Régulation De L'activité Protéolytique Des Cathepsines À Cystéine S Et K

Total Page:16

File Type:pdf, Size:1020Kb

Régulation De L'activité Protéolytique Des Cathepsines À Cystéine S Et K UNIVERSITÉ DE TOURS ÉCOLE DOCTORALE SSBCV Centre d’Etude des Pathologies Respiratoires (CEPR) INSERM UMR 1100 THÈSE présentée par : Mylène WARTENBERG soutenue le : 13 décembre 2018 pour obtenir le grade de : Docteur de l’université de Tours Discipline/ Spécialité : Sciences de la Vie et de la Santé / Biochimie Régulation de l’activité protéolytique des cathepsines à cystéine S et K par des inactivateurs/inhibiteurs chimiques et pseudopeptidiques THÈSE dirigée par : M LALMANACH Gilles Professeur, Université de Tours, Tours RAPPORTEURS : Mme LANONE Sophie Directeur de Recherche, INSERM, Créteil M RODRIGUES-LIMA Fernando Professeur, Université Paris Diderot (Paris VII), Paris JURY : M LALMANACH Gilles Professeur, Université de Tours, Tours Mme LANONE Sophie Directeur de Recherche, INSERM, Créteil M MARCHAND-ADAM Sylvain PU-PH, Université de Tours, Tours M RODRIGUES-LIMA Fernando Professeur, Université Paris Diderot (Paris VII), Paris M SAPI Janos Professeur, Université de Reims Champagne-Ardenne, Reims M VOURC’H Patrick PU-PH, Université de Tours, Tours Remerciements Ce travail de thèse a été effectué à l’INSERM U1100 (Centre d’Étude des Pathologies Respiratoires, CEPR, Tours) dirigée par le Dr Mustapha Si-Tahar, au sein de l'équipe 2 "Mécanismes protéolytiques dans l'inflammation" (Responsable: Pr Gilles Lalmanach). Ce projet a bénéficié d'un contrat doctoral financé par la Région Centre-Val de Loire. Je tiens à exprimer mes remerciements à : Monsieur Gilles Lalmanach, Professeur de l’Université de Tours, pour m’avoir accordée sa confiance et m’avoir donnée la chance de pouvoir travailler à ses côtés durant ces trois dernières années. Merci pour votre enthousiasme à toute épreuve et votre bienveillance. Merci de m’avoir suivie au quotidien tout en me laissant suffisamment de liberté dans mon travail. Grâce à vous, j’ai appris (entre autre) à être « pragmatique » et à arrêter l’« auto-flagellation ». Madame Sophie Lanone, Directeur de Recherche, INSERM, Créteil, et Monsieur Fernando Rodrigues-Lima, Professeur de l’Université Paris Diderot, pour m’avoir fait l’honneur d’être les rapporteurs de ce travail. Monsieur Sylvain Marchand-Adam, PU-PH de l’Université de Tours, Monsieur Janos Sapi, Professeur de l’Université de Reims Champagne-Ardenne et Monsieur Patrick Vourc’h, PU- PH de l’Université de Tours d’avoir accepté d’être les examinateurs de cette thèse. Monsieur Mustapha Si-Tahar, Directeur de Recherche de l’INSERM UMR 1100 - Centre d’Étude des Pathologies Respiratoires, pour m’avoir accueillie au sein de son unité. Et je tiens également à remercier : Monsieur Fabien Lecaille, Maître de Conférences à l’Université de Tours, pour sa bonne humeur et ses conseils. Ahlame Saïdi, ma binôme de galère, pour notre soutien mutuel pendant les heures sombres au LUMINA et au confocal… Merci pour ton aide et pour m’avoir initiée à la culture cellulaire. 1 Pierre-Marie Andrault, « maître », pour m’avoir accompagnée dans mes premiers pas au labo et d’avoir répondue à mes innombrables questions. Mariana Kasabova, pour sa bonne humeur, sa gentillesse et son aide dans mes débuts. Alix Joulin-Giet, Sylvie Mavel et Lydie Nadal-Desbarats, pour leur gentillesse et leur participation à ce travail. Les membres du Centre de Biophysique Moléculaire, CNRS, UPR 4301 (Orléans) et de l’ICOA, CNRS UMR 7311 (Orléans) pour la synthèse des inhibiteurs et leur participation à ces travaux. Julien Burlaud-Gaillard, nos rendez-vous trimestriels en microscopie confocale vont me manquer… Même si je sais qu’il ne faudra pas attendre longtemps pour se retrouver au bota! Merci pour ta patience et ton aide précieuse. David Ducluzeau et Paul Bigot, les étudiants que j’ai eu le plaisir d’encadrer durant leur stage dans l’unité. Frédéric Esnard, Sylvie Attucci, Thomas Baranek, Sandrine Dallet-Choisy, Thierry Moreau, Florence Velge-Roussel, Marilou Zani, Marilou Fauquet et Fabien Barbarin, membres du département de Biochimie, pour m’avoir accueillie et accompagnée lors de mes trois années d’enseignement. Aurélie Henriques et Catherine Douteau, pour leur aide au quotidien pour toutes les procédures administratives, leur gentillesse et leur patience. Yves Courty et Agnès Petit, pour nos discussions sur les sujets les plus divers. Un merci particulier pour les membres du bureau des « étudiants »: Seda Seren, Justine Renault, Delphine Fouquenet, Lise Vanderlynden, Woodys Lenga (Ouidiz’) et Thibault Chazeirat, qui m’ont supporté pendant ces trois années (N’oubliez pas de continuer la collection de marabout et d’approvisionner la cagnotte!). Ainsi que nos chers stagiaires de M2 partis vers d’autres horizons : Fanny Lisée, Adélaïde Chesnay, Damien Sizaret, Ghania Kara-Ali et Victor Tiroille. 2 Un immense merci à « la masse informe » (Christelle, David et Mélia), je pourrais écrire une thèse entière sur les fous rires et les délires que nous avons eu pendant ces trois années : la reproduction des coccinelles, la bataille des ciseaux contre les licornes, le grand chelem au bota, les lettres du corbeau et notre credo : « Brule tout ! »… Merci pour tout, ces années n’auraient pas été pareilles sans vous ! Je tiens également à remercier l’ensemble des personnes que j’ai côtoyé au cours de ces années pour leur accueil et leur gentillesse: Ribal Al-Mawla, Elsa Bodier-Montagutelli, Chloé Boisseau, Déborah Bréa, Maria Cabrera, Florent Creusat, Emilie Dalloneau, Aurélie Domene, Marion Ferreira, Yveline Hamon, Virginie Hervé, Natalie Heuzé- Vourc’h, Sophie Iochmann, Youenn Jouan, Baris Korkmaz, Anne-Sophie Lamort, Déborah Le Pennec, Alexie Mayor, Eric Morello, Christophe Paget, Jeoffrey Pardessus, Pascale Reverdiau, Thomas Secher, Alexandre Valayer, Virginie Vasseur. Je remercie mes amis de Tours et d’ailleurs : Mes gonzesses (Mathilde, Sara, Didi et Chacha) et leur moitié Antoine, Nico et Pierrot. Les Chesnoys & co : Macké, Céline, Seb, Maïlys, Joe, Mino, Lamith, Elo, Yohann, Mimi, Flo, Clém, Joubis, Alex … pour leur soutien durant ces trois années et leur amitié. Merci de m’avoir permis de m’évader loin de la thèse au moins le temps d’une soirée ou d’un weekend. Enfin, je remercie ma famille pour leur amour : Mes parents : tout cela est un peu grâce à vous. Même si je me suis un peu éloignée du pommier, jouer avec des molécules chimiques en plastique quand j’étais petite a porté ses fruits. Merci de m’avoir soutenue et d’avoir cru en moi toutes ces années. Ma sœur (c’est bon tu as enfin le mot « Cathé-pss-in ») et mon beauf pour m’avoir aidée à décompresser quand j’en avais besoin. Mon frère et Nadia (sa femme) pour avoir partagé leur expérience et m’avoir aidée à relativiser (« Plus c’est dur et plus on est heureux quand ça se termine… »). Anna et Zoé, pour avoir fait de moi une tata comblée. Mes grands parents, oncles, tantes, cousins et cousines pour leurs encouragements et leur soutien. Mickaël, mon cœur, je sais que ces derniers mois ont été durs pour toi aussi, qui as dû supporter mon stress et mes sautes d’humeur. Merci infiniment pour tout ce que tu fais pour moi chaque jour. 3 4 Résumé La cathepsine (Cat) S est une protéase ciblée pour le développement de médicaments utilisés dans les maladies auto-immunes ou la douleur neuropathique. Elle joue également un rôle clé durant l’emphysème compte tenu de ses propriétés élastinolytiques. La Cat K, qui est une collagénase impliquée dans la résorption osseuse, représente une cible pertinente dans le traitement de l’ostéoporose et des métastases osseuses. De plus ces deux protéases sont des protagonistes majeurs du remodelage matriciel et l’homéostasie pulmonaire. Lors de la BPCO, la dégradation tissulaire bronchique est associée à une réaction inflammatoire qui s’accompagne d’un stress oxydatif et d’un déséquilibre de la balance protéases/antiprotéases. L'exposition à la fumée de cigarette constitue le principal facteur de risque dans la BPCO. Malgré la présence d'une cystéine nucléophile (Cys25) dans son site actif, nous avons constaté que la Cat S conserve partiellement son activité enzymatique après exposition à la fumée de cigarette. Ainsi, nous avons exploré les mécanismes soutenant la stabilité de la Cat S, en présence d’oxydants majeurs de la fumée de cigarette : peroxyde d’hydrogène, formaldéhyde, acroléine et peroxynitrite. Par ailleurs, dans le but de réguler l'activité des cathepsines à cystéine K et S, nous avons développé des inhibiteurs pseudopeptidiques de nouvelle génération dérivés de séquences substrats des cathepsines S et K ainsi que des dérivés triazines. Mots clés: BPCO, cathepsine K, cathepsine S, dérivés triazines, fumée de cigarette, inhibiteurs pseudopeptidiques, oxydation. 5 6 Résumé en anglais Cathepsin (Cat) S is an attractive target for drugs in autoimmune diseases or neuropathic pain. Moreover Cat S plays a key role during emphysema according to its potent elastinolytic activity. Cat K is a critical bone-resorbing collagenase and is a relevant target for the treatment of osteoporosis and bone metastasis. Both enzymes play a key role in matrix remodeling and pulmonary homeostasis. During COPD, the degradation of pulmonary parenchyma depends on inflammatory reactions associated with oxidative stress and proteases/antiproteases imbalance. Exposure to cigarette smoke, a major source of oxidants, is the main risk factor for COPD. Despite the presence of a nucleophilic cysteine (Cys25) within its active site, we found that CatS preserved partially its proteolytic activity after exposure to cigarette smoke extract (CSE). Thus, we have explored molecular mechanisms supporting this stability in the presence of
Recommended publications
  • Enzymology of the Nematode Cuticle: a Potential Drug Target? International Journal for Parasitology: Drugs and Drug Resistance, 4 (2)
    Page, Antony P., Stepek, Gillian, Winter, Alan D., and Pertab, David (2014) Enzymology of the nematode cuticle: a potential drug target? International Journal for Parasitology: Drugs and Drug Resistance, 4 (2). pp. 133-141. ISSN 2211-3207. Copyright © 2014 The Authors http://eprints.gla.ac.uk/95064/ Deposited on: 14 July 2014 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk International Journal for Parasitology: Drugs and Drug Resistance 4 (2014) 133–141 Contents lists available at ScienceDirect International Journal for Parasitology: Drugs and Drug Resistance journal homepage: www.elsevier.com/locate/ijpddr Invited Review Enzymology of the nematode cuticle: A potential drug target? ⇑ Antony P. Page , Gillian Stepek, Alan D. Winter, David Pertab Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK article info abstract Article history: All nematodes possess an external structure known as the cuticle, which is crucial for their development Received 7 April 2014 and survival. This structure is composed primarily of collagen, which is secreted from the underlying Received in revised form 14 May 2014 hypodermal cells. Extensive studies using the free-living nematode Caenorhabditis elegans demonstrate Accepted 15 May 2014 that formation of the cuticle requires the activity of an extensive range of enzymes. Enzymes are required Available online 6 June 2014 both pre-secretion, for synthesis of component proteins such as collagen, and post-secretion, for removal of the previous developmental stage cuticle, in a process known as moulting or exsheathment. The Keywords: excretion/secretion products of numerous parasitic nematodes contain metallo-, serine and cysteine Nematode proteases, and these proteases are conserved across the nematode phylum and many are involved in Cuticle Collagen the moulting/exsheathment process.
    [Show full text]
  • Spatiotemporal Proteomics Uncovers Cathepsin-Dependent Host Cell
    bioRxiv preprint doi: https://doi.org/10.1101/455048; this version posted November 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Spatiotemporal proteomics uncovers cathepsin-dependent host 2 cell death during bacterial infection 3 Joel Selkrig1, Nan Li1,2,3, Jacob Bobonis1,4, Annika Hausmann5, Anna Sueki1,4, Haruna 4 Imamura6, Bachir El Debs1, Gianluca Sigismondo3, Bogdan I. Florea7, Herman S. 5 Overkleeft7, Pedro Beltrao6, Wolf-Dietrich Hardt5, Jeroen Krijgsveld3‡, Athanasios Typas1‡. 6 7 1 European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 8 Heidelberg, Germany. 9 2 Institute of Synthetic Biology (iSynBio), Shenzhen Institutes of Advanced Technology (SIAT), 10 Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 11 China. 12 3 German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. 13 4 Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences 14 5 Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland. 15 6 European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome 16 Campus, Hinxton, Cambridge, CB10 1SD 17 7 Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 18 55, 2333 CC Leiden, the Netherlands. 19 20 21 ‡ to whom correspondence should be addressed: 22 [email protected] & [email protected] 23 24 SUMMARY 25 Immune cells need to swiftly and effectively respond to invading pathogens.
    [Show full text]
  • Cysteine Cathepsins: from Structure, Function and Regulation to New Frontiers☆
    Biochimica et Biophysica Acta 1824 (2012) 68–88 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbapap Review Cysteine cathepsins: From structure, function and regulation to new frontiers☆ Vito Turk a,b,⁎⁎, Veronika Stoka a, Olga Vasiljeva a, Miha Renko a, Tao Sun a,1, Boris Turk a,b,c,Dušan Turk a,b,⁎ a Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia b Center of Excellence CIPKEBIP, Ljubljana, Slovenia c Center of Excellence NIN, Ljubljana, Slovenia article info abstract Article history: It is more than 50 years since the lysosome was discovered. Since then its hydrolytic machinery, including Received 16 August 2011 proteases and other hydrolases, has been fairly well identified and characterized. Among these are the cyste- Received in revised form 3 October 2011 ine cathepsins, members of the family of papain-like cysteine proteases. They have unique reactive-site prop- Accepted 4 October 2011 erties and an uneven tissue-specific expression pattern. In living organisms their activity is a delicate balance Available online 12 October 2011 of expression, targeting, zymogen activation, inhibition by protein inhibitors and degradation. The specificity of their substrate binding sites, small-molecule inhibitor repertoire and crystal structures are providing new Keywords: fi Cysteine cathepsin tools for research and development. Their unique reactive-site properties have made it possible to con ne the Protein inhibitor targets simply by the use of appropriate reactive groups. The epoxysuccinyls still dominate the field, but now Cystatin nitriles seem to be the most appropriate “warhead”.
    [Show full text]
  • Cysteine Cathepsin Proteases: Regulators of Cancer Progression and Therapeutic Response
    REVIEWS Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response Oakley C. Olson1,2 and Johanna A. Joyce1,3,4 Abstract | Cysteine cathepsin protease activity is frequently dysregulated in the context of neoplastic transformation. Increased activity and aberrant localization of proteases within the tumour microenvironment have a potent role in driving cancer progression, proliferation, invasion and metastasis. Recent studies have also uncovered functions for cathepsins in the suppression of the response to therapeutic intervention in various malignancies. However, cathepsins can be either tumour promoting or tumour suppressive depending on the context, which emphasizes the importance of rigorous in vivo analyses to ascertain function. Here, we review the basic research and clinical findings that underlie the roles of cathepsins in cancer, and provide a roadmap for the rational integration of cathepsin-targeting agents into clinical treatment. Extracellular matrix Our contemporary understanding of cysteine cathepsin tissue homeostasis. In fact, aberrant cathepsin activity (ECM). The ECM represents the proteases originates with their canonical role as degrada- is not unique to cancer and contributes to many disease multitude of proteins and tive enzymes of the lysosome. This view has expanded states — for example, osteoporosis and arthritis4, neuro­ macromolecules secreted by considerably over decades of research, both through an degenerative diseases5, cardiovascular disease6, obe- cells into the extracellular
    [Show full text]
  • JPR Submission
    This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of Proteome Research, copyright ©American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jproteome.9b00487. Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform. Please provide feedback Please support the ScholarWorks@UMBC repository by emailing [email protected] and telling us what having access to this work means to you and why it’s important to you. Thank you. Journal of Proteome Research This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies. Top-down Proteomic Characterization of Truncated Proteoforms Journal: Journal of Proteome Research Manuscript ID pr-2019-004879.R1 Manuscript Type: Article Date Submitted by the 10-Sep-2019 Author: Complete List of Authors: Chen, Dapeng; University of Maryland at College Park; Zeteo Tech Inc Geis-Asteggiante, Lucia; University of Maryland at College Park Gomes, Fabio; Scripps Research Institute, Department of Molecular Medicine Ostrand-Rosenberg, Suzanne; University of Maryland Baltimore County Fenselau, Catherine; University of Maryland at College Park ACS Paragon Plus Environment Page 1
    [Show full text]
  • Insights Into the Origins of Allergic Asthma
    VIRAL-ALLERGEN INTERACTIONS VIRAL-ALLERGEN INTERACTIONS: INSIGHTS INTO THE ORIGINS OF ALLERGIC ASTHMA. By AMAL A. AL-GARAWI, M.A. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy McMaster University © Copyright by Amal A. Al-Garawi, April 2012 TO MY PARENTS, NORA & ALI FOR THEIR UNCONDITIONAL LOVE, SUPPORT AND NEVER-ENDING PATIENCE. WITH ALL MY LOVE! ii DOCTOR OF PHILOSOPHY (2012) McMaster University (Medical Sciences) Hamilton, Ontario TIT TITLE: Viral-Allergen Interactions: Insights into the Origins of Asthma AUTHOR: Amal A. Al-Garawi, M.A. (Boston University) SUPERVISOR: Dr. Manel Jordana NUMBER OF PAGES: x, 145 iii ABSTRACT Asthma is a chronic immune-inflammatory disease of the airways, characterized by reversible airflow obstruction and airway hyperresponsiveness (AHR), and is associated with the development of airway remodeling. While our understanding of the pathophysiology of allergic asthma has increased remarkably in the last few decades, the origins of the disease remain elusive. Indeed, studies indicate that the prevalence of allergic asthma, has increased dramatically over the last 30 years. Within this context, a number of environmental factors including respiratory viral infections have been associated with the onset of this disease but causal evidence is lacking. The work presented in this thesis examines the interactions between a respiratory viral infection, specifically influenza A, and the common aeroallergen house dust mite (HDM) in an experimental murine model. To this end, we investigated the impact of an acute influenza A infection on the exposure to a subclinical dose of HDM (Chapter 2) and addressed potential underlying immune mechanisms using a global, genomic approach (Chapter 3).
    [Show full text]
  • Mccarroll, Douglas (2014) the Effects of Trypanosoma Brucei and Mammalian-Derived Extracellular Cathepsin-L on Myocardial Function
    McCarroll, Douglas (2014) The effects of Trypanosoma brucei and mammalian-derived extracellular cathepsin-L on myocardial function. PhD thesis. http://theses.gla.ac.uk/5170/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten:Theses http://theses.gla.ac.uk/ [email protected] The Effects of Trypanosoma brucei and Mammalian-Derived Extracellular Cathepsin-L on Myocardial Function Mr. Douglas McCarroll BVMS (Hons) MSc (VetSci) MRCVS Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy to the Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, U.K. Research conducted at the British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K. January 2014 2 Abstract African trypanosomiasis is a neglected tropical disease affecting both animals and humans in sub-Saharan Africa. The disease is caused bythe protozoan parasite Trypanosoma brucei, which is transmitted by the tsetse fly (Glossina sp.) vector. In animals, infection leads to severe muscle atrophy and anaemia resulting in significant production and economic losses.
    [Show full text]
  • Enzymology of the Nematode Cuticle: a Potential Drug Target? ⇑ 6 Q1 Antony P
    IJPDDR 72 No. of Pages 9, Model 5G 5 June 2014 International Journal for Parasitology: Drugs and Drug Resistance xxx (2014) xxx–xxx 1 Contents lists available at ScienceDirect International Journal for Parasitology: Drugs and Drug Resistance journal homepage: www.elsevier.com/locate/ijpddr 4 5 3 Enzymology of the nematode cuticle: A potential drug target? ⇑ 6 Q1 Antony P. Page , Gillian Stepek, Alan D. Winter, David Pertab 7 Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK 89 10 article info abstract 2712 13 Article history: All nematodes possess an external structure known as the cuticle, which is crucial for their development 28 14 Received 7 April 2014 and survival. This structure is composed primarily of collagen, which is secreted from the underlying 29 15 Received in revised form 14 May 2014 hypodermal cells. Extensive studies using the free-living nematode Caenorhabditis elegans demonstrate 30 16 Accepted 15 May 2014 that formation of the cuticle requires the activity of an extensive range of enzymes. Enzymes are required 31 17 Available online xxxx both pre-secretion, for synthesis of component proteins such as collagen, and post-secretion, for removal 32 of the previous developmental stage cuticle, in a process known as moulting or exsheathment. The excre- 33 18 Q3 Keywords: tion/secretion products of numerous parasitic nematodes contain metallo-, serine and cysteine proteases, 34 19 Nematode and these proteases are conserved across the nematode phylum and many are involved in the moulting/ 35 20 Cuticle 21 Collagen exsheathment process.
    [Show full text]
  • The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance
    International Journal of Molecular Sciences Review The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance Magdalena Rudzi ´nska 1, Alessandro Parodi 1, Surinder M. Soond 1, Andrey Z. Vinarov 2, Dmitry O. Korolev 2, Andrey O. Morozov 2, Cenk Daglioglu 3 , Yusuf Tutar 4 and Andrey A. Zamyatnin Jr. 1,5,* 1 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia 2 Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia 3 Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, 35430 Urla/Izmir, Turkey 4 Faculty of Pharmacy, University of Health Sciences, 34668 Istanbul, Turkey 5 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-4956229843 Received: 26 June 2019; Accepted: 19 July 2019; Published: 23 July 2019 Abstract: Cysteine cathepsins are lysosomal enzymes belonging to the papain family. Their expression is misregulated in a wide variety of tumors, and ample data prove their involvement in cancer progression, angiogenesis, metastasis, and in the occurrence of drug resistance. However, while their overexpression is usually associated with highly aggressive tumor phenotypes, their mechanistic role in cancer progression is still to be determined to develop new therapeutic strategies. In this review, we highlight the literature related to the role of the cysteine cathepsins in cancer biology, with particular emphasis on their input into tumor biology. Keywords: cysteine cathepsins; cancer progression; drug resistance 1. Introduction Cathepsins are lysosomal proteases and, according to their active site, they can be classified into cysteine, aspartate, and serine cathepsins [1].
    [Show full text]
  • A Novel Cysteine Protease Inhibitor of Naegleria Fowleri That Is Specifically Expressed During Encystation and at Mature Cysts
    pathogens Article A Novel Cysteine Protease Inhibitor of Naegleria fowleri That Is Specifically Expressed during Encystation and at Mature Cysts Hương Giang Lê 1,2, A-Jeong Ham 3, Jung-Mi Kang 1,2, Tuấn Cường Võ 1,2, Haung Naw 1,2, Hae-Jin Sohn 3, Ho-Joon Shin 3 and Byoung-Kuk Na 1,2,* 1 Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; [email protected] (H.G.L.); [email protected] (J.-M.K.); [email protected] (T.C.V.); [email protected] (H.N.) 2 Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea 3 Department of Microbiology, Ajou University College of Medicine, Suwon 16499, Korea; [email protected] (A.-J.H.); [email protected] (H.-J.S.); [email protected] (H.-J.S.) * Correspondence: [email protected]; Tel.: +82-55-772-8102; Fax: +82-55-772-8109 Abstract: Naegleria fowleri is a free-living amoeba that is ubiquitous in diverse natural environments. It causes a fatal brain infection in humans known as primary amoebic meningoencephalitis. Despite the medical importance of the parasitic disease, there is a great lack of knowledge about the biology and pathogenicity of N. fowleri. In this study, we identified and characterized a novel cysteine protease inhibitor of N. fowleri (NfCPI). NfCPI is a typical cysteine protease inhibitor belonging to the cystatin family with a Gln-Val-Val-Ala-Gly (QVVAG) motif, a characteristic motif conserved in the cystatin family of proteins. Bacterially expressed recombinant NfCPI has a dimeric structure and exhibits Citation: Lê, H.G.; Ham, A-J.; Kang, inhibitory activity against several cysteine proteases including cathespin Bs of N.
    [Show full text]
  • A Role for Cathepsin Z in Neuroinflammation Provides Mechanistic Support for an Epigenetic Risk Factor in Multiple Sclerosis Euan R
    Allan et al. Journal of Neuroinflammation (2017) 14:103 DOI 10.1186/s12974-017-0874-x SHORT REPORT Open Access A role for cathepsin Z in neuroinflammation provides mechanistic support for an epigenetic risk factor in multiple sclerosis Euan R. O. Allan1†, Rhiannon I. Campden1,2†, Benjamin W. Ewanchuk1,2, Pankaj Tailor2, Dale R. Balce1,2, Neil T. McKenna1,2, Catherine J. Greene1,2, Amy L. Warren3, Thomas Reinheckel4,5 and Robin M. Yates1,2* Abstract Background: Hypomethylation of the cathepsin Z locus has been proposed as an epigenetic risk factor for multiple sclerosis (MS). Cathepsin Z is a unique lysosomal cysteine cathepsin expressed primarily by antigen presenting cells. While cathepsin Z expression has been associated with neuroinflammatory disorders, a role for cathepsin Z in mediating neuroinflammation has not been previously established. Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in both wildtype mice and mice deficient in cathepsin Z. The effects of cathepsin Z-deficiency on the processing and presentation of the autoantigen myelin oligodendrocyte glycoprotein, and on the production of IL-1β and IL-18 were determined in vitro from cells derived from wildtype and cathepsin Z-deficient mice. The effects of cathepsin Z-deficiency on CD4+ T cell activation, migration, and infiltration to the CNS were determined in vivo. Statistical analyses of parametric data were performed by one-way ANOVA followed by Tukey post-hoc tests, or by an unpaired Student’s t test. EAE clinical scoring was analyzed using the Mann–Whitney U test. Results: We showed that mice deficient in cathepsin Z have reduced neuroinflammation and dramatically lowered circulating levels of IL-1β during EAE.
    [Show full text]
  • A Genomic Analysis of Rat Proteases and Protease Inhibitors
    A genomic analysis of rat proteases and protease inhibitors Xose S. Puente and Carlos López-Otín Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain Send correspondence to: Carlos López-Otín Departamento de Bioquímica y Biología Molecular Facultad de Medicina, Universidad de Oviedo 33006 Oviedo-SPAIN Tel. 34-985-104201; Fax: 34-985-103564 E-mail: [email protected] Proteases perform fundamental roles in multiple biological processes and are associated with a growing number of pathological conditions that involve abnormal or deficient functions of these enzymes. The availability of the rat genome sequence has opened the possibility to perform a global analysis of the complete protease repertoire or degradome of this model organism. The rat degradome consists of at least 626 proteases and homologs, which are distributed into five catalytic classes: 24 aspartic, 160 cysteine, 192 metallo, 221 serine, and 29 threonine proteases. Overall, this distribution is similar to that of the mouse degradome, but significatively more complex than that corresponding to the human degradome composed of 561 proteases and homologs. This increased complexity of the rat protease complement mainly derives from the expansion of several gene families including placental cathepsins, testases, kallikreins and hematopoietic serine proteases, involved in reproductive or immunological functions. These protease families have also evolved differently in the rat and mouse genomes and may contribute to explain some functional differences between these two closely related species. Likewise, genomic analysis of rat protease inhibitors has shown some differences with the mouse protease inhibitor complement and the marked expansion of families of cysteine and serine protease inhibitors in rat and mouse with respect to human.
    [Show full text]