 16. The plastic low temperature creep for 25Cr large diameter bar material during creep experiments in Paper VI performed at room temperature and at different percentages of the yield strength, Rp 0.2 . At the lines the austenite spacing are shown in µm. MicrohardnessmeasurementsonsamplesafterHISCtestingshowedthatthe ferritewasmuchharderthantheausteniteforsampleswithsmallaustenite spacing,seePaperVI.Asdiscussedearlier,thehardnessinapointis proportionaltothehydrogencontentinthatpoint.Themicrohardnesswas similarforbothphasesinthelargediameterbarthatfailedataloadlevelat93 %oftheyieldstrength(seetable4).

Table 4. Micro hardness measurements of HISC tested 25Cr specimens, mean of triplicate indents for two specimens, from Paper VI . Sample Austenite spacing Hardness [HV 0.025] [µm] Ferrite Austenite Extruded tube 13 – 16 289 260 Small diameter bar 11 – 16 278 254 Large diameter bar 38 – 45 297 292

Theresultsintable4indicatethatduplexwithlargeraustenitespacingshada higherhydrogenuptakeintheferritethanthosewithsmalleraustenitespacings. AsdiscussedinPaperVIithasbeenfoundthatforduplexstainlesssteel,the hydrogencontentwassignificantlylowerforaspecimenwithsmalleraustenite spacingthanforaspecimenwithlargeraustenitespacingafterHISCtesting. Bothspecimenswereobtainedfromthesametubethatwasheattreated differentlytogetdifferentaustenitespacingsinthetwodifferentsamples.A

29 reviewcitesinvestigationsindicatingthathigherferritecontentsincreasetherisk ofHISCandthatsmallerferrite/austenitegrainsizesreducethehydrogen diffusivity[35].AccordingtoHavn,smallgrainsgivebetterresistanceagainst HISC,probablyduetolongerdiffusionpathsalongthegrainboundaries[36]. Diffusionisslowerinduplexthanferriticsteelsduetotheincreaseddiffusion lengthbecauseofausteniticislandsandtrappingintheausteniticphaseoratthe austeniticphaseboundaries[100].Smallerausteniteislandsresultinamore complicatedandlargerdiffusionpaththanacoarsermaterial[100].Forstepwise crackingduringHISC,thereisacloserelationshipbetweenhydrogendiffusion andthecrackpropagationrate[101].Thisindicatesthatoneexplanationforthe observeddifferenceinhardnesscanbethatthesmallerferriteareasdonothave enoughhydrogenforthecriticalleveltobereachedintheprocesssuggestedby Oltraetal[39].Hence,theaccumulationofhydrogenmaynotbelargeenough togivethestressneededforthecracktoentertheaustenite. Itshouldbenotedthattheinvestigationofthefracturesurfacediscussedearlier indicatedthatthemodelbyOltraetal.isvalidfortheHISCspecimens.Plastic deformationduetolowtemperaturecreepisneededforHISCtotakeplace.The resultofthecreepisthatdislocationsaregenerated.Furthermore,thereare indicationsthatthereisadifferenceinhydrogencontentbetweenafineand coarsegrainedduplex.Hence,itmaybeassumedthatdifferencesinhydrogen contentdeterminewhetherthestressconcentrationwillbelargeenoughto initiatecrackingintheaustenite.Consequently,noHISCtakesplace.

Thecrackingprocessof29Crwassomewhatdifferentthanfor25Cr.Theferriteis thesofterphaseandconsequentlyundergoesmostofthecracking.Thisisvalid forallspecimensafterHISCtesting,exceptforthespecimentestedatthe highestload,120%oftheyieldstrength.Forthisspecimenthehardnesswas equalinbothphases.However,thecrackingwasalsoaninteractionbetweenthe dynamicplasticityandhydrogendiffusion.Itshouldbenotedthatnocrackswere foundatthelowerloadlevelsintheHISCtesting,eventhoughferriteissofter thanaustenite.R.Lilbackaetal.hasstudiedthehardnessofbothphasesofas received29Cr.Theyfoundthatferritein29Crissofterthanausteniteregardless ofthestrain[102].TheincreaseinhardnessafterHISCtestingislikelydueto aninteractionwithhydrogen.Itshouldbenotedthatforordinary25Cr,thesame behaviourasinfigure12wasreportedbyR.Lillbackaetal[102].Iftheloadis belowtheyieldstrengthfor29Cr,thestressconcentrationislikelynothigh enoughforthecracktopropagate.However,inthiscase,whencracking occurred,theloadwas120%oftheyieldstrengthwherethehardnesswasequal inbothphases.Itisinterestingthateven thoughthehardnessesofeitherofthe duplexmaterials,25Crand29Cr,werenotthesame,thatHISCoccurredin specimenswherethehardnessoftheferriteandaustenitewassimilar. ThedislocationstructureafterHISCtestingisinterestingsinceHISCisan interactionbetweenhydrogendiffusionandplasticdeformation.For22Crbar material,anEBSDstudywasmadeinthisworkononeconstantstrainandone constantloadspecimenthatwasHISCtested.Eventhoughtheconstantstrain specimenwastestedatahigherloadlevel,ithadfewerlowanglegrain boundariesthantheconstantloadspecimen,whichisillustratedbyfewerwhite grainboundariesinfigure17.Thismeansthattheconstantstrainspecimenhad fewerdislocationsthantheconstantloadspecimen.Itshouldbenotedthatin theconstantloadspecimen,thereweredislocationsinboththeferriteand

30 austenite,butintheconstantstrainspecimen,thedislocationsweremoreorless onlypresentintheferrite.Thisdifferenceislikelysignificanteventhoughthe experimentswerenotmadeatthesameloadlevel.Relaxationisprobablythe reasonforthefewerdislocationsintheconstantstrainspecimen,withlow temperaturecreepoccurringintheconstantloadspecimen.Theconstantload specimencrackedafter4.8hours,buttheconstantstrainspecimendidnotfail after131hoursoftesting. TheresultsfromtheEDSBinvestigationindicatedthattheloadingtypecouldbe importantifHISCwilloccur.Constantstrainconditionsaremorebeneficialthan constantloadconditionsduetotheannihilationofdislocations.Thiswasfound forchloridestresscorrosioncracking,asdiscussedabove.

a) Constant load specimen at 130% of the b) Constant strain specimen at an initial load of yield strength. 110 % of the yield strength.

Figure 17. 22Cr specimens investigated in EBSD after HISC-testing in this work. Red is austenite and blue is ferrite. Grain boundaries in white are between 2 and 10 degrees, black higher than 10 degrees. The black scale bar represents 50 µm. BasedonthemechanismproposedbyOltraetal.in[39]andtheresults discussedabove,thefollowingmechanismforHISCofduplexstainlesssteelscan beproposed: Themechanismisbasedonhydrogenenhancedlocalisedplasticityandthefact thatduplexisatwophasematerial.Induplex,inhomogeneousdeformation takesplaceatloadlevelsequaltoorhigherthantheloadlevelwhenlow temperaturecreepoccurs.Theseinhomogeneousdeformationstogetherwith hydrogenentryintothematerialduetothecathodereactionareprerequisites forHISCtotakeplace. Voidsareformedatgrainboundaries,eitherintheferriteoratthephase boundaries.Crackinginitiatesatthesevoidsintheferritewhenthestressis largerthanthecriticalshearstressintheferriteforcracking.Therearetwo reasonswhythecrackingstartsatthesevoids:increasedstressconcentration andinternalpressureduetohydrogengasformation.

31 Inthecaseofaustenitebeingthesofterphase,plasticdeformationtakesplacein theaustenitefirst.Inthiscase,thestrengthoftheausteniteincreasesfaster thantheferrite,andthedeformationhardeningrateissmallerinferritethanin austenite.Atacertainstraintheaustenitewillbeharderthantheferrite.The hardnessandthestrengthofthematerialincreaseduetothedeformationand hydrogen. Amicrocrackiscreatedintheaustenitefromacleavageintheferrite,followed bylocalisedentryofhydrogenatthecracktip.Themovementofthedislocations isenhancedbyhydrogen,andthedislocationswillaccumulateaheadthe diffusionzoneandproduceavirtualobstacle.Thefractureprocesswillresult fromacompetitionbetweenthekineticsofdislocationemissionandthekinetics ofdiffusion.Atacriticallevel,acrackmaystartintheaustenite.Thenormal stresscanopenthecrackandanewsequencecanstart. Foramaterialthathasasofterferritephasethanaustenitephase,mostofthe deformationtakesplaceintheferrite.Thismeansthattheferritewillalways havealowerhardnessthantheaustenite,andthatmostofthedeformation occursintheferrite.Hence,acrackcanpropagatethroughtheferritearoundthe austenite.

Eventhoughplasticdeformationtakesplace,HISCmightnotbeinitiated.For materialswithsmalleraustenitespacing,thestressconcentrationfactoris smalleraswellasthedislocationaccumulationatthephaseboundaries.Second, thehydrogencontentintheferriteseemstobelowerinfinegrainedmaterials thanincoarsergrainedmaterials,whichresultsinfewerdislocationsandlower stressconcentrations.Foraduplexwithaustenitespacingsmallerthanacertain value,thestresswillprobablynotbeabovethecriticalshearstress.Hence,HSIC willnottakeplaceinthismaterial.

7.4 Conclusions

Therankingbetweendifferentalloyswithrespecttorelaxationandlow temperaturecreepdependsontheloadlevel.Lowtemperaturecreepabovethe yieldstrengthhasanotherrankingthatisbelowtheyieldstrengthandrelatesto relaxation. Ithasbeenshownthatplasticdeformationonboththeatomicandmacroscopic levelstakesplaceinstresscorrosioncrackingspecimens.Differenttestmethods providedifferentstressandstrainsituations,andtherebyrepresentdifferent fieldsituations.Whenhydrogendiffusionispresentduringplasticdeformation, thephenomenonofhydrogeninducedstresscrackingcantakeplace. Theobserveddifferencesinrelaxationandlowtemperaturecreepcanresultin deviatingresultswhenstainlesssteelresistanceagainstenvironmentallyassisted crackingisevaluatedwithdifferenttypesoftestspecimens.Amodelof hydrogeninducedstresscrackinginduplexstainlesssteelsubjecttocathodic protectionhasbeenformulatedthattakesintoaccountinhomogeneous deformationofthetwophasesaswellastheaustenitespacing.

32 8. Conclusions Thedoctoralthesishasexploredsomecriticalissuesregardingtheinfluenceof hydrogenoncorrosionandhydrogeninducedstresscrackingonstainlesssteels. Thefollowingmainconclusioncouldbedrawn: • Theactivationofspecimensduringimmersiontestingofsuperduplexstainless steeluntilhydrogenevolutiontakesplaceturnsouttobeofsignificant influence.Theactivationprocedurecanexplaineffectsonuniformcorrosionof superduplexstainlesssteelinsulphuricacidorhydrochloricacid,which previouslywasattributedtotheadditionofCuandWasalloyingelements. • Inconcentratedsulphuricacid,noinfluenceofactivationcouldbeobserved, probablyduetospontaneousactivationduringtheobservedoscillating potentials. • Atestmethodfordewpointcorrosiontestingofstainlesssteelsinhydrochloric acidhasbeendeveloped,whichgivesresultsthatcorrelatewelltofield testing.Themodificationtakesintoaccounttheazeotropeofhydrochloricacid andwater. • Therankingoftheeffectofrelaxationandlowtemperaturecreepon mechanicalpropertiesdependsontheloadlevel.Thisdifferencecanresultin deviatingresultsinenvironmentallyassistedcrackingexperimentsduetothe choiceofspecimentype. • Amechanismforhydrogeninducedstresscrackingofduplexstainlesssteels subjecttocathodicprotectionhasbeenformulated.Ittakesintoaccount inhomogeneousdeformationofthetwophasesaswellastheaustenite spacing.

9. Further work Basedontheresultsinthisworkthefollowingfurtherworkcanbeproposed: Todaythemechanismforoscillatingpotentialsisratherwellunderstoodbutit wouldbegoodtoconfirmthatthesamemechanismispresentinduplexstainless steels.Itwouldalsobeinterestingtoinvestigatewhethertheoscillating potentialswillinfluencetheresultsfromimmersiontestingofsuperduplex stainlesssteelsinconcentratedsulphuricacidatelevatedtemperatures. Itwouldalsobeinterestingtoinvestigateinmoredetailthereasonwhyfine grainedduplexstainlesssteelshaveverygoodresistanceagainstHISCeven thoughtheyexperiencelowtemperaturecreep.Onemoreopenquestionisifthe grainsizeintheferritephasehasanyinfluenceontheresistanceagainstHISC. Furthermore,astudyaboutthemicromechanicsforslowstrainrateand constantstrainHISCspecimensmaybeperformed.Thelaterwouldbe interestinginordertogainmoreknowledgeregardingthesituationwitha constantstrainthatprobablyisrathercommoninpractice.

33 TheobservationsthatHISCtakesplacewhenthehardness,thestrength,is equalinbothphasesafterHISCtestingcouldbeinvestigatedfurtherinorderto seeifthishassomerelevancetothemechanismforHISC. Fromapracticalpointofview,moretestdatafortheobservedlimitationsinthe corrosiontestmethodsandstandardswouldbebeneficial.Thisshouldbedonein ordertobeabletochangethestandardsinordertobemorehelpfulforthe users.Iprimarilythinkoftheinclusionofactivationinuniformcorrosiontesting ofstainlesssteelsandtouserelevantformofloadinginenvironmentalassisted crackingexperiments. 10. Acknowledgments IwouldliketothankmyformalsupervisorProfessorChristoferLeygrafandmy supervisorMr.PasiKangas.AtABSandvikMaterialsTechnology’sR&Dthere manywhichhashelpedmeduringtheworkandIwouldliketothankthemall.I cannotmentionall,butIwouldespeciallymentionDocentGoucaiChai. IamverygratefullyfortheencouragementforstartingmyPhDstudiesfrom DocentThomasThorvaldsson,theformerR&DmanageratABSandvikMaterials Technologyaswellastheencouragementtofinalisethethesisfromthecurrent R&DmanagerProfessorOlleWijk. IacknowledgetheassistancefromDr.PingLiuwithATEMexperiments,Ms. SorinaCiureawithEBSDmeasurements,Dr.SabinaRonnetegforconstantload HISCexperiments,Mr.DanielHögströmwithconstantstrainHISCexperiments andMr.UlfModinandMr.ChristerJohanssonforimagesinfigure1. IamalsogratefulforthesupportandhelpfrommywifeMalinandrelatives. TheworkhasbeencarriedoutatABSandvikMaterialsTechnology’sR&Dandthe supportfromthecompanyisgratefullyacknowledged.Thethesisispublished withthepermissionofABSandvikMaterialsTechnology.Theubendtesting programinthisworkwascarriedoutwithafinancialgrantfromtheEuropean CoalandSteelCommunityundercontractno7210PR046. 11. References 1. KochG.H.,BrongersM.P.H.,ThompsonN.G.,VirmaniP.Y.,PayerJ.H., CorrosioncostsandpreventivestrategiesintheUnitedStates, PublicationNoFHWARD01156,NACEInternational,Houston,2002 2. NORSOKWorkshopAgreementMWA01Rev.1,Designguidelineto avoidhydrogeninducedstresscrackinginsubseaduplexstainless steels,StandardNorway,Lysaker,2005 3. DilionC.P,PollockW.I.,MaterialsSelectorforHazardousChemicals, Vol.3:Hydrochloricacid,HydrogenChlorideandChlorine,Materials TechnologyInstituteoftheChemicalProcessIndustries,St.Louis, 1999,pp.1721 4. FrancisR.,ByrneG.,WarburtonG.R.,ExperienceswithZeron100 superduplexstainlesssteelintheprocessindustries,StainlessSteel World99,KCIPublishingB.V.,Zupthen,1999,pp.613624

34 5. SandvikSteelCorrosionHandbookStainlessSteels,ABSandvikSteel,, Sandviken,1994,p.11 6. OlsenS.,HesjevikS.M.,HydrogenembrittlementfromCPon supermartensiticstainlesssteelsrecommendationsfornew qualificationmethods,Corrosion2004,NACEInternational,Houston, 2004,paperno.05496 7. WoolinP.,MurphyW.,StainlessSteelWorld,Vol.13,2001,p.48 8. WoollinP.,GregoriA.,Avoidinghydrogenembrittlementstresscracking ofFerriticausteniticstainlesssteelsundercathodicprotection,23rd InternationalConferenceonOffshoreMechanicsandArcticEngineering, ASMEInternational,NewYork,2004,paperno.OMEA200451203 9. RonnetegS.,JuhlinA.,KivisakkU.,HydrogenEmbrittlementofDuplex StainlessSteelsTestingofDifferentProductFormsatLow Temperature,Corrosion2007,NACEInternational,Houston,2007, paperno.07498 10. JohnsenR.,NyhusB.,WästbergB.,LauvstadG.Ö.,NewImproved MethodforHISCTestingofStainlessSteelsunderCathodicProtection, NACEInternational,Houston,2007,paperno.07496 11. HaukasEideO.,HugaasB.andHeierE.,EffectofPlasticDeformation onHydrogenInducedCracking(HISC)inDuplexStainlessSteel,NACE Corrosion2007,NACEInternational,Houston,2007,paperno.07494 12. LövstadG.Ö,NyhusB.,HjortC.G.,BjurströmM.,ImprovedResistance towardsHydrogenInducedStressCracking(HISC)ofHotIsostatically Pressed(HIP)DuplexStainlessSteelsUnderCathodicProtection, Corrosion2007,NACEInternational,Houston,2007,paperno.07497 13. RecommendedpracticeDNVRPF112,DesignofDuplexStainlessSteel SubseaEquipmentExposedtoCathodicProtection,DetNorskeVeritas, Hövik,2008 14. NACEMR0175ISO15156part13,Petroleumandnaturalgas industriesMaterialsforuseinH2Scontainingenvironmentsinoiland gasproductionNACEInternational,Houston,2001 15. WegreliusL.,FrankenlindF.,OlefjordI.,JournalofElectrochemical Society,Vol.146,No4,1999,pp.13971406 16. OlssonC.OA.,LandoltD.,ElectrochemicalActa,vol.48,no.9,2003, pp.10931104 17. Standardtestmethodsforpittingandcrevicecorrosionofstainless steelsandrelatedalloysbyuseofferricchloridesolution,ASTM StandardG4803,ASTMInternational,WestConshohoken,2003 18. SandvikSteelCorrosionHandbook,ABSandvikSteel,Sandviken,1999 19. DahlL.,Korrosionsproblemvidrökgasrening,Korrosionsproblemvid rökgaskondensering,paperE,SwedishCorrosionInstitute,Stockholm, 1993 20. DewpointCorrosion,Ed:HolmesD.R.,EllisHorwoodPublishers, Chichester1985 21. WebberD.K.,HardwickS.J,LoosW.O.,BhadhaP.M., Microcontanmination,Vol.1990,pp.3540 22. KaneR.D.,StressCorrosionCrackinginCorrosionEngineering Handbook,EdSchweitzerP.,MarcelDecker,NewYork,1996,pp.607 622 23. Enghag.P.,EncyclopediaoftheelementsTechnicalDataHistory HistoryProcessingApplications,WileyVCHVerlagGmbH&Co, Weinheim,2004,pp.219225

35 24. PerngT.P.,WuJ.K.,MaterialsLetter,Vol.57,2003,pp.34373438 25. OlssonP.,DelblancBauerA.,ErikssonH.,DuplexStainlessSteels97, KCIPublishingB.V.,Zupthen,1997,pp.607618 26. JargeliusR.,CunGanF.,Anisotropyofhydrogenembrittlementin SS2377duplexstainlesssteelplate,ReportIM2611,SwedishInstitute forMetalsResearch,Stockholm,1990 27. CunCanF.,JargeliusR.,Theeffectofinsitucathodichydrogen chargingonthemechanicalpropertiesofduplexstainlesssteels,Report IM2610,SwedishInstituteforMetalsResearch,Stockholm,1990 28. ZakroczymskiT.,GlowackaA.,SwiatnickiW.,CorrosionScience,Vol. 47,2005,pp.14031414 29. KumarP.,BalasubramaniamR,JournalofAlloysandCompunds,Vol. 255,1976,pp.130134. 30. RoychowdhuryS.,KainV.,PrasadR.C.,Corrosion,Vol.63,2007,pp. 442449 31. NottenG.,CorrosionEngineeringGudie,KCIPublishingB.V.,Zupthen, 2008 32. HuangY.,ZhuY.,CorrosionScience,Vol.47,No.5,pp.15451554 33. HuijbregthsW.M.M.,LeferinkR.G.I.,AntiCorrosionMethodsand Materials,Vol.51,No.3,2004,pp.173188 34. OmuraT.,CorrosionEngineering,Vol.58.,No.4,2009,pp.151166 35. CassagneT.,BusschaertF.,Areviewonhydrogenembrittlementof duplexstainlesssteels,Corrosion2005,NACEInternational,Houston, 2005,paperno.05098 36. HavnT.,Areviewofpreviousworkinthefieldofhydrogen embrittlement,corrosionfatiguestresscorrosioncrackingand hydrogeninsteel,Eurocorr,NetherlandsCorrosionCenter,2006 37. NagumoM.,CorrosionEngineering,Vol.57.,No.7,2008,pp.373408 38. NACEMR01032007,StandardMaterialRequirementsMaterials ResistanttoSulfideStressCrackinginCorrosivePetroleumRefining Environments,NACEInternational,Houston,2007 39. OltraR.,BouillotC.,MagninT.,Localizedhydrogencrackinginthe austeniticphaseofaduplexstainlesssteel,ScirptaMaterialia,Vol.35, 1996,pp.11011105 40. OldenV.,FEmodellingofhydrogeninducedstresscrackingin25%Cr duplexstainlesssteel,PhDThsis,NTNU,Trondheim,2008 41. OldenV.,ThaulowC.,JohnsenR.,ÖstbyE.,ScriptaMateriala,Vol.57, 2007,pp.615618 42. OldenV.,ÖstbyE.,BerstadT.,ThaulowC.,JohnsenR.,Engineering FractureMechanics,Vol.75,2008,pp.23332351 43. BjörnstedtPÅ.,BergquistA.,IversenA.,AlfonssonE.,Influenceof someexperimentalparametersonuniformcorrosionratesmeasured forhighalloyedsteels,StainlessSteelWorld99,KCIPublishingB.V., Zupthen,1999,p.421 44. DMV25.7N,Datasheet,DMWStainless 45. Ferralium255SD50,LangleyAlloys,StokeonTrent,2001 46. KivisäkkU.,DelblancA.,Generalcorrosionofduplexstainlesssteelin Acids–Theinfluenceoftestmethodontheisocorrosioncruves, InternationalCorrosionCongress,ICC,Spain,2000 47. FrancisR.,BryneG.,Zeron100superduplexstainlesssteel–an advancedalloyforindustrialapplications,BeijingInternationalDuplex StainlessSteelConference,2003,p.135

36 48. PracticeforLaboratoryImmersionCorrosionTestingofMetals,ASTM StandardG3177(1999),ASTMInternational,WestConshohoken, 1999 49. CorrosionofmetalandalloysGeneralPrinciplesforCorrosionTesting, SSISO11845,SIS,Stockholm,1998 50. RennerM.H.,MichalskiVollmerD.,Corrosionbehaviourofalloy33in concentratedsulphuricacid,StainlessSteelWorld99,KCIPublishing B.V.,Zupthen,1999,p.62 51. Standardreferencetestmethodformakingpotentiostaticand potentiodynamicanodicpolarizationmeasurements,ASTMStandardG 594,ASTMInternational,WestConshohoken,1999 52. Standardreferencetestmethodformakingpotentiostaticand potentiodynamicanodicpolarizationmeasurements,ASTMStandardG 594,ASTMInternational,WestConshohoken,1999 53. Standardpracticeforcalculationofcorrosionratesandrelated informationformelectrochemicalmeasurements,ASTMStandardG 10289,ASTMInternational,WestConshohoken,1999 54. FattahalhosseiniA.,GolozarM.A.,SattchiA.,RaeissiK.,Corrosion Science,Vol.52,2010,pp.205209 55. KishJ.R.,IvesM.B.,RoddaJ.R.,CorrosionScience,Vol.45,2003,pp. 15711594 56. Li.Y.,IvesM.B.,Coley.K.S.,RoddaJ.R.,CorrosionScience,Vol.46, 2004,pp.19691979 57. KishJ.R.,IvesM.B.,RoddaJ.R.,Corrosion,Vol.60.,2004,pp.532 537 58. Li.Y.,IvesM.B.,Coley.K.S.,CorrosionScience,Vol.48,2005,pp. 15601507 59. MatsuhashiR.,SatoE.,AbeS.,AboH.,CorrosionEngineering,Vol.39, 1990,pp.89100 60. NakaharaM.,TakahashiJ.,NakatamiM.,CorrosionEngineering,Vol. 51,2002,pp.133140 61. HuangC.A.,ChangY.Z.,ChenS.C.,CorrosionScience,Vol.46,2004, pp.15011513 62. HermesA.A.,MoradM.S.,CorrosionScience,Vol.50,2007,pp.2710 2717 63. PotgieterJ.H.,OlubambiP.A.,CornishL.,MachioC.N.,ElSayedSherif M.,CorrosionScience,Vol.50.,2008,pp.25722579 64. ShankerRaoV.,SinghalL.K.,JournalofMaterialsScience,Vol.44, 2009,pp.23272333 65. PopicJ.P.,DrazicD.M.,CorrosionScience,Vol.49,2004,pp.4877 4891 66. SedriksA.J.,Corrosion,Vol.42,1986,pp.376389 67. MasamuraK.,NishimuraT.,CorrosionEngineering,Vol.37,No.9, 1988,pp.483490 68. KimJ.S.,KimK.Y.,Theeffectoftungstensubstitutiononthepassive filmpropertyof25Cr7Niduplexstainlesssteel,3Europeanstainless steelcongress,StainlessSteel’99,AssociazoneItalianadiMetallurgia, Milano,1999,pp.179188 69. KimS.T.,ParkY.S.,Corrosion,Vol.63,2007,pp.114126 70. GarfiasMesiasL.F.,SykesJ.M.,TuckC.D.S.,TheinfluenceifCuonthe pittingcorrosionofduplexstainlesssteelUNSS32550,NACECorrosion’ 96,NACEInternational,Houston,1996,paperno.417

37 71. RennerM.W.,MetallicMaterialsforConcentratedSulfuricAcidService, Corrosion2001,NACEInternational,Houston,2001,Paperno.01342 72. GoldschmidtB.,NordlingM.,Materialvalvidrökgaskondensering, ReportM4202,Värmeforsk,Stockholm,2003 73. SollenbergH.,ErfarenhetervidUppsalaEnergiAB,Korrosionsproblem vidrökgaskondensering,paperT,SwedishCorrosionInstitute, Stockholm,1993 74. SlaimanQ.J.M.,NassouriH.J.,CorrosionofCrudeOilFractionator OverheadCondenserscausedbyAmmoniumChloride,Journalof petrochemicalresearch,Vol.4,No.2,pp139151,1985 75. HindinB.,AgrawaalA.K.,MaterialsPerformanceforResidentialHigh EfficiencyCondensingFurnaces,ASTMSTP970,Ed.Francis.E.,Lee T.S.,ASTM,Philadelphia,1988,pp.274286 76. KochG.H.,BeaversJ.A.,Materialstestinginsimulatedfluegas desulurizationductenvironments,Finalreportresearchproject18711, BattelleColumbusLaboratories,Columbus,1982 77. MaiyaP.S.,Corrosionstudiesonconstructionmaterialsforfluegas desulfurisaztionsystems,ReportANL/FE8212,AgronneNational Laboratory,Argonne,1982 78. RothP.,Corrosionresistantspecialsteelsforfluegasdesulphurisation plants,WerktoffeundKorrosion,Vol.43,pp.275279,1992 79. SugaharaK.,TakizawaY.,Developmentofanewcorrosionresistant NiCrMoTaalloywithimprovedresistancetosulfurdewpoint corrosion,NACECorrosion´96,NACEInternational,paperno.413, 1996 80. GrossmanG.K.,RockelM.B.,Useofalloymaterialsunderdewpoint corrosionconditionsinwasteincineration,Metal,Vol.45,pp.891894, 1991 81. WallénB,BerqvistA.,NordströmJ.,Corrosiontestinginthefluegas cleaningandcondensationsystemsinSwedishwasteincineration plants,AcomNo196,AvestaSheiffleidAB,Avesta,1996 82. LinderM.,GunberR.,KivisäkkU.,PeultierJ.,BergquistA.,BeckersB., PetterssonR.,FlygJ.,Stainlesssteelsforwetmunicipalincineration plantsandcombustionplants,TechnicalsteelresearchreportEUR 22082EN,Europeancommisson,Brussels,2006 83. HuijbregthsW.M.M.,LeferinkR.G.I.,AntiCorrosionMethodsand Materials,Vol.51,2004,pp.173188 84. SSISO75391,Corrosionofmetalandalloys–StressCorrosion Cracking–Part1:Generalguidanceoftestingprocedures,SIS, Stockholm,1993 85. StandardTestMethodforEvaluatingStressCorrosionCrackingof StainlessAlloyswithDifferentNickelContentinBoilingAcidified SodiumChlorideSolution,ASTMStandardG12300,ASTM International,WestConshohoken,2000 86. PracticeforEvaluatingStressCorrosionCrackingResistanceofMetal andAlloysinaBoilingMagnesiumChlorideSolution,ASTMStandardG 3694(2000),ASTMInternational,WestConshohoken,2000 87. LaboratoryTestingofMetalsforResistancetoSpecificFormsof EnvironmentalCrackinginH2SEnvironments,NACEStandardTM0177 96,NACEInternational,Houston,1996

38 88. TresederR.S.,DegmanT.F.,CorrosionTestingofIronandNickel BasedAlloys,TheMaterialsTechnologyInstituteoftheChemical ProcessindustriesInc.,St.Louis,1995,page39 89. StandardpracticefordetermingtheSusceptibilityofStainlessSteels andRelatedNickelChromiumIronAlloystoStressCorrosionCracking inPolythionicAcids,ASTMStandardG3598,ASTMInternational,1998 90. PracticeforMakingandUsingUBendStressCorrosionTest Specimens,ASTMStandardG3097,ASTMInternational,West Conshohoken,1997 91. DrugliJ.M.,RongeT.,Korrosionsegenskaper,materialvalgog bruksområderforrustfriestålognikkellegeringer,SINTEF Materialteknologi,Trondheim,1997 92. BerhandssonS.,SCCresistanceofstainlesssteels–laboratorydatavs. practicalexperience,NACECORROSION/84,NACE,1984,paper266 93. Experiencesurveystresscorrosioncrackingofausteniticstainless steelsinwater,MTIpublicationNo.27,TheMaterialsTechnology InstituteoftheChemicalProcessindustriesInc.,St.Louis,1987 94. FestenM..M,ErlingsJ.E.,FranszR.A.,Lowtemperaturecreepof austeniticferriticandfullyausteniticstainlesssteelsandaferritic pipelinesteel,FirstInternationalConferenceonEnvironmentInduced CrackingofMetals,NACEInternational,Houston,1998,pp.229232 95. LinderJ.,PetterssonR.,OscarssonA.,Lowtemperaturecreepin austeniticandduplexstainlesssteels,ReportNo.IM3322,Insititutet förmetallforskning,Stockholm,2001 96. Corrosionresistantalloysfortheoilandgasproduction:guidanceon generalrequirementsandtestmethodsforH2Sservice2ndedition, EFCPublicationno.17,ManeyPublishing,London,2002,p.26 97. Guidelinesformaterialsselectionandcorrosioncontrolforsubseaoil andgasproductionequipment,2ndedition,EEMUAPublicationNo 194:2004,EEMUA,London,2004,pp.108111 98. MoraesF.D.,BastianF.L.,PoncianoJ.A.,CorrosionScience,Vol.47, 2005,pp.13251335 99. OldenV.,ThaulowC.,JohnsenR.,Materials&Design,Vol.29,2008, pp.19341948 100. TurnbullA.,LembachBeylegaardE.HuchingsR.R.,Hydrogentransport inSAF2205andSAF2507duplexstainlesssteels,InTurnbullA.(Ed.), HydrogenTransportandCrackinginMetals,TheInstituteofMaterials, Cambridge,pp.268279 101. OldenV.,ThaulowC.,JohnsenR.,ÖstbyE.,ToroddB.,Engineering FractureMechanics,Vol.76,2009,pp.827844 102. LillbackaR.,ChaiG.,EkhM.,LiuP.,JohnsonE.,RunessonK.,Acta Materialia,Vol.55,2007,pp.53595368

39