Characterisation of Oyster Allergens for Improved Diagnosis of Mollusc Allergy

Total Page:16

File Type:pdf, Size:1020Kb

Characterisation of Oyster Allergens for Improved Diagnosis of Mollusc Allergy ResearchOnline@JCU This file is part of the following work: Nugraha, Roni (2018) Characterisation of oyster allergens for improved diagnosis of mollusc allergy. PhD Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/5d96a07003465 Copyright © 2018 Roni Nugraha. The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] Characterisation of Oyster Allergens for Improved Diagnosis of Mollusc Allergy Thesis submitted by Roni Nugraha B.Sc., M.Sc. For the degree of Doctor of Philosophy in the College of Public Health, Medical and Veterinary Sciences James Cook University Townsville, Australia October 2018 Acknowledgements First and foremost, I would like to express my sincere gratitude to my advisor and guide Prof. Andreas Lopata for bringing me in to the world of allergy. Without his guidance, I would not be able to finish this PhD and this thesis would never have been written. Andreas is not only the source of research inspiration, but his guidance also has profound effects on my personal life. As a lecturer at a university, I learned a lot from Andreas how to be a good researcher and mentor for the students. Secondly, I would like also to thank my co-supervisors, Prof. Kyall Zenger for introducing me to the field of bioinformatics and Dr. Sandip Kamath for his assistance and technical expertise during my experiments. Moreover, I would like to thank Prof. Jennifer Rolland and Prof. Robyn O’Hehir of the Monash University and Alfred Hospital for providing serum samples. Thirdly, I am very fortunate and proud to be a member of a very amazing research group, Molecular Allergy Research Laboratory: Dr. Fiona Baird, Dr. Elecia Johnston, Dr. Shruti Saptarshi, Dr. Michael Sharp, Dr. Martina Koeberl, Dr. Tiange Liu, Mr. Thimo Ruethers, Mrs. Thu Le, Mr. Kunal Pratap and Mr. Shaymaviswanathan Karnaneedi. Thank you for becoming my second family in Australia. Lastly, but not the least, I would like to thank my wife for the endless support, the smile and the patience; my kids, Yasmin and Zakiy and also my mother for always calling my name in her prays. ii Statement of the Contributions of Others Nature of Contribution Name and Affiliation Assistance • Prof. Andreas Lopata, James Cook Project plan and University development • Prof. Kyall Zenger • Dr. Sandip D Kamath Intellectual • Prof. Andreas Lopata, James Cook support University Editorial support • Dr. Sandip D Kamath • Dr. Aya Taki Grant proposal • Prof. Andreas L Lopata, James Cook writing University • ARC Future Fellowship for Prof. Andreas Lopata Research • National Health and Medical Research Council for Prof. Andreas Lopata • HDR Enhancement Scheme, College of Conference Public Health, Medical and Veterinary travel • ASI ICI Bursary Financial • JCU Science Research Festival support • James Cook University Postgraduate Scholarship Stipend • College Scholarship, College of Public Health, Medical and Veterinary Sciences, James Cook University • Doctoral Completion Grant, College of Write-up Public Health, Medical and Veterinary support Sciences, James Cook University • Prof. Jennifer Rolland, Monash Human blood Data University sample collection • Prof. Robyn O’Hehir, Monash University collection and The Alfred Hospital Recombinant • Dr. Sandip Kamath, James Cook Technical protein assay University support Mass • Dr. Martina Koeberl, National spectrometry Measurement Institute iii Publications arising from thesis-Published 1) Thimo Ruethers, Aya C Taki, Elecia B Johnston, Roni Nugraha, Thu TK Le, Tanja Kalic, Thomas R McLean, Sandip D Kamath, Andreas L Lopata. 2018. Seafood allergy: A comprehensive review of fish and shellfish allergens. Molecular immunology. 100:28-57. Impact Factor: 3.16 2) Roni Nugraha, Sandip D Kamath, Elecia Johnston, Kyall R Zenger, Jennifer M Rolland, Robyn E O'Hehir, Andreas L Lopata. 2018. Rapid and comprehensive discovery of unreported shellfish allergens using large-scale transcriptomic and proteomic resources. Journal of Allergy and Clinical Immunology. 141(4): 1501-1504. e8. Impact Factor: 13.258 3) Sandip D Kamath, Roni Nugraha, Andreas L Lopata. 2017. Recent advances in Diagnosis and Management of Shellfish Allergy. Food Allergy: Molecular and Clinical Practice. CRC Press: 122-154. Invited book chapter. Publications arising from thesis – Submitted 1) Roni Nugraha, Sandip D Kamath, Shaymaviswanathan Karnaneedi, Elecia Johnston, Andreas L Lopata. 2018. Conservation analysis of B-cell allergen epitopes to predict clinical cross-reactivity between shellfish and inhalant invertebrate allergens. Frontiers in Immunology. Publications arising from thesis – In Preparation 2) Roni Nugraha, Sandip D Kamath, Thimo Ruethers, Shaymaviswanathan Karnaneedi, Elecia Johnston, Andreas L Lopata. 2018. Effects of extraction buffers on the solubility and immunoreactivity of the Pacific Oyster (Crassostrea gigas) allergens. Food Chemistry. 3) Roni Nugraha, Sandip D Kamath, Thimo Ruethers, Shaymaviswanathan Karnaneedi, Elecia Johnston, Andreas L Lopata. Recombinant expression, purification and immunological characterisation of the major allergen of the pacific oyster (Crassostrea gigas) – Tropomyosin. Molecular Nutrition and Food Research. iv Abstract Discovery and characterisation of allergens in various food and inhalant sources is central to our understanding of the molecular mechanisms of allergic reactions. Allergen characterization is the most important underlying factor for better patient management with improved diagnostics, and the design and development of novel immunotherapeutics. Of the ‘Big eight’ allergen food groups, shellfish presents a unique challenge in terms of allergen discovery due to the large number and diversity of consumed species, leading to heterogeneity of allergen structure and cross-reactivity among various sources. The group of ‘shellfish’ comprises of two invertebrate phyla; arthropods and molluscs. Although all shellfish are invertebrate animals, these two groups are very distinct in evolutionary terms and subsequently contain different molecular repertoires of allergenic proteins. Co-sensitisation of patients with crustacean and mollusc allergy is often described, however, the current diagnostic approaches to manage patients is not based on sufficient molecular knowledge of these shellfish allergens. Consequently, mollusc allergy is clinically underreported and allergens are ill-defined. To date, only five mollusc allergens are listed in the WHO/International Union of Immunological Societies (IUIS) Allergen Nomenclature SubCommittee database, all of which are different tropomyosin’s (http://www.allergen.org/index.php). Additional mollusc allergens have been reported, but not yet fully characterised. A detailed review of the current status and the diagnosis of mollusc allergy is provided in Chapter 1. Current strategies for allergen identification are time- and resource- consuming, which are highly prone to missing hidden allergens present in low concentrations. Allergenic proteins are traditionally identified based on their serum-specific IgE antibody recognition. Soluble proteins derived from whole protein preparations of a suspected allergen source are screened for IgE antibody binding proteins using sera from individuals with clinically confirmed allergy. Although this approach is the current standard for allergen v identification, there are three major drawbacks. Firstly, this approach often does not detect allergenic proteins present in low abundance. Secondly, cross- reactive allergens are not easily identified due to their possible presence in unrelated allergen sources. Thirdly, the IgE recognition patterns are highly dependent on the demographics of the particular allergic patient cohort under investigation. This PhD thesis presents a comprehensive study on the improvement of allergen discovery from Pacific oyster, the most widely consumed mollusc species and immunological characterisation of the major allergen, tropomyosin, using a cohort of mollusc-sensitised patients in Australia. Furthermore, novel ways to diagnose cross-reactivity between crustacean and mollusc species were developed. Chapter 2 describes a comprehensive discovery pipeline, for allergenic proteins, that accounts for biological and molecular variability using allergenomics, high-throughput screening of genomic databases and high- resolution mass spectrometry. This methodological approach was successful in identifying 24 previously unreported allergens from over 25,000 proteins from the Pacific oyster. This is the first study to demonstrate the presence of 24 hidden allergens, also found in very different allergen sources from animals, including fish and mites, as well as plant allergens from pollen, latex and fungi. Importantly all of these allergenic proteins identified are reactive with shellfish allergic patients’ IgE antibodies. However, it was demonstrated in chapter 2 that not all allergens present in the genome and transcriptome of oyster are also detected in the extracted proteome. Allergens are often overlooked during the extraction process due to the use of inappropriate buffers which might affect the in vitro diagnostic methods that use whole proteins extracts. In Chapter 3 various buffer compositions covering a wide range of pH were evaluated to improve the detection of the unreported allergens described in
Recommended publications
  • Enzymology of the Nematode Cuticle: a Potential Drug Target? International Journal for Parasitology: Drugs and Drug Resistance, 4 (2)
    Page, Antony P., Stepek, Gillian, Winter, Alan D., and Pertab, David (2014) Enzymology of the nematode cuticle: a potential drug target? International Journal for Parasitology: Drugs and Drug Resistance, 4 (2). pp. 133-141. ISSN 2211-3207. Copyright © 2014 The Authors http://eprints.gla.ac.uk/95064/ Deposited on: 14 July 2014 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk International Journal for Parasitology: Drugs and Drug Resistance 4 (2014) 133–141 Contents lists available at ScienceDirect International Journal for Parasitology: Drugs and Drug Resistance journal homepage: www.elsevier.com/locate/ijpddr Invited Review Enzymology of the nematode cuticle: A potential drug target? ⇑ Antony P. Page , Gillian Stepek, Alan D. Winter, David Pertab Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK article info abstract Article history: All nematodes possess an external structure known as the cuticle, which is crucial for their development Received 7 April 2014 and survival. This structure is composed primarily of collagen, which is secreted from the underlying Received in revised form 14 May 2014 hypodermal cells. Extensive studies using the free-living nematode Caenorhabditis elegans demonstrate Accepted 15 May 2014 that formation of the cuticle requires the activity of an extensive range of enzymes. Enzymes are required Available online 6 June 2014 both pre-secretion, for synthesis of component proteins such as collagen, and post-secretion, for removal of the previous developmental stage cuticle, in a process known as moulting or exsheathment. The Keywords: excretion/secretion products of numerous parasitic nematodes contain metallo-, serine and cysteine Nematode proteases, and these proteases are conserved across the nematode phylum and many are involved in Cuticle Collagen the moulting/exsheathment process.
    [Show full text]
  • Spatiotemporal Proteomics Uncovers Cathepsin-Dependent Host Cell
    bioRxiv preprint doi: https://doi.org/10.1101/455048; this version posted November 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Spatiotemporal proteomics uncovers cathepsin-dependent host 2 cell death during bacterial infection 3 Joel Selkrig1, Nan Li1,2,3, Jacob Bobonis1,4, Annika Hausmann5, Anna Sueki1,4, Haruna 4 Imamura6, Bachir El Debs1, Gianluca Sigismondo3, Bogdan I. Florea7, Herman S. 5 Overkleeft7, Pedro Beltrao6, Wolf-Dietrich Hardt5, Jeroen Krijgsveld3‡, Athanasios Typas1‡. 6 7 1 European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 8 Heidelberg, Germany. 9 2 Institute of Synthetic Biology (iSynBio), Shenzhen Institutes of Advanced Technology (SIAT), 10 Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 11 China. 12 3 German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. 13 4 Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences 14 5 Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland. 15 6 European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome 16 Campus, Hinxton, Cambridge, CB10 1SD 17 7 Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 18 55, 2333 CC Leiden, the Netherlands. 19 20 21 ‡ to whom correspondence should be addressed: 22 [email protected] & [email protected] 23 24 SUMMARY 25 Immune cells need to swiftly and effectively respond to invading pathogens.
    [Show full text]
  • Cysteine Cathepsins: from Structure, Function and Regulation to New Frontiers☆
    Biochimica et Biophysica Acta 1824 (2012) 68–88 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbapap Review Cysteine cathepsins: From structure, function and regulation to new frontiers☆ Vito Turk a,b,⁎⁎, Veronika Stoka a, Olga Vasiljeva a, Miha Renko a, Tao Sun a,1, Boris Turk a,b,c,Dušan Turk a,b,⁎ a Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia b Center of Excellence CIPKEBIP, Ljubljana, Slovenia c Center of Excellence NIN, Ljubljana, Slovenia article info abstract Article history: It is more than 50 years since the lysosome was discovered. Since then its hydrolytic machinery, including Received 16 August 2011 proteases and other hydrolases, has been fairly well identified and characterized. Among these are the cyste- Received in revised form 3 October 2011 ine cathepsins, members of the family of papain-like cysteine proteases. They have unique reactive-site prop- Accepted 4 October 2011 erties and an uneven tissue-specific expression pattern. In living organisms their activity is a delicate balance Available online 12 October 2011 of expression, targeting, zymogen activation, inhibition by protein inhibitors and degradation. The specificity of their substrate binding sites, small-molecule inhibitor repertoire and crystal structures are providing new Keywords: fi Cysteine cathepsin tools for research and development. Their unique reactive-site properties have made it possible to con ne the Protein inhibitor targets simply by the use of appropriate reactive groups. The epoxysuccinyls still dominate the field, but now Cystatin nitriles seem to be the most appropriate “warhead”.
    [Show full text]
  • Cysteine Cathepsin Proteases: Regulators of Cancer Progression and Therapeutic Response
    REVIEWS Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response Oakley C. Olson1,2 and Johanna A. Joyce1,3,4 Abstract | Cysteine cathepsin protease activity is frequently dysregulated in the context of neoplastic transformation. Increased activity and aberrant localization of proteases within the tumour microenvironment have a potent role in driving cancer progression, proliferation, invasion and metastasis. Recent studies have also uncovered functions for cathepsins in the suppression of the response to therapeutic intervention in various malignancies. However, cathepsins can be either tumour promoting or tumour suppressive depending on the context, which emphasizes the importance of rigorous in vivo analyses to ascertain function. Here, we review the basic research and clinical findings that underlie the roles of cathepsins in cancer, and provide a roadmap for the rational integration of cathepsin-targeting agents into clinical treatment. Extracellular matrix Our contemporary understanding of cysteine cathepsin tissue homeostasis. In fact, aberrant cathepsin activity (ECM). The ECM represents the proteases originates with their canonical role as degrada- is not unique to cancer and contributes to many disease multitude of proteins and tive enzymes of the lysosome. This view has expanded states — for example, osteoporosis and arthritis4, neuro­ macromolecules secreted by considerably over decades of research, both through an degenerative diseases5, cardiovascular disease6, obe- cells into the extracellular
    [Show full text]
  • JPR Submission
    This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of Proteome Research, copyright ©American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jproteome.9b00487. Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform. Please provide feedback Please support the ScholarWorks@UMBC repository by emailing [email protected] and telling us what having access to this work means to you and why it’s important to you. Thank you. Journal of Proteome Research This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies. Top-down Proteomic Characterization of Truncated Proteoforms Journal: Journal of Proteome Research Manuscript ID pr-2019-004879.R1 Manuscript Type: Article Date Submitted by the 10-Sep-2019 Author: Complete List of Authors: Chen, Dapeng; University of Maryland at College Park; Zeteo Tech Inc Geis-Asteggiante, Lucia; University of Maryland at College Park Gomes, Fabio; Scripps Research Institute, Department of Molecular Medicine Ostrand-Rosenberg, Suzanne; University of Maryland Baltimore County Fenselau, Catherine; University of Maryland at College Park ACS Paragon Plus Environment Page 1
    [Show full text]
  • Insights Into the Origins of Allergic Asthma
    VIRAL-ALLERGEN INTERACTIONS VIRAL-ALLERGEN INTERACTIONS: INSIGHTS INTO THE ORIGINS OF ALLERGIC ASTHMA. By AMAL A. AL-GARAWI, M.A. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy McMaster University © Copyright by Amal A. Al-Garawi, April 2012 TO MY PARENTS, NORA & ALI FOR THEIR UNCONDITIONAL LOVE, SUPPORT AND NEVER-ENDING PATIENCE. WITH ALL MY LOVE! ii DOCTOR OF PHILOSOPHY (2012) McMaster University (Medical Sciences) Hamilton, Ontario TIT TITLE: Viral-Allergen Interactions: Insights into the Origins of Asthma AUTHOR: Amal A. Al-Garawi, M.A. (Boston University) SUPERVISOR: Dr. Manel Jordana NUMBER OF PAGES: x, 145 iii ABSTRACT Asthma is a chronic immune-inflammatory disease of the airways, characterized by reversible airflow obstruction and airway hyperresponsiveness (AHR), and is associated with the development of airway remodeling. While our understanding of the pathophysiology of allergic asthma has increased remarkably in the last few decades, the origins of the disease remain elusive. Indeed, studies indicate that the prevalence of allergic asthma, has increased dramatically over the last 30 years. Within this context, a number of environmental factors including respiratory viral infections have been associated with the onset of this disease but causal evidence is lacking. The work presented in this thesis examines the interactions between a respiratory viral infection, specifically influenza A, and the common aeroallergen house dust mite (HDM) in an experimental murine model. To this end, we investigated the impact of an acute influenza A infection on the exposure to a subclinical dose of HDM (Chapter 2) and addressed potential underlying immune mechanisms using a global, genomic approach (Chapter 3).
    [Show full text]
  • Mccarroll, Douglas (2014) the Effects of Trypanosoma Brucei and Mammalian-Derived Extracellular Cathepsin-L on Myocardial Function
    McCarroll, Douglas (2014) The effects of Trypanosoma brucei and mammalian-derived extracellular cathepsin-L on myocardial function. PhD thesis. http://theses.gla.ac.uk/5170/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten:Theses http://theses.gla.ac.uk/ [email protected] The Effects of Trypanosoma brucei and Mammalian-Derived Extracellular Cathepsin-L on Myocardial Function Mr. Douglas McCarroll BVMS (Hons) MSc (VetSci) MRCVS Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy to the Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, U.K. Research conducted at the British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K. January 2014 2 Abstract African trypanosomiasis is a neglected tropical disease affecting both animals and humans in sub-Saharan Africa. The disease is caused bythe protozoan parasite Trypanosoma brucei, which is transmitted by the tsetse fly (Glossina sp.) vector. In animals, infection leads to severe muscle atrophy and anaemia resulting in significant production and economic losses.
    [Show full text]
  • Enzymology of the Nematode Cuticle: a Potential Drug Target? ⇑ 6 Q1 Antony P
    IJPDDR 72 No. of Pages 9, Model 5G 5 June 2014 International Journal for Parasitology: Drugs and Drug Resistance xxx (2014) xxx–xxx 1 Contents lists available at ScienceDirect International Journal for Parasitology: Drugs and Drug Resistance journal homepage: www.elsevier.com/locate/ijpddr 4 5 3 Enzymology of the nematode cuticle: A potential drug target? ⇑ 6 Q1 Antony P. Page , Gillian Stepek, Alan D. Winter, David Pertab 7 Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK 89 10 article info abstract 2712 13 Article history: All nematodes possess an external structure known as the cuticle, which is crucial for their development 28 14 Received 7 April 2014 and survival. This structure is composed primarily of collagen, which is secreted from the underlying 29 15 Received in revised form 14 May 2014 hypodermal cells. Extensive studies using the free-living nematode Caenorhabditis elegans demonstrate 30 16 Accepted 15 May 2014 that formation of the cuticle requires the activity of an extensive range of enzymes. Enzymes are required 31 17 Available online xxxx both pre-secretion, for synthesis of component proteins such as collagen, and post-secretion, for removal 32 of the previous developmental stage cuticle, in a process known as moulting or exsheathment. The excre- 33 18 Q3 Keywords: tion/secretion products of numerous parasitic nematodes contain metallo-, serine and cysteine proteases, 34 19 Nematode and these proteases are conserved across the nematode phylum and many are involved in the moulting/ 35 20 Cuticle 21 Collagen exsheathment process.
    [Show full text]
  • The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance
    International Journal of Molecular Sciences Review The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance Magdalena Rudzi ´nska 1, Alessandro Parodi 1, Surinder M. Soond 1, Andrey Z. Vinarov 2, Dmitry O. Korolev 2, Andrey O. Morozov 2, Cenk Daglioglu 3 , Yusuf Tutar 4 and Andrey A. Zamyatnin Jr. 1,5,* 1 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia 2 Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia 3 Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, 35430 Urla/Izmir, Turkey 4 Faculty of Pharmacy, University of Health Sciences, 34668 Istanbul, Turkey 5 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-4956229843 Received: 26 June 2019; Accepted: 19 July 2019; Published: 23 July 2019 Abstract: Cysteine cathepsins are lysosomal enzymes belonging to the papain family. Their expression is misregulated in a wide variety of tumors, and ample data prove their involvement in cancer progression, angiogenesis, metastasis, and in the occurrence of drug resistance. However, while their overexpression is usually associated with highly aggressive tumor phenotypes, their mechanistic role in cancer progression is still to be determined to develop new therapeutic strategies. In this review, we highlight the literature related to the role of the cysteine cathepsins in cancer biology, with particular emphasis on their input into tumor biology. Keywords: cysteine cathepsins; cancer progression; drug resistance 1. Introduction Cathepsins are lysosomal proteases and, according to their active site, they can be classified into cysteine, aspartate, and serine cathepsins [1].
    [Show full text]
  • A Novel Cysteine Protease Inhibitor of Naegleria Fowleri That Is Specifically Expressed During Encystation and at Mature Cysts
    pathogens Article A Novel Cysteine Protease Inhibitor of Naegleria fowleri That Is Specifically Expressed during Encystation and at Mature Cysts Hương Giang Lê 1,2, A-Jeong Ham 3, Jung-Mi Kang 1,2, Tuấn Cường Võ 1,2, Haung Naw 1,2, Hae-Jin Sohn 3, Ho-Joon Shin 3 and Byoung-Kuk Na 1,2,* 1 Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; [email protected] (H.G.L.); [email protected] (J.-M.K.); [email protected] (T.C.V.); [email protected] (H.N.) 2 Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea 3 Department of Microbiology, Ajou University College of Medicine, Suwon 16499, Korea; [email protected] (A.-J.H.); [email protected] (H.-J.S.); [email protected] (H.-J.S.) * Correspondence: [email protected]; Tel.: +82-55-772-8102; Fax: +82-55-772-8109 Abstract: Naegleria fowleri is a free-living amoeba that is ubiquitous in diverse natural environments. It causes a fatal brain infection in humans known as primary amoebic meningoencephalitis. Despite the medical importance of the parasitic disease, there is a great lack of knowledge about the biology and pathogenicity of N. fowleri. In this study, we identified and characterized a novel cysteine protease inhibitor of N. fowleri (NfCPI). NfCPI is a typical cysteine protease inhibitor belonging to the cystatin family with a Gln-Val-Val-Ala-Gly (QVVAG) motif, a characteristic motif conserved in the cystatin family of proteins. Bacterially expressed recombinant NfCPI has a dimeric structure and exhibits Citation: Lê, H.G.; Ham, A-J.; Kang, inhibitory activity against several cysteine proteases including cathespin Bs of N.
    [Show full text]
  • A Role for Cathepsin Z in Neuroinflammation Provides Mechanistic Support for an Epigenetic Risk Factor in Multiple Sclerosis Euan R
    Allan et al. Journal of Neuroinflammation (2017) 14:103 DOI 10.1186/s12974-017-0874-x SHORT REPORT Open Access A role for cathepsin Z in neuroinflammation provides mechanistic support for an epigenetic risk factor in multiple sclerosis Euan R. O. Allan1†, Rhiannon I. Campden1,2†, Benjamin W. Ewanchuk1,2, Pankaj Tailor2, Dale R. Balce1,2, Neil T. McKenna1,2, Catherine J. Greene1,2, Amy L. Warren3, Thomas Reinheckel4,5 and Robin M. Yates1,2* Abstract Background: Hypomethylation of the cathepsin Z locus has been proposed as an epigenetic risk factor for multiple sclerosis (MS). Cathepsin Z is a unique lysosomal cysteine cathepsin expressed primarily by antigen presenting cells. While cathepsin Z expression has been associated with neuroinflammatory disorders, a role for cathepsin Z in mediating neuroinflammation has not been previously established. Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in both wildtype mice and mice deficient in cathepsin Z. The effects of cathepsin Z-deficiency on the processing and presentation of the autoantigen myelin oligodendrocyte glycoprotein, and on the production of IL-1β and IL-18 were determined in vitro from cells derived from wildtype and cathepsin Z-deficient mice. The effects of cathepsin Z-deficiency on CD4+ T cell activation, migration, and infiltration to the CNS were determined in vivo. Statistical analyses of parametric data were performed by one-way ANOVA followed by Tukey post-hoc tests, or by an unpaired Student’s t test. EAE clinical scoring was analyzed using the Mann–Whitney U test. Results: We showed that mice deficient in cathepsin Z have reduced neuroinflammation and dramatically lowered circulating levels of IL-1β during EAE.
    [Show full text]
  • A Genomic Analysis of Rat Proteases and Protease Inhibitors
    A genomic analysis of rat proteases and protease inhibitors Xose S. Puente and Carlos López-Otín Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain Send correspondence to: Carlos López-Otín Departamento de Bioquímica y Biología Molecular Facultad de Medicina, Universidad de Oviedo 33006 Oviedo-SPAIN Tel. 34-985-104201; Fax: 34-985-103564 E-mail: [email protected] Proteases perform fundamental roles in multiple biological processes and are associated with a growing number of pathological conditions that involve abnormal or deficient functions of these enzymes. The availability of the rat genome sequence has opened the possibility to perform a global analysis of the complete protease repertoire or degradome of this model organism. The rat degradome consists of at least 626 proteases and homologs, which are distributed into five catalytic classes: 24 aspartic, 160 cysteine, 192 metallo, 221 serine, and 29 threonine proteases. Overall, this distribution is similar to that of the mouse degradome, but significatively more complex than that corresponding to the human degradome composed of 561 proteases and homologs. This increased complexity of the rat protease complement mainly derives from the expansion of several gene families including placental cathepsins, testases, kallikreins and hematopoietic serine proteases, involved in reproductive or immunological functions. These protease families have also evolved differently in the rat and mouse genomes and may contribute to explain some functional differences between these two closely related species. Likewise, genomic analysis of rat protease inhibitors has shown some differences with the mouse protease inhibitor complement and the marked expansion of families of cysteine and serine protease inhibitors in rat and mouse with respect to human.
    [Show full text]