Solomon Islands Ranger Skills Guide English Pdf 2.59 MB

Total Page:16

File Type:pdf, Size:1020Kb

Solomon Islands Ranger Skills Guide English Pdf 2.59 MB Solomon Islands Ranger Skills Guide Indigenous Rangers Skill Guide Caring Lukaftarem pipol, ples wetem laef blo animol For People Place & Patrick G. Pikacha, Tyrone Lavery, David Boseto, Wildlife Myknee Sirikolo, Douglas Pikacha, Jr, Edgar Pollard Solomon Islands Ranger Skills Guide A reference guide and training manual for Protected Area Rangers in Solomon Islands by Patrick Pikacha, Tyrone Lavery, David Boseto, Myknee Sirikolo, Douglas Pikacha, Jr., Edgar Pollard Photographs by Patrick Pikacha, Tyrone Lavery, David Boseto & Edgar Pollard ISBN 978-1-74272-167-5 University of Queensland. 2016 Design layout Patrick G. Pikacha Table of Contents Foreword.........................................................................5 In memory of Acknowledgment.............................................................9 Chapter 2. Conservation, A Solomon Islands Context....15 Chapter 3. Survey Methods and Monitoring...................16 Chapter 4. Forest and Vegetation Survey Methods...........20 Chapter 5. Reptile Survey Methods.................................26 Chapter 6. Frog Survey Methods.....................................32 Chapter 7. Bird Survey Methods.....................................40 Tia Masolo Chapter 8. Mammal Survey Methods..............................50 Chapter 9. Freshwater Fish Survey Methods....................60 Deputy Director Environment & Conservation Division Ministry of Environment, Climate Change, Disaster Management & Meteorology 4 Ranger Skills Guide Solomon Islands 5 include the Forest & Timber Utilization Act 1969 and the Fisheries Management Act 2015 that can empower communities to manage their resources and monitor activities on the ground. As a first ranger training guide, it will help the developers gauge which specific trainings are required for the future, when and where training can be delivered particularly at Foreword community level. By initiating and developing this program with the collaboration of the Solomon Islands National University, non-government organizations, universities, and Greetings Everyone! partner organizations, and most importantly with input from rangers and community Solomon Islands hosts some of the World’s natural and unique ecosystems and species. organizations; it can become a regular and essential aspect of community development and Our coral reefs, our seas, our rivers and streams teem with abundance and diversity. Our planning. It is imperative to involve communities and rangers at the outset, as this embeds peoples depend on nature and its resources for food, income and livelihood. With rich ownership of the training program and may encourage them to further contribute to the traditional and cultural knowledge, our peoples’ wisdom in conservation of nature is not to training. be understated. Solomon Islands communities heavily depend on the wealth and health of This document also provides useful reference materials to upgrade specific ranger our natural resources for our social and economic wellbeing. proficiencies, and general information on how to apply them in the field. Furthermore, it Today, however, we face increasing economic and social challenges – growing population, does not demand nor set out skills competencies required to receive a University quality rising food and fuel costs, etc – which place considerable pressure on our natural resources. qualification. For conservationists, environmental managers and practitioners, this is a major challenge To Rangers and Practitioners, I hope you find this resource guide useful, easy-to-use to and daunting responsibility – to protect the environment. Teamwork, knowledge, passion, enable you, your stakeholders and your target audience improve the ranger field of practice experience and skills are paramount for the field of practice. For this, I am pleased to offer and know-how. you this Ranger Skills Guide. Finally, I wish to commend the outstanding expertise and commitment by the University It is a challenge to create a Ranger Training Program and to bring rangers together to of Queensland/CEPF Project team, in collaboration with Solomon Islands Community work as part of a united team, whilst at the same time building personal skill sets. Conservation Partnership and Ecological Solutions Solomon Islands, in framing this first- The development of this Guide is a first step in this process. The Guide focuses on ever Ranger Skills Guide. My Division looks forward to working and learning from you on training rangers in methods of data collection and monitoring skills. It is also essential in the outcomes of the training program. Keep up the excellent work! providing skills and information for them to think outside-the-box in terms of fundraising Let us all work together to ensure “A safe, sustainable and resilient environment for Solomon and attaining sustainability through alternative economic incentives. This Ranger Training Islands” Tangio tumas!! Resource kit is intended to assist coordinators, practitioners and other groups or individuals ………………………….. who support grassroots environmental organizations interested in identifying ranger groups Joe Horokou training needs. Director – Environment & Conservation Division Developing skills is fundamental, as it empowers community organizations to efficiently Ministry of Environment, Climate Change, Disaster deliver outcomes that achieve a conservation and sustainable management goal. In delivering Management & Meteorology this training, there will be also an overview of the Protected Areas Act 2010, by which communities can legally protect and manage land and seascapes. This will assist rangers better understand the processes required and assist community organizations develop legal mechanisms for protection and management of the environment. Other legal frameworks 6 Ranger Skills Guide Solomon Islands 7 Acknowledgment The concept of an Ranger Skills Guide course was introduced in 2015, as a way of bringing together rangers from across the Solomon Islands to a central venue, so that a course delivering specific knowledge and skill sets could be offered. The University of Queensland, in collaboration with the Solomon Islands Government Ministry of Environment, Conservation, Meteorology and Disaster Management (MECMDM), Solomon Islands National University (SINU), Solomon Islands Community Conservation Partnership (SICCP), and Ecological Solutions - Solomon Islands (ESSI) developed the training program, which was then field-test in October 2015, and in subsequent trainings in 2016. The funding provided to set up this training program was made possible by the Critical Ecosystem Partnership Fund, and Wildlife Conservation Society (Pacific Programs). For a long time, community organizations, research institutions, and the national government had been working independent of each other, in terms of collecting data, analyzing data and reporting findings to communities and to the government. Comparing findings across a sweep of community sites and local conservation organizations have been problematic due to the lack of data collection standardization, and communication between organizations. The initial training participants come from an informal network of CEPF investment sites, and other enthusiastic community organizations throughout the Solomon Islands. This also comprises the inclusion of women rangers, who are integral to village verve, and who are also major users of natural resources in the community. We thank the partner organizations, and rangers, and technical people who contributed towards this skills guide. Stevens ground dove captured during a biodiversity assessment of forest and protected areas. The samples let us know whether the species is in decline or stable. It also shows us what habitats these species are found, whether primary forests, or secondary forest, or both. In which case this species is a forest generalist. 8 Ranger Skills Guide Solomon Islands 9 Chapter 1. Introduction This guide is intended to help rangers or protected area managers in the Solomon Islands, to foster individual or group skill sets that will help them in their work. Various skills will aid rangers accomplish particular environmental outcomes, and produce improved and cohesive services that will benefit communities and the environment. The park (or protected area) rangers have many roles, and this depends on the areas that they manage, whether on a small island, an area on a large island, or at sea. In general a ranger’s responsibility can include a couple of things; conservation and protection of land or seascape and wildlife, managing recreation or guided tours for tourism operations, or assisting organizations by providing data that will help them plan and manage operations, including fundraising. The Role of a Ranger The most commonly known role of a ranger is to support the conservation of a species or a specified area. This includes: • Safeguarding the protected area, enhancing and managing it’s natural and cultural resources • Recognizing weeds and pest animals, and removing or controlling those that threatening the native plants and wildlife. • Assisting visiting scientists and researchers that conduct biodiversity or social surveys related to the management of the park or protected area • Promoting and maintaining cultural assets such as tabu sites, old village sites that are of cultural importance • Advancing co-operative relationships with local indigenous communities, as social A ranger from Tetepare giving a talk to a visiting investment and associations can
Recommended publications
  • Identifing Priority Ecoregions for Rodent Conservation at the Genus Level
    Oryx Vol 35 No 2 April 2001 Short Communication Identifing priority ecoregions for rodent conservation at the genus level Giovanni Amori and Spartaco Gippoliti Abstract Rodents account for 40 per cent of living high number of genera) 'threat-spots' for rodent conser- mammal species. Nevertheless, despite an increased vation. A few regions, mainly drylands, are singled out interest in biodiversity conservation and their high as important areas for rodent conservation but are not species richness, Rodentia are often neglected by con- generally recognized in global biodiversity assessments. servationists. We attempt for the first time a world-wide These are the remaining forests of Togo, extreme evaluation of rodent conservation priorities at the genus 'western Sahel', the Turanian and Mongolian-Manchu- level. Given the low popularity of the order, we rian steppes and the desert of the Horn of Africa. considered it desirable to discuss identified priorities Resources for conservation must be allocated first to within the framework of established biodiversity prior- recognized threat spots and to those restricted-range ity areas of the world. Two families and 62 genera are genera which may depend on species-specific strategies recognized as threatened. Our analyses highlight the for their survival. Philippines, New Guinea, Sulawesi, the Caribbean, China temperate forests and the Atlantic Forest of Keywords Biodiversity, conservation priorities, south-eastern Brazil as the most important (for their rodents, threatened genera, world ecoregions. Conservation efforts for rodents must be included in Introduction the general framework of mammalian diversity conser- With 26-32 recognized extant families and more than vation, focusing on a biodiversity/area approach.
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • A Reassessment of the Type Locality of the Giant Rat Solomys Salamonis (Rodentia : Muridae) from the Solomon Islands
    CSIRO PUBLISHING Australian Mammalogy, 2014, 36,99–102 Research Note http://dx.doi.org/10.1071/AM13019 A reassessment of the type locality of the giant rat Solomys salamonis (Rodentia : Muridae) from the Solomon Islands Tyrone H. Lavery School of Agriculture and Food Sciences, The University of Queensland, Gatton, Qld 4343, Australia. Email: [email protected] Abstract. The Solomon Islands support a diverse and highly endemic rodent fauna. Most species are poorly known and rarely encountered. Solomys salamonis is one such endemic species known only from the holotype collected in 1881. The type locality for the species has been repeatedly confused in the literature, and this uncertainty has hampered attempts to evaluate the status of the species. I reassessed the type locality based on review of the published literature and records and archives of the Australian Museum, Sydney. My review indicates that the type locality is Ugi Island, not Florida Island as widely reported in the recent literature. A subsequent, preliminary survey on Ugi Island failed to confirm the presence of the species; however, the occurrence of some original forest on Ugi Island encourages further detailed surveys to determine whether S. salamonis is still extant. Additional keywords: extinct, Florida, Ugi Island. Received 14 June 2013, accepted 18 November 2013, published online 19 December 2013 Introduction bullae, a comparatively broad and straight-sided interorbital, and The Solomon Islands are one of the world’s centres of endemism palatal foramina constricted in their anterior third. Ramsay (1883) for insular rodents (Amori et al. 2008). The archipelago is a stated that the skin was light ashy-grey with long black guard double chain of north-west to south-east trending islands located hairs and small ears.
    [Show full text]
  • Rodents Bibliography
    Calaby’s Rodent Literature Abbott, I.J. (1974). Natural history of Curtis Island, Bass Strait. 5. Birds, with some notes on mammal trapping. Papers and Proceedings of the Royal Society of Tasmania 107: 171–74. General; Rodents Abbott, I. (1978). Seabird islands No. 56 Michaelmas Island, King George Sound, Western Australia. Corella 2: 26–27. (Records rabbit and Rattus fuscipes). General; Rodents; Lagomorphs Abbott, I. (1981). Seabird Islands No. 106 Mondrain Island, Archipelago of the Recherche, Western Australia. Corella 5: 60–61. (Records bush-rat and rock-wallaby). General; Rodents Abbott, I. and Watson, J.R. (1978). The soils, flora, vegetation and vertebrate fauna of Chatham Island, Western Australia. Journal of the Royal Society of Western Australia 60: 65–70. (Only mammal is Rattus fuscipes). General; Rodents Adams, D.B. (1980). Motivational systems of agonistic behaviour in muroid rodents: a comparative review and neural model. Aggressive Behavior 6: 295–346. Rodents Ahern, L.D., Brown, P.R., Robertson, P. and Seebeck, J.H. (1985). Application of a taxon priority system to some Victorian vertebrate fauna. Fisheries and Wildlife Service, Victoria, Arthur Rylah Institute of Environmental Research Technical Report No. 32: 1–48. General; Marsupials; Bats; Rodents; Whales; Land Carnivores Aitken, P. (1968). Observations on Notomys fuscus (Wood Jones) (Muridae-Pseudomyinae) with notes on a new synonym. South Australian Naturalist 43: 37–45. Rodents; Aitken, P.F. (1969). The mammals of the Flinders Ranges. Pp. 255–356 in Corbett, D.W.P. (ed.) The natural history of the Flinders Ranges. Libraries Board of South Australia : Adelaide. (Gives descriptions and notes on the echidna, marsupials, murids, and bats recorded for the Flinders Ranges; also deals with the introduced mammals, including the dingo).
    [Show full text]
  • A Revision of the Genus Uromys Peters, 1867 (Muridae: Mammalia) with Descriptions of Two New Species
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Groves, C. P., and Tim F. Flannery, 1994. A revision of the genus Uromys Peters, 1867 (Muridae: Mammalia) with descriptions of two new species. Records of the Australian Museum 46(2): 145–169. [28 July 1994]. doi:10.3853/j.0067-1975.46.1994.12 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1994) Vo1.46: 145-169. ISSN 0067-1975 145 A Revision of the Genus Uromys Peters, 1867 (Muridae: Mammalia) with Descriptions of Two New Species c.P. GROVES! & T.F. FLANNERy2 I Australian National University, PO Box 4, Canberra, ACT, 2601, Australia 2 Australian Museum, PO Box A285, Sydney South NSW, 2000, Australia ABSTRACT. Uromys Peters, 1867 is re-defined so that it is monophyletic. The clade includes nine species placed in two monophyletic subgenera: U. (Cyromys) includes the species poreulus, rex and imperator; U. (Uromys) includes the species anak, neobritannieus, hadrourus, eaudimaeulatus, emmae n.sp. and boeadii n.sp. Uromys (Cyromys) includes more plesiomorphic species, which are all restricted to Guadalcanal in the Solomon Islands. Species of U. (Uromys) are more derived, as in their possession of greatly simplified molars, and in having the number of interdental ridges of the soft palate greatly multiplied. The genus is widespread in Melanesia and northern Australia. Three distinct subspecies of U.
    [Show full text]
  • WILDLIFE in a CHANGING WORLD an Analysis of the 2008 IUCN Red List of Threatened Species™
    WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ Edited by Jean-Christophe Vié, Craig Hilton-Taylor and Simon N. Stuart coberta.indd 1 07/07/2009 9:02:47 WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ first_pages.indd I 13/07/2009 11:27:01 first_pages.indd II 13/07/2009 11:27:07 WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ Edited by Jean-Christophe Vié, Craig Hilton-Taylor and Simon N. Stuart first_pages.indd III 13/07/2009 11:27:07 The designation of geographical entities in this book, and the presentation of the material, do not imply the expressions of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily refl ect those of IUCN. This publication has been made possible in part by funding from the French Ministry of Foreign and European Affairs. Published by: IUCN, Gland, Switzerland Red List logo: © 2008 Copyright: © 2009 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Vié, J.-C., Hilton-Taylor, C.
    [Show full text]
  • Niche Differentiation, Rarity, and Commonness in the Sympatric Australian White-Tailed Rats: Uromys Caudimaculatus and Uromys Hadrourus
    This file is part of the following reference: Moore, Leslie Allan (2010) Niche differentiation, rarity, and commonness in the sympatric Australian white-tailed rats: Uromys caudimaculatus and Uromys hadrourus. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/17434 CHAPTER 1. INTRODUCTION AND AIMS OF STUDY Animal communities are typically comprised of a few common species and many rare ones (Krebs 2005). But why are some animal species rare and others common, and are there identifiable ecological and behavioural characteristics that predispose some animal species to rarity and others to commonness? These are increasingly important questions as continuing habitat destruction and over-exploitation significantly decrease populations of what were common species and threaten the existence of many rare species (Gaston and Fuller 2008). Rare species are generally considered more at risk because of the inability of small population sizes to recover from stochastic events or habitat loss (Hutchinson 1959; Caughley and Sinclair 1994; Davies et al. 2004). While many rare species are not currently at risk of imminent extinction, threatened species are typically rare. Consequently, conservation at the species level is primarily focussed on rare species with common species, often in the same taxonomic group, generally receiving less attention (Gaston and Fuller 2008). However, species that are currently common and widespread are also under pressure from human population growth and the predicted effects of climate change (Gaston and Fuller 2008). Moreover, studies have shown commonness in animal and plant populations is itself rare and that there are fewer common species than rare ones (Hutchinson 1957, 1959; Gaston and Fuller 2008).
    [Show full text]
  • Rodentia) from South-Western Europe Since the Latest Middle Miocene to the Mio-Pliocene Boundary (MN 7/8–MN13)
    Ecomorphological characterization of murines and non-arvicoline cricetids (Rodentia) from south-western Europe since the latest Middle Miocene to the Mio-Pliocene boundary (MN 7/8–MN13) Ana R. Gomez Cano1,2, Yuri Kimura3, Fernando Blanco4, Iris Menéndez4,5, María A. Álvarez-Sierra4,5 and Manuel Hernández Fernández4,5 1 Institut Català de Paleontologia Miquel Crusafont, Universitat Autónoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain 2 Transmitting Science, Barcelona, Spain 3 Department of Geology and Paleontology, National Museum of Nature and Science, Tokyo, Japan 4 Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain 5 Departamento de Cambio Medioambiental, Instituto de Geociencias (UCM, CSIC), Madrid, Spain ABSTRACT Rodents are the most speciose group of mammals and display a great ecological diversity. Despite the greater amount of ecomorphological information compiled for extant rodent species, studies usually lack of morphological data on dentition, which has led to difficulty in directly utilizing existing ecomorphological data of extant rodents for paleoecological reconstruction because teeth are the most common or often the only micromammal fossils. Here, we infer the environmental ranges of extinct rodent genera by extracting habitat information from extant relatives and linking it to extinct taxa based on the phenogram of the cluster analysis, in which variables are derived from the principal component analysis on outline shape of the upper first molars. This phenotypic ``bracketing'' approach is particularly useful in the study of the fossil record Submitted 22 February 2017 of small mammals, which is mostly represented by isolated teeth. As a case study, Accepted 13 July 2017 we utilize extinct genera of murines and non-arvicoline cricetids, ranging from the Published 25 September 2017 Iberoccitanian latest middle Miocene to the Mio-Pliocene boundary, and compare our Corresponding author results thoroughly with previous paleoecological reconstructions inferred by different Ana R.
    [Show full text]
  • Oceanic Islands of Wallacea As a Source for Dispersal and Diversification of Murine Rodents
    Received: 1 April 2019 | Revised: 14 August 2019 | Accepted: 28 August 2019 DOI: 10.1111/jbi.13720 RESEARCH PAPER Oceanic islands of Wallacea as a source for dispersal and diversification of murine rodents Kevin C. Rowe1,2 | Anang S. Achmadi3 | Pierre‐Henri Fabre4 | John J. Schenk5 | Scott J. Steppan6 | Jacob A. Esselstyn7,8 1Sciences Department, Museums Victoria, Melbourne, Vic., Australia Abstract 2School of BioSciences, The Univeristy of Aim: To determine the historical dynamics of colonization and whether the relative Melbourne, Parkvillie, Vic., Australia timing of colonization predicts diversification rate in the species‐rich, murine rodent 3Museum Zoologicum Bogoriense, Research Center For Biology, Indonesian Institute of communities of Indo‐Australia. Sciences (LIPI), Cibinong, Indonesia Location: Indo‐Australian Archipelago including the Sunda shelf of continental Asia, 4 Institut des Sciences de Sahul shelf of continental Australia, the Philippines and Wallacea of Indonesia. l'Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Taxon: Order Rodentia, Family Muridae. Montpellier, Montpellier, France Methods: We used a fossil‐calibrated molecular phylogeny and Bayesian biogeo‐ 5Department of Environmental and Plant graphical modelling to infer the frequency and temporal sequence of biogeographical Biology, Ohio University, Athens, OH, USA 6Department of Biological Science, Florida transitions among Sunda, Sahul, the Philippines and Wallacea. We estimated diver‐ State University, Tallahassee, FL, USA sification rates for each colonizing lineage using a method‐of‐moments estimator of 7 Museum of Natural Science, Louisiana State net diversification and Bayesian mixture model estimates of diversification rate shifts. University, Baton Rouge, LA, USA 8Department of Biological Results: We identified 17 biogeographical transitions, including nine originating from Sciences, Louisiana State University, Baton Sunda, seven originating from Sulawesi and broader Wallacea and one originating Rouge, LA, USA from Sahul.
    [Show full text]
  • Appendices Image on Reverse: Australian Old Endemic Rodent, Leggadina Lakedownensis
    Appendices Image on reverse: Australian Old Endemic rodent, Leggadina lakedownensis. Modified image from Strahan, 2002 Appendix 1: Nucleotide sequence of exon 6, intron 6 and exon 7 of Zp3 from New Guinean and Australasian murine rodents. Exons are indicated in bold. Polymorphic sites are highlighted in grey.
    [Show full text]
  • Diversity, Distribution, and Conservation of Endemic Island Rodents
    ARTICLE IN PRESS Quaternary International 182 (2008) 6–15 Diversity, distribution, and conservation of endemic island rodents Giovanni Amoria,Ã, Spartaco Gippolitib, Kristofer M. Helgenc,d aInstitute of Ecosystem Studies, CNR-Institute of Ecosystem Studies, Via A. Borelli 50, 00161 Rome, Italy bConservation Unit, Pistoia Zoological Garden, Italy cDivision of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA dDepartment of Biological Sciences, Division of Environmental and Life Sciences, Macquarie University, Sydney, New South Wales 2109, Australia Available online 8 June 2007 Abstract Rodents on islands are usually thought of by conservationists mainly in reference to invasive pest species, which have wrought considerable ecological damage on islands around the globe. However, almost one in five of the world’s nearly 2300 rodent species is an island endemic, and insular rodents suffer from high rates of extinction and endangerment. Rates of Quaternary extinction and current threat are especially high in the West Indies and the species-rich archipelagos of Southeast Asia. Rodent endemism reaches its most striking levels on large or remote oceanic islands, such as Madagascar, the Caribbean, the Ryukyu Islands, the oceanic Philippines, Sulawesi, the Galapagos, and the Solomon Islands, as well as on very large land-bridge islands, especially New Guinea. While conservation efforts in the past and present have focused mainly on charismatic mammals (such as birds and large mammals), efforts specifically targeted toward less conspicuous animals (such as insular rodents) may be necessary to stem large numbers of extinctions in the near future. r 2007 Elsevier Ltd and INQUA. All rights reserved.
    [Show full text]
  • HANDBOOK of the MAMMALS of the WORLD Families of Volume 1: Carnivores
    HANDBOOK OF THE MAMMALS OF THE WORLD Families of Volume 1: Carnivores Family Family English Subfamily Group name Species Genera Scientific name name number African Palm NANDINIIDAE 1 species Nandinia Civet Neofelis Pantherinae Big Cats 7 species Panthera Pardofelis Catopuma FELIDAE Cats Leptailurus Profelis Caracal Leopardus Felinae Small Cats 30 species Lynx Acinonyx Puma Otocolobus Prionailurus Felis PRIONODONTIDAE Linsangs 2 species Prionodon Viverricula Viverrinae Terrestrial Civets 6 species Civettictis Viverra Poiana Genettinae Genets and Oyans 17 species Genetta Civets, Genets VIVERRIDAE and Oyans Arctogalidia Macrogalidia Palm Civets and Paradoxurinae 7 species Arctictis Binturong Paguma Paradoxurus Cynogale Palm Civets and Chrotogale Hemigalinae 4 species Otter Civet Hemigalus Diplogale Family Family English Subfamily Group name Species Genera Scientific name name number Protelinae Aardwolf 1 species Proteles HYAENIDAE Hyenas Crocuta Bone-cracking Hyaeninae 3 species Hyaena Hyenas Parahyaena Atilax Xenogale Herpestes Cynictis Solitary Herpestinae 23 species Galerella Mongooses Ichneumia Paracynictis HERPESTIDAE Mongooses Bdeogale Rhynchogale Suricata Crossarchus Social Helogale Mungotinae 11 species Mongooses Dologale Liberiictis Mungos Civet-like Cryptoprocta Euplerinae Madagascar 3 species Eupleres Carnivores Fossa Madagascar EUPLERIDAE Carnivores Galidia Mongoose-like Galidictis Galidinae Madagascar 5 species Mungotictis Carnivores Salanoia Canis Cuon Lycaon Chrysocyon Speothos Cerdocyon CANIDAE Dogs 35 species Atelocynus Pseudalopex
    [Show full text]