Phylogenetic Relationships of the Genus Lachenalia with Other Related

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Relationships of the Genus Lachenalia with Other Related PPhhyyllooggeenneettiicc rreellaattiioonnsshhiippss ooff tthhee ggeennuuss LLaacchheennaalliiaa wwiitthh ootthheerr rreellaatteedd lliilliiaacceeoouuss ttaaxxaa PPaauullaa SSppiieess Dissertation submitted in fulfilment of the requirements for the degree Magister Scientiae in the Faculty of Natural and Agricultural Sciences (Department of Plant Sciences: Genetics) at the University of the Free State. 1188 MMaayy 2200044 Supervisor: Prof. J.J. Spies Co-supervisor: Mrs. R. Kleynhans TABLE OF CONTENTS List of abbreviations iii Acknowledgements iv 1. INTRODUCTION 1 1.1 Historical overview 2 1.2 A general overview of genus Lachenalia 5 1.3 Systematics 9 1.3.1 Cytotaxonomy 10 1.3.2 Molecular systematics 12 1.3.3 Phylogenetics/cladistics 22 1.4 The phylogenetic position of Lachenalia 25 1.4.1 The order Asparagales 27 1.4.2 The family Hyacinthaceae 29 1.4.3 The genus Lachenalia 30 1.4.3.1 Cytotaxonomy in the Hyacinthaceae 35 1.4.3.2 Molecular studies in the Hyacinthaceae 37 1.5 Aim of this study 38 2. MATERIALS AND METHODS 39 2.1 Materials 40 2.2 Methods 51 2.2.1 Mitosis 51 2.2.2 Meiosis 52 2.2.3 DNA extraction 52 2.2.4 Gel electrophoresis 53 2.2.5 Taguchi optimisation 54 2.2.6 DNA concentration 55 2.2.7 Sequencing using the polymerase chain reaction (PCR) technique 55 2.2.7.1 trn L-F amplification 55 2.2.7.2 trn L-F sequencing 58 2.2.7.2.1 ABI kit 58 2.2.7.2.2 Amersham pharmacia biotech kit 60 2.2.8 Data analysis 60 2.2.8.1 Editing and alignment 60 2.2.8.2 Phylogenetic analysis using PAUP 61 i 3. RESULTS 63 3.1 Cytogenetics 64 3.2 Molecular systematics 66 4. DISCUSSION 78 4.1 Introduction 79 4.2 Cytogenetics 79 4.2.1 Chr omosome numbers in this study 80 4.2.2 Polyploidy in the genus Lachenalia 83 4.2.3 Effect of environmental factors on the morphology and chromosomes 87 4.2.4 Basic chromosome numbers in Lachenalia 87 4.2.5 Hybridisation and speciation in the genus Lachenalia 91 4.2.6 Chromosome evolution 92 4.3 Molecular systematics 92 4.3.1 Sequences and cladogram of Lachenalia 93 4.3.2 Phylogeny within Lachenalia and its closest relatives 94 4.3.2.1 The “L. juncifolia ” group 99 4.3.2.2 The “Lachenalia 1” group 99 4.3.2.3 The “Lachenalia 2” and “L. zebrina” groups 100 4.3.3 The evolution of the basic chromosome numbers in Lachenalia 101 4.3.4 Comparison between the different subgeneric classifications 102 4.3.5 The phylogenetic position of Lachenalia among the liliaceous plants 104 5. CONCLUSIONS 108 6. SUMMARY 113 7. SAMEVATTING 116 8. REFERENCES 119 APPENDICES 155 A Medicinal uses of some liliaceous plants in South Africa 156 B Aligned sequences of the trnL-F region in Lachen alia 158 C Aligned sequences of the trnL-F region in the liliacious taxa 188 D Published chromosome numbers of taxa used in this study 239 ii LIST OF ABBREVIATIONS ml Micro Litre ABI Applied Biosystems ARC Agricultural Research Council bp Base pair CI Consistency index cpDNA Chloroplast DNA CTAB Hexadecyltrimethyl Ammonium B romide DMSO Dimethyl Sulfoxide DNA Deoxyribonucleic Acid dNTP Deoxynucleotide Triphosphate EDTA Ethylene Diamintetra Acetic Acid Ethanol Ethyl-alcohol GISH Genomic in situ hybridisation INDELS Insertions/Deletions g Gravitational Force IGS Inter Genic Spacer K2S2O5 Potassium B isulfide N Normal n Gametic Chromosome Number m/v Mass per Volume mg/ml Miligram per Millilitre mM Milimolar NBI National Botanical Institute ng Nanogram NJ Neighbour Joining OD Optical Density PAUP Phylogenetic Analysis Using Parsimony PCR Polymerase Chain Reaction pmol/ml Picomole per Microlitre RC Rescaled Consistency Index rDNA ribosomal DNA RI Retention Index RNA Ribonucleic Acid SNL Signal to Noise TAE Tris; Acetic Acid; EDTA Taq. Pol. Thermus aquaticus Super Therm DNA Polymerase TBR tree-bisection-reconnection TRIS 2-amino-2-(hydroxymethyl ) -1,3-propanediol trnL Transfer RNA gene for Leucine trnF Transfer RNA gene for Phenylalanine UV Ultra violet V Volts v/v Volume per Volume x Basic Chromosome Number iii AAcckknnoowwlleeddggeemmeennttss I want to give my sincere appreciation to my supervisor (J.J. Spies) and co- supervisor (R. Kleynhans), for their very precious time, patience and guidance throughout the duration of this study and especially during the troublesome completion stage. Without the suppliers of material and financial assistance, this study would not have been possible. Thank you to the following people for providing the material used in this study: Graham Duncan at the National Botanical Institute [NBI – Kirstenbosch], Johann du Preez (Dept. of Plant Sciences: Botany, UFS) and Robert Archer at NBI [Pretoria ] for the molecular material; Riana Kleynhans at the Agricultural Research Council [ARC – Roodeplaat] for the cytogenetic material. The University of the Free State , Labolia and the National Research Foundation are thanked for their financial support. I would like to thank my colleagues and co-students at the University of the Free State for their support and advice, and especially to Susan who shared her chromosome number results to provide a more complete overview for this study. I would also want to give a warm personal word of thanks to my family and in- laws for their support, patience and encouragement. A special word of thank to my mother for her time and long travels to baby-sit during this study. Thank you, Johan, for having to deal with the sometimes difficult moments during the study and for the support and encouragement. I appreciate your love and understanding. And to my lovely children, Elné and Herman, who are too young to understand why their mother does not always have the time for them. Thank you to the Lord and the Universe who guided me into this direction and gave me the opportunity to complete this study. iv 2 CChhaapptteerr OONNEE IInnttrroodduuccttiioonn 1.1 HISTORICAL OVERVIEW Flowering bulbous plants were, throughout the centuries, important to mankind. Not only were they admired for their beauty, but were also associated with mythology, medicine, religion and served as a food supply in certain countries. The Madonna lily was associated with religious art in the Middle A ges (Eliovson, 1967) and were also painted on the walls of Cretan palaces over 3 000 years ago. The Bedouins used Urginea maritima (L.) Baker, the sea onion, to distinguish their boundaries. The courts even used the presence of deep-rooting bulbs as proof of ownership (Eliovson, 1967). Bulbous plants has been used in medicine and folklore since earliest times. Bulbs have been used in medicine as early as 1554 B.C. as mentioned in the Papyrus Ebers of the Middle Empire of Egypt (Barnhoorn, 1995). One such bulb is that of Urginea maritima used as a cure for dropsy (Speta, 1980). Since then, numerous medicinal components have been extracted from bulbous plants for the cure of different ailments (Appendix A). Some plants are economically valuable for their medic inal value. Approximately 14% of the plants used for traditional medicine consist of bulbs (Mander, 1997). Primitive tribes use bulbous plants widely for herbal medicines and even witchcraft (Eliovson, 1967). An annual amount of R270 million or 20 000 tons of plant material are harvested, processed and sold as traditional medicine (Gosling, 1998). Flower essences are used for healing. It works on a similar principle as homeopathic medicine and was introduced in the 1930’s by Dr. Edward Bach. It can be used internally as drops under the tongue or in water and externally in massage oils or on the pulse points on the body. These essences are used throughout South Africa as well as in Europe, the United States, Canada, Japan and central and South America. The essences are produced on the slopes of Table Mountain where the wealth of the floral kingdom of the Cape, are exploited (Ball, 1999). Many of these essences are produce from bulbous species and species with fleshy roots, such as Agapanthus L'Her., Aloe L., Zantedeschia Spreng. (Arum Lily or calla lily), Belladona lily, Bluebell, Ornithogalum L., Clivia Lindl., Narcissus L., Freesia Ecklon ex Klatt, Hyacinthus L., Ixia L., Watsonia P.Mill., Oxalis L., Kniphofia Moench., Scilla L., Tiger lily, Tulip Magnolia, Water Lily, Tulbaghia L. (wild garlic) and Dietes grandiflora N.E.Br. (wild Iris). The medicinal value of many bulbous plants is reduced by their poisonous nature. Clivia seeds are poisonous, as well as the rootstocks of Gloriosa L., Ornithogalum thyrsoides Jacq., Haemanthus L., Boophone Herb., Vallota R.A.Salisbury ex Herbert, Homeria Vent. and Moraea 2 Mill. (Eliovson, 1967). In southern Africa, several other species are poisonous to grazing animals (Speta, 1998). The Bushmen used a bow and poisonous arrow to hunt down their food. Boophone disticha (L.f.) Herb. or ‘gifbol’ is one of the many plants used to produce poison (Porter, 1997). In addition to its medicinal value bulbs have over the ages been regarded as something sacred and wonderful (Eliovson, 1967). Not only to look at, but also for daily practical uses. A great number of countries have grown bulbs for decorating, from before the Christian era. These include Greece, Egypt, India, China and Korea. Some of the first references to bulbs occur in the Bible where, in the Songs of Solomon, the Rose of Sharon refers to a tulip (Tulipa sharonensis), the rose among the thorns is a Lily (Lilium candidum L.) and “the desert blooming like a rose” refers to Narcissus tazetta L. Lilies were associated with purity and became the flower of the Virgin Mary. The countryside of the ancient Greeks flourished with flowering bulbs in the spring.
Recommended publications
  • Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
    Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea
    [Show full text]
  • (35-22) 1392( Generic Endemism in South-West Asia: an Overview
    رﺳﺘﻨﻴﻬﺎ Rostaniha 14(1): 22-35 (2013) (1392 22) 35- :( 14)1 Generic endemism in South-West Asia: an overview Received: 26.02.2013 / Accepted: 09.03.2013 F. Sales : Associate Prof., Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3001-456 Coimbra, Portugal ([email protected]) I.C. Hedge: Honorary Associate, Royal Botanic Garden Edinburgh, EH3 5LR, Scotland, U.K. ([email protected]) Abstract A provisional list of all the endemic vascular plant genera in SW Asia is presented. The area, here defined to include Turkey, the Caucasus, N Iraq, Iran, Afghanistan and adjacent parts of Pakistan and Central Asia, has 161 genera restricted to it. By far, the greatest numbers of the endemic genera are in Apiaceae , Brassicaceae and Asteraceae ; many are morphologically isolated and occur at random throughout the area. Non-endemic genera with relevant distributions in the area are also discussed, several having a major concentration in Central Asia/Afghanistan and radiate westwards from there reaching a limit in SE Turkey/N Iraq. Also in these and other non-endemic genera, there are many species confined to the west (Turkey) or the east (Afghanistan) but very few are distributed throughout. The paper attempts to provide a framework for future research. It draws attention to the need for a more precise terminology in discussing phytochoria and questions the validity of many currently widely used terms including Irano-Turanian. Keywords: Central Asia, endemism, Irano-Turanian, phytogeography Introduction “L’Orient” of Boissier covered: (1) Greece and its islands and European Turkey; (2) Crimea, Transcaucasus and Caucasus; (3) Egypt to the first cataracts and the Arabian Peninsula till the line of the tropics; (4) Asia Minor, Armenia, Syria and Mesopotamia; (5) Persia, Afghanistan and Baluchistan and (6) S Turkestan to the line cutting the Aral Sea in two.
    [Show full text]
  • BURIED TREASURE Summer 2019 Rannveig Wallis, Llwyn Ifan, Porthyrhyd, Carmarthen, UK
    BURIED TREASURE Summer 2019 Rannveig Wallis, Llwyn Ifan, Porthyrhyd, Carmarthen, UK. SA32 8BP Email: [email protected] I am still trying unsuccessfully to retire from this enterprise. In order to reduce work, I am sowing fewer seeds and concentrating on selling excess stock which has been repotted in the current year. Some are therefore in quite small numbers. I hope that you find something of interest and order early to avoid any disappointments. Please note that my autumn seed list is included below. This means that seed is fresher and you can sow it earlier. Terms of Business: I can accept payment by either: • Cheque made out to "R Wallis" (n.b. Please do not fill in the amount but add the words “not to exceed £xx” ACROSS THE TOP); • PayPal, please include your email address with the order and wait for an invoice after I dispatch your order; • In cash (Sterling, Euro or US dollar are accepted, in this case I advise using registered mail). Please note that I can only accept orders placed before the end of August. Parcels will be dispatched at the beginning of September. If you are going to be away please let me know so that I can coordinate dispatch. I will not cash your cheque until your order is dispatched. If ordering by email, and following up by post, please ensure that you tick the box on the order form to avoid duplication. Acis autumnalis var pulchella A Moroccan version of this excellent early autumn flowerer. It is quite distinct in the fact that the pedicels and bracts are green rather than maroon as in the type variety.
    [Show full text]
  • Tracing History
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 911 Tracing History Phylogenetic, Taxonomic, and Biogeographic Research in the Colchicum Family BY ANNIKA VINNERSTEN ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2003 Dissertation presented at Uppsala University to be publicly examined in Lindahlsalen, EBC, Uppsala, Friday, December 12, 2003 at 10:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Abstract Vinnersten, A. 2003. Tracing History. Phylogenetic, Taxonomic and Biogeographic Research in the Colchicum Family. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 911. 33 pp. Uppsala. ISBN 91-554-5814-9 This thesis concerns the history and the intrafamilial delimitations of the plant family Colchicaceae. A phylogeny of 73 taxa representing all genera of Colchicaceae, except the monotypic Kuntheria, is presented. The molecular analysis based on three plastid regions—the rps16 intron, the atpB- rbcL intergenic spacer, and the trnL-F region—reveal the intrafamilial classification to be in need of revision. The two tribes Iphigenieae and Uvularieae are demonstrated to be paraphyletic. The well-known genus Colchicum is shown to be nested within Androcymbium, Onixotis constitutes a grade between Neodregea and Wurmbea, and Gloriosa is intermixed with species of Littonia. Two new tribes are described, Burchardieae and Tripladenieae, and the two tribes Colchiceae and Uvularieae are emended, leaving four tribes in the family. At generic level new combinations are made in Wurmbea and Gloriosa in order to render them monophyletic. The genus Androcymbium is paraphyletic in relation to Colchicum and the latter genus is therefore expanded.
    [Show full text]
  • Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
    Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld.
    [Show full text]
  • New Jan16.2011
    Fall 2011 Mail Order Catalog Cistus Nursery 22711 NW Gillihan Road Sauvie Island, OR 97231 503.621.2233 phone 503.621.9657 fax order by phone 9 - 5 pst, visit 10am - 5pm, fax, mail, or email: [email protected] 24-7-365 www.cistus.com Fall 2011 Mail Order Catalog 2 USDA zone: 3 Chamaebatiaria millefolium fernbush Super rugged rose family member native on the east side of the Cascades, but quite happy on the west side or anywhere with good drainage and lots of sun. This Semi-evergreen shrub, to 4 ft tall x 3 ft wide, has fine, fern-textured foliage that is very aromatic, the true smell of the desert. August brings fragrant white flowers followed by umber seed heads that add texture. Massively water efficient! Frost hardy in USDA zone 3. These from seed collected in Lake County, Oregon. $14 Rosaceae Hosta 'Hyuga Urajiro' Stunning and unique hosta not only in the leaf shape -- long, narrow, and pointed at the tips -- but also in the blue-green color with yellow streaks! And that's just on top. The undersides are silvery white, worth a bended knee to see. This kikutti selection from Japan is a collector's dream. Small, under 12", and showing off white flowers on nearly horizontal, branched stems in early to mid summer. Light to full shade with regular moisture. Frost hardy to -40F, USDA zone 3. $16 Liliaceae / Asparagaceae Hydrangea arborescens 'Ryan Gainey' Smooth hydrangea A charming mophead hydrangea with rounded clumps of abundant, small white flowers from June and continuing to nearly September especially if deadheaded.
    [Show full text]
  • Eutaxia Microphylla Common Eutaxia Dillwynia Hispida Red Parrot-Pea Peas FABACEAE: FABOIDEAE Peas FABACEAE: FABOIDEAE LEGUMINOSAE LEGUMINOSAE
    TABLE OF CONTENTS Foreword iv printng informaton Acknowledgements vi Introducton 2 Using the Book 3 Scope 4 Focus Area Reserve Locatons 5 Ground Dwellers 7 Creepers And Twiners 129 Small Shrubs 143 Medium Shrubs 179 Large Shrubs 218 Trees 238 Water Lovers 257 Grasses 273 Appendix A 290 Appendix B 293 Resources 300 Glossary 301 Index 303 ii iii Ground Dwellers Ground dwellers usually have a non-woody stem with most of the plant at ground level They sometmes have a die back period over summer or are annuals They are usually less than 1 metre high, provide habitat and play an important role in preventng soil erosion Goodenia blackiana, Kennedia prostrata, Glossodia major, Scaevola albida, Arthropodium strictum, Gonocarpus tetragynus Caesia calliantha 4 5 Bulbine bulbosa Bulbine-lily Tricoryne elator Yellow Rush-lily Asphodel Family ASPHODELACEAE Day Lily Family HEMEROCALLIDACEAE LILIACEAE LILIACEAE bul-BINE (bul-BEE-nee) bul-bohs-uh Meaning: Bulbine – bulb, bulbosa – bulbous triek-uhr-IEN-ee ee-LAHT-ee-or Meaning: Tricoryne – three, club shaped, elator – taller General descripton A small perennial lily with smooth bright-green leaves and General descripton Ofen inconspicuous, this erect branched plant has fne, yellow fowers wiry stems and bears small clusters of yellow star-like fowers at the tps Some Specifc features Plants regenerate annually from a tuber to form a tall longish leaves present at the base of the plant and up the stem stem from a base of feshy bright-green Specifc features Six petaled fowers are usually more than 1 cm across,
    [Show full text]
  • (Tribe Haemantheae) Inferred from Plastid and Nuclear Non-Coding DNA Sequences
    Plant Syst. Evol. 244: 141–155 (2004) DOI 10.1007/s00606-003-0085-z Generic relationships among the baccate-fruited Amaryllidaceae (tribe Haemantheae) inferred from plastid and nuclear non-coding DNA sequences A. W. Meerow1, 2 and J. R. Clayton1 1 USDA-ARS-SHRS, National Germplasm Repository, Miami, Florida, USA 2 Fairchild Tropical Garden, Miami, Florida, USA Received October 22, 2002; accepted September 3, 2003 Published online: February 12, 2004 Ó Springer-Verlag 2004 Abstract. Using sequences from the plastid trnL-F Key words: Amaryllidaceae, Haemantheae, geo- region and nrDNA ITS, we investigated the phy- phytes, South Africa, monocotyledons, DNA, logeny of the fleshy-fruited African tribe Haeman- phylogenetics, systematics. theae of the Amaryllidaceae across 19 species representing all genera of the tribe. ITS and a Baccate fruits have evolved only once in the combined matrix produce the most resolute and Amaryllidaceae (Meerow et al. 1999), and well-supported tree with parsimony analysis. Two solely in Africa, but the genera possessing main clades are resolved, one comprising the them have not always been recognized as a monophyletic rhizomatous genera Clivia and Cryp- monophyletic group. Haemanthus L. and tostephanus, and a larger clade that unites Haemanthus and Scadoxus as sister genera to an Gethyllis L. were the first two genera of the Apodolirion/Gethyllis subclade. One of four group to be described (Linneaus 1753). Her- included Gethyllis species, G. lanuginosa, resolves bert (1837) placed Haemanthus (including as sister to Apodolirion with ITS. Relationships Scadoxus Raf.) and Clivia Lindl. in the tribe among the Clivia species are not in agreement with Amaryllidiformes, while Gethyllis was classi- a previous published phylogeny.
    [Show full text]
  • TELOPEA Publication Date: 13 October 1983 Til
    Volume 2(4): 425–452 TELOPEA Publication Date: 13 October 1983 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19834408 Journal of Plant Systematics 6 DOPII(liPi Tmst plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Telopea 2(4): 425-452, Fig. 1 (1983) 425 CURRENT ANATOMICAL RESEARCH IN LILIACEAE, AMARYLLIDACEAE AND IRIDACEAE* D.F. CUTLER AND MARY GREGORY (Accepted for publication 20.9.1982) ABSTRACT Cutler, D.F. and Gregory, Mary (Jodrell(Jodrel/ Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, England) 1983. Current anatomical research in Liliaceae, Amaryllidaceae and Iridaceae. Telopea 2(4): 425-452, Fig.1-An annotated bibliography is presented covering literature over the period 1968 to date. Recent research is described and areas of future work are discussed. INTRODUCTION In this article, the literature for the past twelve or so years is recorded on the anatomy of Liliaceae, AmarylIidaceae and Iridaceae and the smaller, related families, Alliaceae, Haemodoraceae, Hypoxidaceae, Ruscaceae, Smilacaceae and Trilliaceae. Subjects covered range from embryology, vegetative and floral anatomy to seed anatomy. A format is used in which references are arranged alphabetically, numbered and annotated, so that the reader can rapidly obtain an idea of the range and contents of papers on subjects of particular interest to him. The main research trends have been identified, classified, and check lists compiled for the major headings. Current systematic anatomy on the 'Anatomy of the Monocotyledons' series is reported. Comment is made on areas of research which might prove to be of future significance.
    [Show full text]
  • TAXON:Schizobasis Intricata SCORE:1.0 RATING:Low Risk
    TAXON: Schizobasis intricata SCORE: 1.0 RATING: Low Risk Taxon: Schizobasis intricata Family: Hyacinthaceae Common Name(s): climbing onion Synonym(s): Anthericum intricatum Baker losbol Drimia intricata (Baker) J.C.Manning Schizobasis& Goldblatt dinteri K.Krause Schizobasis macowanii Baker Assessor: Chuck Chimera Status: Assessor Approved End Date: 26 Jun 2015 WRA Score: 1.0 Designation: L Rating: Low Risk Keywords: Geophyte, Bulb-forming, Self-fertile, Seed Producing, Atelechorous Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 ? outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y =
    [Show full text]
  • Aloe Scientific Primer International Aloe Science Council
    The International Aloe Science Council Presents an Aloe Scientific Primer International Aloe Science Council Commonly Traded Aloe Species The plant Aloe spp. has long been utilized in a variety of ways throughout history, which has been well documented elsewhere and need not be recounted in detail here, particularly as the purpose of this document is to discuss current and commonly traded aloe species. Aloe, in its various species, can presently and in the recent past be found in use as a decorative element in homes and gardens, in the creation of pharmaceuticals, in wound care products such as burn ointment, sunburn protectant and similar applications, in cosmetics, and as a food, dietary supplements and other health and nutrition related items. Recently, various species of the plant have even been used to weave into clothing and in mattresses. Those species of Aloe commonly used in commerce today can be divided into three primary categories: those used primarily in the production of crude drugs, those used primarily for decorative purposes, and those used in health, nutritional and related products. For reference purposes, this paper will outline the primary species and their uses, but will focus on the species most widely used in commerce for health, nutritional, cosmetic and supplement products, such as aloe vera. Components of aloe vera currently used in commerce The Aloe plant, and in particular aloe vera, has three distinct raw material components that are processed and found in manufactured goods: leaf juice; inner leaf juice; and aloe latex. A great deal of confusion regarding the terminology of this botanical and its components has been identified, mostly because of a lack of clear definitions, marketing, and other factors.
    [Show full text]
  • A Molecular Phylogeny of the Genus Scadoxus Raf. (Amaryllidaceae)
    Fireball lilies of Africa: a molecular phylogeny of the genus Scadoxus Raf. (Amaryllidaceae) Kine Hals Bødker Master of Science Thesis Natural History Museum, University of Oslo Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo June 15th 2020 © Kine Hals Bødker 2020 Fireball lilies of Africa: a molecular phylogeny of the genus Scadoxus Raf. (Amaryllidaceae) Kine Hals Bødker http://www.duo.uio.no/ Print: Reprosentralen, University of Oslo II Illustration: Aasne Aarhus, 1976. III IV Acknowledgements It has been an exciting journey working with the most beautiful plant genus of this world. There are many people I would like to thank for being a part of this journey. First and foremost, I want to thank my wonderful supervisors for all their help and support over the past two years. I could not have had a better team. My main supervisor, Charlotte - for your enthusiasm, knowledge, support and the most amazing field trips. In the 1970’s, before I was even born, Inger (and colleagues) worked with Scadoxus, which set the stage for this master thesis. I would like to thank Inger for being my additional supervisor and ultimately giving me this opportunity, and helping me understand more of Scadoxus morphology. Anne – for helping with the analyses, and especially for the incredibly helpful checking of spelling, grammatical errors and also helping me discourse my occasionally overwhelming results. Prof. Clemence Zimudzi and Dr. Tesfaye Awas – for fantastic field work experiences in Zimbabwe and Ethiopia, respectively. I would also like to thank the little kids in Ethiopia who helped us find Scadoxus specimens in places we never would have found without them.
    [Show full text]