The Role of Bpifa1 in Otitis Media

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Bpifa1 in Otitis Media THE ROLE OF BPIFA1 IN OTITIS MEDIA APOORVA MULAY A thesis submitted for the degree of Doctor of Philosophy (Ph.D.) September 2016 University of Sheffield Faculty of Medicine, Dentistry and Health Department of Infection, Immunity and Cardiovascular Disease Supervisors: Professor Colin Bingle Dr Lynne Bingle Professor Michael Cheeseman I Dedicated to my grandfather, Mr Vasant Mulay You are an inspiration and I miss you everyday! I ABSTRACT Otitis Media (OM) is the most common paediatric disease and a leading cause of conductive hearing impairment. This multifactorial disease shows significant involvement of innate immunity genes and epithelial abnormalities are also commonly implicated. BPIFA1, a member of BPI fold containing family of putative innate defence proteins, is one of the most abundant secretory proteins in the upper airways and SNPs in BPIFA1 have been associated with OM susceptibility. Recent studies suggest that BPIFA1 plays a pleiotropic host defense role. This thesis describes experiments aimed at investigating the role of BPIFA1 in protection of the middle ear and in the development of OM. Bpifa1-/- mice do not spontaneously develop OM and do not demonstrate increased nasopharyngeal carriage of the human otopathogen, NTHi. However, deletion of Bpifa1 in Junbo (Evi1Jbo/+) mice, an established model of chronic OM, leads to significant exacerbation of OM severity and ME mucosal thickness. This thesis also describes the development of a novel in vitro model of the murine middle ear epithelium. Using a combination of transcriptional and proteomic approaches, I demonstrate that the model closely mimics the native middle ear epithelium and differentiates into ciliated cells, goblet cells and secretory cells and also supports infection by NTHi. Attempts were made to recapitulate the OM phenotype in vitro using this culture system. Overall, the data from this thesis indicate that BPIFA1 is involved in maintaining homeostasis within the middle ear under steady state conditions through nonspecific defence of the middle ear mucosa. Loss of BPIFA1 in presence of infection or inflammation increases the sensitivity of the epithelium and leads to an exacerbated host defence response and excessive epithelial remodelling. Furthermore, the novel in vitro culture I system can be applied as an effective tool to study the interaction between the middle ear epithelium and various otopathogens. II ACKNOWLEDGEMENTS First and foremost, I would like to thank my supervisor, Professor Colin Bingle. I came to the UK 6 years ago as a Master’s student in Colin’s lab and he has always been extremely supportive and approachable. This thesis would not have been possible without his invaluable help, guidance and encouragement. Also a heartfelt thank you to Dr Lynne Bingle for her very helpful advice with planning experiments during this study and invaluable suggestions while drafting the paper. A special thank you to Dr Khondoker Akram for being an amazing teacher and guide throughout my PhD. I have learnt a lot about being a researcher from you! I would like to thank Professor Steve Brown for providing me with the opportunity to spend the first year of my PhD at MRC, Harwell and always making the taking the time to regularly meet and discuss my project. Thank you to Professor Michael Cheeseman for the support and scientific discussions throughout. I am grateful to Dr Derek Hood for always patiently tending to my microbiology doubts. I would like to thank the past and present members of the deafness group and especially Tom Purnell, Hayley Tyrer and Lauren Chessum for helping me settle into the PhD life initially and always making me feel welcome when I went back to Harwell for experiments. Special thanks to Dr Nanda Rodrigues and Dr Sneha Anand for all their advice in helping me figure out the logistics of working between two places. I would like to thank our collaborating researchers: Professor Ralph Shohet at University of Hawaii for generating the Bpifa1-/- mice and Professor James Stewart and Stuart Armstrong at the University of Liverpool for the MS secretome analysis. My thanks also go to the staff of the Mary Lyon Centre: Sara Wells, Lucie Vizor and Lisa Ireson, in particular, for looking after my mouse lines and co-ordinating complicated breeding for multiple simultaneous experiments. I am grateful to the core facilities at MRC Harwell: Deen Quwailid, Adele Traynor and Rumana Zaman from the GEMS core for genotyping my mice, and Adele Austin, Caroline Barker and Naomi Busk from histology and necropsy for processing the large number of histological sections used in my project. A huge thank you to Debbie Williams for coming to my rescue with her RT-qPCR expertise. You are a star! Thank you to Roland Quinney for organising mouse exports to Sheffield and to Dr Helen Marriott and Lynne Williams for their assistance with dissections at Sheffield. I would also like to thank III Hannah and Catherine for helping me with RT-PCRs and Immunohistochemistry experiments. A big thank you to the lovely members of the Bingle group and my PhD buddies who have made this process an extremely enjoyable experience. I do not know how I would have survived in a quiet office! Thank you Chloe, Emily, Lucy, Renata, Priyanka, Andreea, and Jess for the numerous gossip sessions and cakes! A big thank you to my amazing roomie, Sayali and to Furaha for always comforting me when I was struggling with experiments. A massive thank you to Hrishi for going through my drafts and making sure I hang in there in my most stressful moments. Most importantly, a huge thank you to my family: Mom, for being a sponge that absorbs all my worries; Dad, for your perpetual enthusiasm and encouragement to follow my dreams and Renu, for your unconditional love. I could never have reached this stage without you three. Finally, I would like to extend my gratitude to the University of Sheffield and the Medical Research Council for funding my PhD and the Biochemical Society, Genetics society and Action on Hearing Loss for enabling me to attend a number of international meetings during the course of my PhD. IV PUBLICATIONS ñ Apoorva Mulay, Khondoker Akram, Debbie Williams, Hannah Armes, Catherine Russell, Derek Hood, Stuart Armstrong, James P. Stewart, Steve D. M. Brown, Lynne Bingle, Colin D. Bingle “An in vitro model of murine middle ear epithelium” Disease Models & Mechanisms Sept. 2016 [Epub ahead of print]. ñ Apoorva Mulay, Debbie Williams, Michael Cheeseman, Derek Hood, Thomas Purnell, Catherine Russell, Steve D. M. Brown, Lynne Bingle, Colin D. Bingle “Loss of the homeostatic protein, BPIFA1 leads to exacerbation of Otitis media”, Manuscript in preparation. CONFERENCE PRESENTATIONS ñ Poster presentation: The role of BPIFA1 in Otitis media. British Association of Lung Research Summer Meeting, Sheffield, UK July 2016. ñ Poster presentation: The role of BPIFA1 in Otitis media. 10th International Molecular Biology of Hearing and Deafness Meeting, Hinxton, UK, May 2016. ñ Podium presentation: The role of BPIFA1 in Otitis media. 2nd International Annual Florey Symposium, Sheffield, UK September 2015. ñ Podium presentation: Isolation and characterisation of middle ear and nasal th epithelial cells for development of an in vitro ototpathogenic infection model. 18 International Symposium on Recent Advances in Otitis Media, Maryland, USA, June 2015. ñ Seminar: An in vitro otopathogenic model of the middle ear epithelium. The Children’s National Medical Centre, Washington D.C, USA, June 2015 ñ Podium presentation: An in vitro otopathogenic model of the middle ear epithelium 51st International Inner Ear Biology Workshop, Sheffield, UK, April 2014. ñ Podium presentation: Mucociliary abnormalities lead to altered expression th BPIF/PLUNC proteins in murine models of otitis media of 17 Extraordinary International Symposium on Otitis Media, Stockholm, Sweden, June 2013. V VI ABBREVIATIONS ABR Auditory Brainstem Response ALI Air liquid interface ANOVA analysis of variance AOM Acute Otitis media AP-1 Activator protein 1 ASL Airway surface liquid ASOM Acute suppurative Otitis media B.cepacia Burkholderia cepacia BAL Broncheoalvealoar lavage BHI Brain heart infusion BPI Bacterial permeability increasing protein BPIF protein Bacterial permeability increasing fold-containing protein BPIFA1 Bacterial permeability increasing fold-containing protein A1 BPIFB1 Bacterial permeability increasing fold-containing protein B1 CD Cluster of differentiation CETP Cholesterol ester transfer protein CF Cystic fibrosis COME Chronic Otitis media with effusion COPD Chronic obstructive pulmonary disease CSOM Chronic supparative Otitis media CT Cycle threshold CtBP Carboxy terminal binding protein dB decibels DPPC Dipalmitoylphosphatidylcholine e embryonic day ECM extracellular matrix ENaC Epithelial sodium channel ENU N-Ethyl Nitrosourea ERP Ethical Review Process ET Eustachian tube EVI1 Ecotropic viral integration site-1 FACs Fluorescence associated cell sorting FBS Foetal bovine serum FBXO11 F-box 11 Foxj1 Forkhead box protein J1 G Generation GWAS Genome-wide association study GWLS Genome-wide linkage study H&E haematoxylin and eosin HBE cells Human bronchial epithelial cells HIF Hypoxia inducible factor Hm Hemin hpi Hours post infection VII HSC Haematopeitic stem cell IFC Fluorescence Immunocytochemistry IHC Immunohistochemistry IL Interleukin IN Intranasal JNK c-JUN kinase K.pneumoniae Klebsiella pneumoniae kDa Kilo dalton LBP Lipopolysaccharide binding protein LEV Levinthals LPLUNC1 Long palate lung and nasal epithelium
Recommended publications
  • Enzymology of the Nematode Cuticle: a Potential Drug Target? International Journal for Parasitology: Drugs and Drug Resistance, 4 (2)
    Page, Antony P., Stepek, Gillian, Winter, Alan D., and Pertab, David (2014) Enzymology of the nematode cuticle: a potential drug target? International Journal for Parasitology: Drugs and Drug Resistance, 4 (2). pp. 133-141. ISSN 2211-3207. Copyright © 2014 The Authors http://eprints.gla.ac.uk/95064/ Deposited on: 14 July 2014 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk International Journal for Parasitology: Drugs and Drug Resistance 4 (2014) 133–141 Contents lists available at ScienceDirect International Journal for Parasitology: Drugs and Drug Resistance journal homepage: www.elsevier.com/locate/ijpddr Invited Review Enzymology of the nematode cuticle: A potential drug target? ⇑ Antony P. Page , Gillian Stepek, Alan D. Winter, David Pertab Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK article info abstract Article history: All nematodes possess an external structure known as the cuticle, which is crucial for their development Received 7 April 2014 and survival. This structure is composed primarily of collagen, which is secreted from the underlying Received in revised form 14 May 2014 hypodermal cells. Extensive studies using the free-living nematode Caenorhabditis elegans demonstrate Accepted 15 May 2014 that formation of the cuticle requires the activity of an extensive range of enzymes. Enzymes are required Available online 6 June 2014 both pre-secretion, for synthesis of component proteins such as collagen, and post-secretion, for removal of the previous developmental stage cuticle, in a process known as moulting or exsheathment. The Keywords: excretion/secretion products of numerous parasitic nematodes contain metallo-, serine and cysteine Nematode proteases, and these proteases are conserved across the nematode phylum and many are involved in Cuticle Collagen the moulting/exsheathment process.
    [Show full text]
  • Spatiotemporal Proteomics Uncovers Cathepsin-Dependent Host Cell
    bioRxiv preprint doi: https://doi.org/10.1101/455048; this version posted November 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Spatiotemporal proteomics uncovers cathepsin-dependent host 2 cell death during bacterial infection 3 Joel Selkrig1, Nan Li1,2,3, Jacob Bobonis1,4, Annika Hausmann5, Anna Sueki1,4, Haruna 4 Imamura6, Bachir El Debs1, Gianluca Sigismondo3, Bogdan I. Florea7, Herman S. 5 Overkleeft7, Pedro Beltrao6, Wolf-Dietrich Hardt5, Jeroen Krijgsveld3‡, Athanasios Typas1‡. 6 7 1 European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 8 Heidelberg, Germany. 9 2 Institute of Synthetic Biology (iSynBio), Shenzhen Institutes of Advanced Technology (SIAT), 10 Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 11 China. 12 3 German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. 13 4 Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences 14 5 Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland. 15 6 European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome 16 Campus, Hinxton, Cambridge, CB10 1SD 17 7 Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 18 55, 2333 CC Leiden, the Netherlands. 19 20 21 ‡ to whom correspondence should be addressed: 22 [email protected] & [email protected] 23 24 SUMMARY 25 Immune cells need to swiftly and effectively respond to invading pathogens.
    [Show full text]
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • Cysteine Cathepsins: from Structure, Function and Regulation to New Frontiers☆
    Biochimica et Biophysica Acta 1824 (2012) 68–88 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbapap Review Cysteine cathepsins: From structure, function and regulation to new frontiers☆ Vito Turk a,b,⁎⁎, Veronika Stoka a, Olga Vasiljeva a, Miha Renko a, Tao Sun a,1, Boris Turk a,b,c,Dušan Turk a,b,⁎ a Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia b Center of Excellence CIPKEBIP, Ljubljana, Slovenia c Center of Excellence NIN, Ljubljana, Slovenia article info abstract Article history: It is more than 50 years since the lysosome was discovered. Since then its hydrolytic machinery, including Received 16 August 2011 proteases and other hydrolases, has been fairly well identified and characterized. Among these are the cyste- Received in revised form 3 October 2011 ine cathepsins, members of the family of papain-like cysteine proteases. They have unique reactive-site prop- Accepted 4 October 2011 erties and an uneven tissue-specific expression pattern. In living organisms their activity is a delicate balance Available online 12 October 2011 of expression, targeting, zymogen activation, inhibition by protein inhibitors and degradation. The specificity of their substrate binding sites, small-molecule inhibitor repertoire and crystal structures are providing new Keywords: fi Cysteine cathepsin tools for research and development. Their unique reactive-site properties have made it possible to con ne the Protein inhibitor targets simply by the use of appropriate reactive groups. The epoxysuccinyls still dominate the field, but now Cystatin nitriles seem to be the most appropriate “warhead”.
    [Show full text]
  • Cysteine Cathepsin Proteases: Regulators of Cancer Progression and Therapeutic Response
    REVIEWS Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response Oakley C. Olson1,2 and Johanna A. Joyce1,3,4 Abstract | Cysteine cathepsin protease activity is frequently dysregulated in the context of neoplastic transformation. Increased activity and aberrant localization of proteases within the tumour microenvironment have a potent role in driving cancer progression, proliferation, invasion and metastasis. Recent studies have also uncovered functions for cathepsins in the suppression of the response to therapeutic intervention in various malignancies. However, cathepsins can be either tumour promoting or tumour suppressive depending on the context, which emphasizes the importance of rigorous in vivo analyses to ascertain function. Here, we review the basic research and clinical findings that underlie the roles of cathepsins in cancer, and provide a roadmap for the rational integration of cathepsin-targeting agents into clinical treatment. Extracellular matrix Our contemporary understanding of cysteine cathepsin tissue homeostasis. In fact, aberrant cathepsin activity (ECM). The ECM represents the proteases originates with their canonical role as degrada- is not unique to cancer and contributes to many disease multitude of proteins and tive enzymes of the lysosome. This view has expanded states — for example, osteoporosis and arthritis4, neuro­ macromolecules secreted by considerably over decades of research, both through an degenerative diseases5, cardiovascular disease6, obe- cells into the extracellular
    [Show full text]
  • JPR Submission
    This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of Proteome Research, copyright ©American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jproteome.9b00487. Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform. Please provide feedback Please support the ScholarWorks@UMBC repository by emailing [email protected] and telling us what having access to this work means to you and why it’s important to you. Thank you. Journal of Proteome Research This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies. Top-down Proteomic Characterization of Truncated Proteoforms Journal: Journal of Proteome Research Manuscript ID pr-2019-004879.R1 Manuscript Type: Article Date Submitted by the 10-Sep-2019 Author: Complete List of Authors: Chen, Dapeng; University of Maryland at College Park; Zeteo Tech Inc Geis-Asteggiante, Lucia; University of Maryland at College Park Gomes, Fabio; Scripps Research Institute, Department of Molecular Medicine Ostrand-Rosenberg, Suzanne; University of Maryland Baltimore County Fenselau, Catherine; University of Maryland at College Park ACS Paragon Plus Environment Page 1
    [Show full text]
  • Insights Into the Origins of Allergic Asthma
    VIRAL-ALLERGEN INTERACTIONS VIRAL-ALLERGEN INTERACTIONS: INSIGHTS INTO THE ORIGINS OF ALLERGIC ASTHMA. By AMAL A. AL-GARAWI, M.A. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy McMaster University © Copyright by Amal A. Al-Garawi, April 2012 TO MY PARENTS, NORA & ALI FOR THEIR UNCONDITIONAL LOVE, SUPPORT AND NEVER-ENDING PATIENCE. WITH ALL MY LOVE! ii DOCTOR OF PHILOSOPHY (2012) McMaster University (Medical Sciences) Hamilton, Ontario TIT TITLE: Viral-Allergen Interactions: Insights into the Origins of Asthma AUTHOR: Amal A. Al-Garawi, M.A. (Boston University) SUPERVISOR: Dr. Manel Jordana NUMBER OF PAGES: x, 145 iii ABSTRACT Asthma is a chronic immune-inflammatory disease of the airways, characterized by reversible airflow obstruction and airway hyperresponsiveness (AHR), and is associated with the development of airway remodeling. While our understanding of the pathophysiology of allergic asthma has increased remarkably in the last few decades, the origins of the disease remain elusive. Indeed, studies indicate that the prevalence of allergic asthma, has increased dramatically over the last 30 years. Within this context, a number of environmental factors including respiratory viral infections have been associated with the onset of this disease but causal evidence is lacking. The work presented in this thesis examines the interactions between a respiratory viral infection, specifically influenza A, and the common aeroallergen house dust mite (HDM) in an experimental murine model. To this end, we investigated the impact of an acute influenza A infection on the exposure to a subclinical dose of HDM (Chapter 2) and addressed potential underlying immune mechanisms using a global, genomic approach (Chapter 3).
    [Show full text]
  • Mccarroll, Douglas (2014) the Effects of Trypanosoma Brucei and Mammalian-Derived Extracellular Cathepsin-L on Myocardial Function
    McCarroll, Douglas (2014) The effects of Trypanosoma brucei and mammalian-derived extracellular cathepsin-L on myocardial function. PhD thesis. http://theses.gla.ac.uk/5170/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten:Theses http://theses.gla.ac.uk/ [email protected] The Effects of Trypanosoma brucei and Mammalian-Derived Extracellular Cathepsin-L on Myocardial Function Mr. Douglas McCarroll BVMS (Hons) MSc (VetSci) MRCVS Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy to the Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, U.K. Research conducted at the British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K. January 2014 2 Abstract African trypanosomiasis is a neglected tropical disease affecting both animals and humans in sub-Saharan Africa. The disease is caused bythe protozoan parasite Trypanosoma brucei, which is transmitted by the tsetse fly (Glossina sp.) vector. In animals, infection leads to severe muscle atrophy and anaemia resulting in significant production and economic losses.
    [Show full text]
  • Enzymology of the Nematode Cuticle: a Potential Drug Target? ⇑ 6 Q1 Antony P
    IJPDDR 72 No. of Pages 9, Model 5G 5 June 2014 International Journal for Parasitology: Drugs and Drug Resistance xxx (2014) xxx–xxx 1 Contents lists available at ScienceDirect International Journal for Parasitology: Drugs and Drug Resistance journal homepage: www.elsevier.com/locate/ijpddr 4 5 3 Enzymology of the nematode cuticle: A potential drug target? ⇑ 6 Q1 Antony P. Page , Gillian Stepek, Alan D. Winter, David Pertab 7 Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK 89 10 article info abstract 2712 13 Article history: All nematodes possess an external structure known as the cuticle, which is crucial for their development 28 14 Received 7 April 2014 and survival. This structure is composed primarily of collagen, which is secreted from the underlying 29 15 Received in revised form 14 May 2014 hypodermal cells. Extensive studies using the free-living nematode Caenorhabditis elegans demonstrate 30 16 Accepted 15 May 2014 that formation of the cuticle requires the activity of an extensive range of enzymes. Enzymes are required 31 17 Available online xxxx both pre-secretion, for synthesis of component proteins such as collagen, and post-secretion, for removal 32 of the previous developmental stage cuticle, in a process known as moulting or exsheathment. The excre- 33 18 Q3 Keywords: tion/secretion products of numerous parasitic nematodes contain metallo-, serine and cysteine proteases, 34 19 Nematode and these proteases are conserved across the nematode phylum and many are involved in the moulting/ 35 20 Cuticle 21 Collagen exsheathment process.
    [Show full text]
  • The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance
    International Journal of Molecular Sciences Review The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance Magdalena Rudzi ´nska 1, Alessandro Parodi 1, Surinder M. Soond 1, Andrey Z. Vinarov 2, Dmitry O. Korolev 2, Andrey O. Morozov 2, Cenk Daglioglu 3 , Yusuf Tutar 4 and Andrey A. Zamyatnin Jr. 1,5,* 1 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia 2 Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia 3 Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, 35430 Urla/Izmir, Turkey 4 Faculty of Pharmacy, University of Health Sciences, 34668 Istanbul, Turkey 5 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-4956229843 Received: 26 June 2019; Accepted: 19 July 2019; Published: 23 July 2019 Abstract: Cysteine cathepsins are lysosomal enzymes belonging to the papain family. Their expression is misregulated in a wide variety of tumors, and ample data prove their involvement in cancer progression, angiogenesis, metastasis, and in the occurrence of drug resistance. However, while their overexpression is usually associated with highly aggressive tumor phenotypes, their mechanistic role in cancer progression is still to be determined to develop new therapeutic strategies. In this review, we highlight the literature related to the role of the cysteine cathepsins in cancer biology, with particular emphasis on their input into tumor biology. Keywords: cysteine cathepsins; cancer progression; drug resistance 1. Introduction Cathepsins are lysosomal proteases and, according to their active site, they can be classified into cysteine, aspartate, and serine cathepsins [1].
    [Show full text]
  • A Novel Cysteine Protease Inhibitor of Naegleria Fowleri That Is Specifically Expressed During Encystation and at Mature Cysts
    pathogens Article A Novel Cysteine Protease Inhibitor of Naegleria fowleri That Is Specifically Expressed during Encystation and at Mature Cysts Hương Giang Lê 1,2, A-Jeong Ham 3, Jung-Mi Kang 1,2, Tuấn Cường Võ 1,2, Haung Naw 1,2, Hae-Jin Sohn 3, Ho-Joon Shin 3 and Byoung-Kuk Na 1,2,* 1 Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; [email protected] (H.G.L.); [email protected] (J.-M.K.); [email protected] (T.C.V.); [email protected] (H.N.) 2 Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea 3 Department of Microbiology, Ajou University College of Medicine, Suwon 16499, Korea; [email protected] (A.-J.H.); [email protected] (H.-J.S.); [email protected] (H.-J.S.) * Correspondence: [email protected]; Tel.: +82-55-772-8102; Fax: +82-55-772-8109 Abstract: Naegleria fowleri is a free-living amoeba that is ubiquitous in diverse natural environments. It causes a fatal brain infection in humans known as primary amoebic meningoencephalitis. Despite the medical importance of the parasitic disease, there is a great lack of knowledge about the biology and pathogenicity of N. fowleri. In this study, we identified and characterized a novel cysteine protease inhibitor of N. fowleri (NfCPI). NfCPI is a typical cysteine protease inhibitor belonging to the cystatin family with a Gln-Val-Val-Ala-Gly (QVVAG) motif, a characteristic motif conserved in the cystatin family of proteins. Bacterially expressed recombinant NfCPI has a dimeric structure and exhibits Citation: Lê, H.G.; Ham, A-J.; Kang, inhibitory activity against several cysteine proteases including cathespin Bs of N.
    [Show full text]
  • Regulation of Cancer Stemness in Breast Ductal Carcinoma in Situ by Vitamin D Compounds
    Author Manuscript Published OnlineFirst on May 28, 2020; DOI: 10.1158/1940-6207.CAPR-19-0566 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Analysis of the Transcriptome: Regulation of Cancer Stemness in Breast Ductal Carcinoma In Situ by Vitamin D Compounds Naing Lin Shan1, Audrey Minden1,5, Philip Furmanski1,5, Min Ji Bak1, Li Cai2,5, Roman Wernyj1, Davit Sargsyan3, David Cheng3, Renyi Wu3, Hsiao-Chen D. Kuo3, Shanyi N. Li3, Mingzhu Fang4, Hubert Maehr1, Ah-Ng Kong3,5, Nanjoo Suh1,5 1Department of Chemical Biology, Ernest Mario School of Pharmacy; 2Department of Biomedical Engineering, School of Engineering; 3Department of Pharmaceutics, Ernest Mario School of Pharmacy; 4Environmental and Occupational Health Sciences Institute and School of Public Health, 5Rutgers Cancer Institute of New Jersey, New Brunswick; Rutgers, The State University of New Jersey, NJ, USA Running title: Regulation of cancer stemness by vitamin D compounds Key words: Breast cancer, cancer stemness, gene expression, DCIS, vitamin D compounds Financial Support: This research was supported by the National Institutes of Health grant R01 AT007036, R01 AT009152, ES005022, Charles and Johanna Busch Memorial Fund at Rutgers University and the New Jersey Health Foundation. Corresponding author: Dr. Nanjoo Suh, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, New Jersey 08854. Tel: 848-445-8030, Fax: 732-445-0687; e-mail: [email protected] Disclosure of Conflict of Interest: “The authors declare no potential conflicts of interest” 1 Downloaded from cancerpreventionresearch.aacrjournals.org on October 1, 2021.
    [Show full text]