(Tribe Haemantheae) Inferred from Plastid and Nuclear Non-Coding DNA Sequences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea -
Haemanthus Canaliculatus | Plantz Africa About:Reader?Url=
Haemanthus canaliculatus | Plantz Africa about:reader?url=http://pza.sanbi.org/haemanthus-canaliculatus pza.sanbi.org Haemanthus canaliculatus | Plantz Africa Introduction In late summer or early autumn, after fires have swept through some of the swampy areas near the sea in the Hangklip area, you may be lucky enough to see the red paintbrushes of Haemanthus canaliculatus glowing brightly amongst the blackened remains of the vegetation. Description Description The bulbs are made up of a number of thick, fleshy, cream-coloured, overlapping, truncated bulb scales, arranged like a fan, with perennial fleshy roots. There are usually 2 (sometimes 1, 3 or 4) narrow smooth fleshy leaves up to 600 mm long, curved along 1 of 5 2016/12/14 03:51 PM Haemanthus canaliculatus | Plantz Africa about:reader?url=http://pza.sanbi.org/haemanthus-canaliculatus their length to form a channel. They are 5-27 mm wide, shiny green with reddish barred markings towards the base, especially on the lower surface. The smooth, thick, flattened, upright or curved flower stalks can be up to 200 mm long, 4-10 mm wide and are reddishpink to deep red, sometimes with deeper red spots especially near the base; 5-7 pointed, leathery bracts, called spathes, surround the 15-45 flowers clustered at the top of the stalk. The spathes and flowers are usually red but very occasionally may be pink. The flowers are topped with yellow anthers. The reddish berries are round and about 20 mm in diameter. Under natural conditions the flowering time is from February to March and the leaves usually appear after the flowers from May to December. -
Boophone Disticha
Micropropagation and pharmacological evaluation of Boophone disticha Lee Cheesman Submitted in fulfilment of the academic requirements for the degree of Doctor of Philosophy Research Centre for Plant Growth and Development School of Life Sciences University of KwaZulu-Natal, Pietermaritzburg April 2013 COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCES DECLARATION 1 – PLAGIARISM I, LEE CHEESMAN Student Number: 203502173 declare that: 1. The research contained in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other University. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This thesis does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the internet, unless specifically acknowledged, and the source being detailed in the thesis and in the reference section. Signed at………………………………....on the.....….. day of ……......……….2013 ______________________________ SIGNATURE i STUDENT DECLARATION Micropropagation and pharmacological evaluation of Boophone disticha I, LEE CHEESMAN Student Number: 203502173 declare that: 1. The research reported in this dissertation, except where otherwise indicated is the result of my own endeavours in the Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg. -
Mountains of the Moon
MOUNTAINS OF THE MOON Some names just resonate with mystery and one such place that does that for me is the Rwenzori or Mountains of the Moon, a spectacular equatorial range that straddles Uganda and the DRC. It has that ‘heart of Africa’ appeal, truly somewhere off the beaten path - and given the effort required to get there it’s no surprise so few tourists come here. Without doubt it is the domain of the serious trekker and climber, the trails penetrate dense mossy forests and climb steeply to breathless heights above the treeline, where the reward is some of the most remarkable alpine flora to be found anywhere. I undertook my own journey with a university friend. We walked first through sweaty sub-tropical forests where the striking orange tubes of Scadoxus cyrtanthiflorus stood out from the dense undergrowth. Heavy bamboo dominated above this and then it was into the subalpine zone where the otherworldly stuff began. Gorgeous broad corymbs of Helichrysum formosissimum appeared, with silvery phyllaries blushed pink - surely the ultimate everlasting daisy. Then we reached the alpine zone. Dendrosenecio adnivalis Interestingly, as with the Espletia of the Scadoxus cyrtanthiflorus northern Andes, the alpine equivalent here also belongs to Asteraceae. The dominant species in the Rwenzori (with similar species in other east African mountains) Dendrosenecio adnivalis, a magnificent plant that formed dense forests in places, clothing whole mountainsides. The most obvious difference between the two genera is Dendrosenecio branch and Espletia do not. I remember seeing a specimen of a Dendrosenecio at Kew, sitting beneath a strong sunlamp. -
Clivia Miniata Colour Mutations and Their Breeding
Clivia Miniata Colour Mutations and their Breeding I don’t profess to be geneticists or to know very much about the way in which colour is inherited in Clivia, but by taking a very simple approach of line breeding and a lot of trial and error I have managed to produce true breeding lines of Clivia. This knowledge will be valuable to any breeder wishing to perpetuate a particular colour mutation. In the best interest of Clivia I have decided to write this article and attempt to share what I have learnt with others. It is my opinion that for a particular colour mutation to be inherited by sexual reproduction, a pathway has to occur i.e. the genes or other factors influencing the colour would have to line up. A simple way in which to view the chromosomes and the loci on which these chromosomes have mutated is by taking two rulers and placing them side by side, each representing different plants with similar colour mutations and only if both plants have mutated on the same point of the chromosomes (rulers) would the mutation be transferred to the off spring by sexual reproduction. Plants are relatively easy to line breed / inbreed because of the fact that they can be self- pollinated. Unfortunately, mechanisms are in place in plants that inhibit self-pollination and so more effort is required to perpetuate these colour mutations. The best-known colour mutation in Clivia is the yellow mutation occurring in Clivia miniata. Even here just because two plants are yellow doesn’t necessarily mean they have mutated at the same loci on the chromosome. -
– the 2020 Horticulture Guide –
– THE 2020 HORTICULTURE GUIDE – THE 2020 BULB & PLANT MART IS BEING HELD ONLINE ONLY AT WWW.GCHOUSTON.ORG THE DEADLINE FOR ORDERING YOUR FAVORITE BULBS AND SELECTED PLANTS IS OCTOBER 5, 2020 PICK UP YOUR ORDER OCTOBER 16-17 AT SILVER STREET STUDIOS AT SAWYER YARDS, 2000 EDWARDS STREET FRIDAY, OCTOBER 16, 2020 SATURDAY, OCTOBER 17, 2020 9:00am - 5:00pm 9:00am - 2:00pm The 2020 Horticulture Guide was generously underwritten by DEAR FELLOW GARDENERS, I am excited to welcome you to The Garden Club of Houston’s 78th Annual Bulb and Plant Mart. Although this year has thrown many obstacles our way, we feel that the “show must go on.” In response to the COVID-19 situation, this year will look a little different. For the safety of our members and our customers, this year will be an online pre-order only sale. Our mission stays the same: to support our community’s green spaces, and to educate our community in the areas of gardening, horticulture, conservation, and related topics. GCH members serve as volunteers, and our profits from the Bulb Mart are given back to WELCOME the community in support of our mission. In the last fifteen years, we have given back over $3.5 million in grants to the community! The Garden Club of Houston’s first Plant Sale was held in 1942, on the steps of The Museum of Fine Arts, Houston, with plants dug from members’ gardens. Plants propagated from our own members’ yards will be available again this year as well as plants and bulbs sourced from near and far that are unique, interesting, and well suited for area gardens. -
Scanning Electron Microscopy of the Leaf Epicuticular Waxes of the Genus Gethyllis L
Soulh Afnc.1n Journal 01 Bol811Y 2001 67 333-343 Copynghl €I NISC Ply LId Pnmed In South Alnca - All ngills leserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254- 5299 Scanning electron microscopy of the leaf epicuticular waxes of the genus Gethyllis L. (Amaryllidaceae) and prospects for a further subdivision C Weiglin Technische Universitat Berlin, Herbarium BTU, Sekr. FR I- I, Franklinstrasse 28-29, 0-10587 Berlin, Germany e-mail: [email protected] Recei ved 23 August 2000, accepled in revised form 19 January 2001 The leaf epicuticular wax ultrastructure of 32 species of ridged rodlets is conspicuous and is interpreted as the genus Gethyllis are for the first time investigated being convergent. In three species wax dimorphism was and discussed. Non-entire platelets were observed in discovered, six species show a somewhat rosette-like 12 species, entire platelets with transitions to granules orientation of non-entire or entire platelets and in four in seven species, membranous platelets in nine species a tendency to parallel orientation of non-entire species and smooth layers in eight species, Only or entire platelets was evident. It seems that Gethyllis, GethyJlis transkarooica is distinguished by its trans from its wax morphology, is highly diverse and versely ridged rodlets. The occurrence of transversely deserves further subdivision. Introduction The outer epidermal cell walls of nearly all land plants are gle species among larger taxa, cu ltivated plants , varieties covered by a cuticle cons isting mainly of cutin, an insoluble and mutants (Juniper 1960, Leigh and Matthews 1963, Hall lipid pOlyester of substituted aliphatic acids and long chain et al. -
Complete Chloroplast Genomes Shed Light on Phylogenetic
www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya. -
The Green Scene Brighten Winter with a Clivia Plant
Marion County Extension 210 N. Iowa St. Knoxville, IA 50138 641.842.2014 [email protected] February, 2019 Volume 17, Issue 2 The Green Scene Save a tree! Send your email address to [email protected] to receive this publication via e-mail. Brighten Winter with a Clivia Plant By Richard Jauon Flowers are one of the best antidotes to the icy winds of winter, and growing a houseplant that buds and blooms inside while all is dormant outside is particularly satisfying. This winter, as an alternative to the brightly blooming azaleas, chrysanthemums or traditional holiday plants, consider growing a clivia plant. What is a clivia? Clivia or kaffir lily (Clivia spp.) is a herbaceous flowering plant native to South Africa. Plants have long, arching, strap-like leaves (similar to an amaryllis) and produce dense clusters of trumpet-shaped flowers atop 18 to 24 inch stems. The flowers of Clivia minia- ta are typically orange with yellow eyes or centers. However, there are also several rare and expensive yellow-flowering cultivars. While clivias are not winter hardy in Iowa, they are excellent, low maintenance houseplants. How do I get a clivia to bloom? Clivias need a rest period of six to 12 weeks in fall and winter to initiate flower bud development. Temperatures dur- ing this time should be 40 to 55 degrees Fahrenheit. A guest bedroom, porch or a partially heated garage (temperatures must remain above 35 F) may be suitable plant locations. Water sparingly (about once a month). When flower stalks appear, move plants to a slightly warmer location and begin to water more frequently. -
Phylogeny of the American Amaryllidaceae Based on Nrdna ITS Sequences
Systematic Botany (2000), 25(4): pp. 708±726 q Copyright 2000 by the American Society of Plant Taxonomists Phylogeny of the American Amaryllidaceae based on nrDNA ITS sequences ALAN W. M EEROW USDA-ARS-SHRS, 13601 Old Cutler Road, Miami, FL 33158 and Fairchild Tropical Garden, 10901 Old Cutler Road, Miami, Florida 33158 CHARLES L. GUY and QIN-BAO LI University of Florida, Department of Environmental Horticulture, 1545 Fi®eld Hall, Gainesville, Florida 32611 SI-LIN YANG University of Florida, Fort Lauderdale Research and Education Center, 3205 College Avenue, Fort Lauderdale, Florida 33314 Communicating Editor: Kathleen A. Kron ABSTRACT. Analysis of three plastid DNA sequences for a broad sampling of Amaryllidaceae resolve the American genera of the Amaryllidaceae as a clade that is sister to the Eurasian genera of the family, but base substitution rates for these genes are too low to resolve much of the intergeneric relationships within the American clade. We obtained ITS rDNA sequences for 76 species of American Amaryllidaceae and analyzed the aligned matrix cladistically, both with and without gaps included, using two species of Pancratium as outgroup taxa. ITS resolves two moderately to strongly supported groups, an Andean tetraploid clade, and a primarily extra-Andean ``hippeastroid'' clade. Within the hippeastroid clade, the tribe Grif®neae is resolved as sister to the rest of Hippeastreae. The genera Rhodophiala and Zephyranthes are resolved as polyphyletic, but the possibility of reticulation within this clade argues against any re-arrangement of these genera without further investigation. Within the Andean subclade, Eustephieae resolves as sister to all other tribes; a distinct petiolate-leafed group is resolved, combining the tribe Eucharideae and the petiolate Stenomesseae; and a distinct Hymenocallideae is supported. -
Narcissus Pests
Bulletin 51 HMSO 13s Od [65p] net Narcissus Pests Ministry of Agriculture, Fisheries and Food MINISTRY OF AGRICULTURE, FISHERIES AND FOOD Narcissus Pests Bulletin 51 LONDON HER MAJESTY'S STATIONERY OFFICE 197o First published June 1932 Sixth edition 197o The Ministry does not accept responsibility for any of the private or trade advertisements included in this publication. SBN 11 240351 4 Foreword THE growers of Narcissus have been very fortunate in that the pests of this valuable crop have received specialist attention for nearly forty years. Names like W. E. H. Hodson and L. N. Staniland, both past authors of this Bulletin, rank high in the list of pioneer researchers on bulb pests in this country. They have been followed with no less enthusiasm by the con- tributors to this sixth edition which brings up-to-date our knowledge of the important pests of the crop and tested and practical methods of control. Although the present Bulletin mainly follows the pattern laid down by Mr. Hodson in 1932 many sections have been extensively rewritten. Mr. H. C. Woodville has dealt with narcissus flies as he did in 1958, and Mr. H. G. Morgan with detection of pests in the field, stem and other eelworms and their control. Mr. A. L. Winfield covered bulb scale mite and the general problem of hot-water treatment of bulbs, and chemical dips to control stem eelworm, and also contributed the notes on miscellaneous pests. Mr. P. Aitkenhead dealt with bulb mites. Mr. J. F. Southey provided the section dealing with eelworms as vectors of virus diseases of the crop. -
Mechanical Properties of Plant Underground Storage Organs and Implications for Dietary Models of Early Hominins Nathaniel J
Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences Summer 7-26-2008 Mechanical Properties of Plant Underground Storage Organs and Implications for Dietary Models of Early Hominins Nathaniel J. Dominy Erin R. Vogel Justin D. Yeakel Paul J. Constantino Biological Sciences, [email protected] Peter W. Lucas Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Biological and Physical Anthropology Commons, and the Paleontology Commons Recommended Citation Dominy NJ, Vogel ER, Yeakel JD, Constantino P, and Lucas PW. The mechanical properties of plant underground storage organs and implications for the adaptive radiation and resource partitioning of early hominins. Evolutionary Biology 35(3): 159-175. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Evol Biol (2008) 35:159–175 DOI 10.1007/s11692-008-9026-7 RESEARCH ARTICLE Mechanical Properties of Plant Underground Storage Organs and Implications for Dietary Models of Early Hominins Nathaniel J. Dominy Æ Erin R. Vogel Æ Justin D. Yeakel Æ Paul Constantino Æ Peter W. Lucas Received: 16 April 2008 / Accepted: 15 May 2008 / Published online: 26 July 2008 Ó Springer Science+Business Media, LLC 2008 Abstract The diet of early human ancestors has received 98 plant species from across sub-Saharan Africa. We found renewed theoretical interest since the discovery of elevated that rhizomes were the most resistant to deformation and d13C values in the enamel of Australopithecus africanus fracture, followed by tubers, corms, and bulbs.