Intra-Articular Landmarks for Anterior Cruciate Ligament Reconstructions: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Intra-Articular Landmarks for Anterior Cruciate Ligament Reconstructions: a Review REVIEW Intra-articular landmarks for anterior cruciate ligament reconstructions: a review Although many factors influence outcome following anterior cruciate ligament reconstruction, recurrent instability is frequently linked to technical errors, most commonly tunnel malposition. Numerous anatomic landmarks have been described in order to aid in accurate tunnel placement. This article will review and summarize the current literature regarding intra-articular landmarks and their use in anterior cruciate ligament reconstruction. 1 KEYWORDS: anterior cruciate ligament n anteromedial bundle n lateral bifurcate Elcil Kaya Bicer , ridge n medial tibial spine n posterolateral bundle n Resident’s ridge Robert A Magnussen2, n retro-eminence ridge Matthias Jacobi2, Sebastien Lustig2, The anterior cruciate ligament (ACL) is one of the most frequent cause of recurrent instability, Elvire Servien2 the most important stabilizers of the knee joint. with tunnel malpositioning noted to be the most & Philippe Neyret† 1 It resists anterior tibial translation and serves as common error [17,18]. On the femur, tunnels are Specialist of Orthopedic Surgery & Traumatology, Ipekyolu Public a secondary restraint to internal tibial rotation often too anterior, leading to impingement in the Hospital, Van, Turkey [1–3]. ACL deficiency frequently leads to symp- notch and a loss of extension. Placement of the 2Specialist of Orthopedic Surgery & Traumatology, Centre Albert Trillat, tomatic knee instability, and is associated with femoral tunnel too far posterior can lead to graft Groupe Hospitalier Nord, Hospices both short- and long-term consequences, includ- laxity in flexion or excessive tension in extension. Civils de Lyon, Lyon-Caluire, France ing meniscal and articular cartilage lesions and Placement of the femoral tunnel vertically in the †Author for correspondence: Centre Albert Trillat, Groupe progressive osteoarthritic changes [4–6]. ACL notch may lead to decreased rotational control Hospitalier Nord, Hospices Civils de rupture is generally treated either operatively or and a persistent pivot-shift in some cases [17]. On Lyon, Lyon-Caluire, France nonoperatively depending on the patient’s symp- the tibia, the tunnel may be too far posterior, [email protected] toms, age, activity level and functional demands leading to a vertical graft that poorly controls [7–9]. Arthroscopically assisted reconstruction anterior translation, or too far anterior, leading techniques are frequently utilized in the surgi- to impingement of the graft in the notch dur- cal management of ACL ruptures. Numerous ing extension [19]. In order to achieve a successful techniques have been described and there is cur- long-term outcome, the surgeon must consider the rently no consensus as to which methods yield native ACL anatomy during ACL reconstruction. the best functional outcome, patient satisfaction The aim of this article is to present the current and long-term results. knowledge of the native attachment sites of the Currently, there is great interest in reproduc- ACL and the intra-articular landmarks for ACL ing the native anatomy when reconstructing the reconstruction. ACL [10,11]. There is debate regarding the need for double-bundle reconstruction. Double-bundle The anatomy & function of the ACL reconstructions have been shown to improve The ACL is an intra-articular but extrasynovial rotational stability in vitro [12,13], but improved ligament. Proximally, its origin is on the postero- clinical outcomes have not been demonstrated medial aspect of the lateral femoral condyle. It [14,15]. With all techniques, the ultimate goal follows an oblique course inferomedially until it in ACL reconstructive surgery is to restore the reaches its insertion site on the tibia, the anterior translational and rotational kinematics of the intercondylar fossa. native knee. Whether single- or double-bundle The ACL is frequently described as consist- ACL reconstruction is performed, adherence to ing of two functional bundles: the anteromedial the anatomic reconstruction concept seems to be (AM) bundle and the posterolateral (PL) bundle an important factor in achieving this goal [16]. [20]. They are named according to their relative Numerous factors affect outcome following insertion sites onto the tibia. There is, however, ACL reconstruction, but the most common conflicting evidence regarding the number of cause of revision ACL reconstruction is recurrent bundles that constitute the ligament. Odensten symptomatic instability [17]. Technical errors are and Gillquist reported that it was not possible 10.2217/IJR.10.97 © 2010 Future Medicine Ltd Int. J. Clin. Rheumatol. (2010) 5(6), 677–686 ISSN 1758-4272 677 REVIEW Bicer, Magnussen, Jacobi, Lustig, Servien & Neyret Intra-articular landmarks for anterior cruciate ligament reconstructions REVIEW to demonstrate separate bundles of the ACL in The size of the ACL is variable. Measurement histologic sections [21], while some authors have of the intra-articular length of ACL in cadav- described a third, intermediate bundle [22,23]. eric studies revealed that it had a range However, based on the findings of numerous between 22 and 41 mm, with a mean length cadaveric and fetal dissections, the majority of of 32 mm [23]. The ligament is broadest near authors agree on the presence of two functional its attachment sites and narrower in its mid- bundles [2,24–29]. substance [20]. The AM bundle is longer than The division of the ligament into functional the PL bundle, but the lengths and widths of bundles implies that each bundle is unique with the bundles are varied, subject to different respect to its tensioning pattern throughout the degrees of flexion [2]. range of motion of the knee. In extension, the AM and PL bundles are parallel and both are The femoral attachment site relatively taut (FIGURE 1A) [20]. With knee flexion, The ACL originates from the posteromedial a change in the spatial orientation of the bundles aspect of the lateral femoral condyle. The is observed. The AM bundle remains taut and orientation of the origins of the AM and PL crosses over the PL bundle, which relaxes with bundles relative to each other is dependent on knee flexion(F IGURE 1B) [2,20] . In situ biomechani- the degree of knee flexion. From an anatomic cal studies have demonstrated that when resist- point of view, the femoral origins are generally ing anterior tibial translation, the forces carried described with the knee in extension; how- by the PL bundle significantly increased as the ever, the arthroscopic view is not compatible knee was extended, whereas the AM bundle was with the anatomic descriptions since the knee exposed to an almost constant force at all degrees must be flexed to visualize the femoral origin of flexion. When resisting internal tibial rota- arthroscopically. In full extension, the origin of tion, the force transmitted by the AM bundle the AM bundle is located at the proximal por- both in 15 and 30° of flexion was found to be tion of the entire ACL footprint and the origin higher than that of the PL bundle. These find- of the PL bundle is located posterior and distal ings suggest that both of the bundles participate to the origin of the AM bundle (FIGURE 2A). With in the maintenance of the anteroposterior and knee flexion, the longitudinal axis of the ACL rotational knee stability [2,30,31]. attachment becomes more horizontal and the Figure 1. Anteromedial (light gray) and posterolateral (dark gray) bundles of the anterior cruciate ligament in a right knee. The bundles are parallel and taut in extension (A), while in flexion the anteromedial bundle remains taut and crosses over the posterolateral bundle (B). 678 Int. J. Clin. Rheumatol. (2010) 5(6) future science group REVIEW Bicer, Magnussen, Jacobi, Lustig, Servien & Neyret Intra-articular landmarks for anterior cruciate ligament reconstructions REVIEW Figure 2. Femoral and tibial attachments of the anteromedial (light gray) and posterolateral (dark gray) bundles of the anterior cruciate ligament in a right knee. Note the change in orientation of the femoral attachment sites relative to the tibia when the knee moves from extension (A) to flexion(B) . PL origin is located anterior and inferior relative of the femoral diaphysis in the sagittal plane to the AM origin when viewed arthroscopically was 34.9 ± 3.7° and the length of this ridge was (FIGURE 2B) [11]. measured as 15.5 ± 1.5 mm [35]. Numerous cadaveric and radiologic studies In a clinical study, Shino et al. investigated have been performed to describe the localiza- the utility of Resident’s ridge as an arthroscopic tion of the attachment sites of the ACL with landmark for anatomical femoral tunnel for respect to anatomic references [2,20,25,26,29,32– ACL graft [36]. It was shown that arthroscopic 34]. Concerning the femoral origin, the most identification of the Resident’s ridge was possible prominent bony landmark is the Resident’s without performing bony notchplasty, even in ridge (also known as the lateral intercondylar patients with chronic ACL insufficiency. The ridge). The Resident’s ridge is a thick bony arthroscopically measured distance between the ridge on the medial wall of the lateral femoral midpoint of this ridge and the posterior articular condyle (FIGURE 3A), which extends from a pos- margin was 7–10 mm. Postoperative evaluation terior–superior to anterior–inferior direction of these patients with 3D computed tomogra- from an arthroscopic point of view (FIGURE 3B). phy demonstrated that the mean length of the It constitutes the anterosuperior border of the Resident’s ridge was 18.8 ± 1.4 mm. The average femoral ACL attachment area, meaning that maximum distance measured between the ridge the ACL does not possess any fibers that attach and the posterior margin of the medial wall of antero superior to this ridge. The Resident’s ridge the lateral femoral condyle was 9.3 ± 0.8 mm, extends along the entire length of the femoral and the angle between the ridge and the axis of origin. Histologic ana lysis of fetuses ranging distal femoral diaphysis in the sagittal plane was from 19 to 22 weeks of gestation has demon- 31.1 ± 2.0°.
Recommended publications
  • Compiled for Lower Limb
    Updated: December, 9th, 2020 MSI ANATOMY LAB: STRUCTURE LIST Lower Extremity Lower Extremity Osteology Hip bone Tibia • Greater sciatic notch • Medial condyle • Lesser sciatic notch • Lateral condyle • Obturator foramen • Tibial plateau • Acetabulum o Medial tibial plateau o Lunate surface o Lateral tibial plateau o Acetabular notch o Intercondylar eminence • Ischiopubic ramus o Anterior intercondylar area o Posterior intercondylar area Pubic bone (pubis) • Pectineal line • Tibial tuberosity • Pubic tubercle • Medial malleolus • Body • Superior pubic ramus Patella • Inferior pubic ramus Fibula Ischium • Head • Body • Neck • Ramus • Lateral malleolus • Ischial tuberosity • Ischial spine Foot • Calcaneus Ilium o Calcaneal tuberosity • Iliac fossa o Sustentaculum tali (talar shelf) • Anterior superior iliac spine • Anterior inferior iliac spine • Talus o Head • Posterior superior iliac spine o Neck • Posterior inferior iliac spine • Arcuate line • Navicular • Iliac crest • Cuboid • Body • Cuneiforms: medial, intermediate, and lateral Femur • Metatarsals 1-5 • Greater trochanter • Phalanges 1-5 • Lesser trochanter o Proximal • Head o Middle • Neck o Distal • Linea aspera • L • Lateral condyle • L • Intercondylar fossa (notch) • L • Medial condyle • L • Lateral epicondyle • L • Medial epicondyle • L • Adductor tubercle • L • L • L • L • 1 Updated: December, 9th, 2020 Lab 3: Anterior and Medial Thigh Anterior Thigh Medial thigh General Structures Muscles • Fascia lata • Adductor longus m. • Anterior compartment • Adductor brevis m. • Medial compartment • Adductor magnus m. • Great saphenous vein o Adductor hiatus • Femoral sheath o Compartments and contents • Pectineus m. o Femoral canal and ring • Gracilis m. Muscles & Associated Tendons Nerves • Tensor fasciae lata • Obturator nerve • Iliotibial tract (band) • Femoral triangle: Boundaries Vessels o Inguinal ligament • Obturator artery o Sartorius m. • Femoral artery o Adductor longus m.
    [Show full text]
  • Injuries to the Lower Extremity II
    Injury to lower extremity InjuriesInjuries toto thethe lowerlower extremityextremity IIII Aree Tanavalee MD Associate Professor Department of Orthopaedics Faculty of Medicine Chulalongkorn University Injury to lower extremity TopicsTopics • Fracture of the shaft of the femur • Fractures around the knee • Knee dislocation and fracture dislocation • Fractures of tibia and fibular • Fractures around the ankle • Fracture and fracture dislocation of the foot Injury to lower extremity CommonCommon symptomssymptoms andand signssigns ofof fracturesfractures – Pain – Deformity – Shortening – Swelling – Ecchymosed – Loss of function – Open injury • Gross finding of fractures Injury to lower extremity RadiographicRadiographic evaluationevaluation forfor fracturesfractures • At least, 2 different planes of Fx site – Includes joint above and below – Some types of Fx, special views – Sometimes, 2 different times – Sometimes, calls second opinion Injury to lower extremity ComplicationsComplications ofof fracturesfractures • General – Delayed union – Nonunion – Malunion – Shortening – Infection • Severe – Neurovascular injuries – Compartment syndrome – Fat embolism – Adult respiratory distress syndrome (ARDS) Injury to lower extremity FatFat embolismembolism • Common in Fx of long bone and pelvis • Multiple Fxs >> single Fx • Respiratory insufficiency • Usually manifests within 48 hr • Clinical – Fever – Tachepnea – Tachycardia – Alters consciousness • Treatment – Respiratory support – Early Fx stabilization Injury to lower extremity CompartmentCompartment
    [Show full text]
  • Morphometric Study of Tibial Condylar Area in the North Indian Population. Ankit Srivastava1, Dr
    JMSCR Volume||2||Issue||3||Page515-519||March 2014 2014 www.jmscr.igmpublication.org Impact Factcor-1.1147 ISSN (e)-2347-176x Morphometric Study of Tibial Condylar area in the North Indian Population. Ankit Srivastava1, Dr. Anjoo Yadav2, Prof. R.J. Thomas3, Ms. Neha Gupta4 1Tutor in AIIMS Bhopal. 2Lecturer in Govt. medical college, Kannauj. 3Professor in Govt. medical college, Kannauj. 4Tutor in Govt. medical college, Kannauj. Email: [email protected] Abstract: The upper end of tibia is expanded to form a mass that consists of two parts: lateral and medial condyles which articulate with the corresponding condylar surfaces of the femur. Separating these two condyles is the intercondylar area whose central part is raised to form the intercondylar eminence. The present study will give information of the exact dimensions and percentage covered by medial and lateral condyles out of total condylar area. This study was undertaken to collect metrical data about the medial and lateral condyles of tibia. The present study was performed on 150 dry tibia of north Indian subjects, Out of which 70 tibia belonged to right side and 80 were of left side. The age and sex of these bones were not known. The anteroposterior length of medial and lateral tibial condylar area was measured along with their transverse diameter. The data was statistically analyzed to hold comparisons between tibia of right and left side and also between medial and lateral tibial condyles of the same side. The area covered by MTC is 38.56% and by LTC is 35.97% out of total condylar area in right side.
    [Show full text]
  • Bones of the Lower Limb Doctors Notes Notes/Extra Explanation Editing File Objectives
    Color Code Important Bones of the Lower Limb Doctors Notes Notes/Extra explanation Editing File Objectives Classify the bones of the three regions of the lower limb (thigh, leg and foot). Memorize the main features of the – Bones of the thigh (femur & patella) – Bones of the leg (tibia & Fibula) – Bones of the foot (tarsals, metatarsals and phalanges) Recognize the side of the bone. ﻻ تنصدمون من عدد ال رشائح نصها رشح زائد وملخصات واسئلة Some pictures in the original slides have been replaced with other pictures which are more clear BUT they have the same information and labels. Terminology (Team 434) شيء مرتفع /Eminence a small projection or bump Terminology (Team 434) Bones of thigh (Femur and Patella) Femur o Articulates (joins): (1) above with Acetabulum of hip bone to form the hip joint, (2) below with tibia and patella to form the knee joint. Body of femur (shaft) o Femur consists of: I. Upper end. II. Shaft. III. Lower end. Note: All long bones consist of three things: 1- upper/proximal end posterior 2- shaft anterior 3- lower/distal end I. Upper End of Femur The upper end contains: A. Head B. Neck C. Greater trochanter & D. Lesser trochanter A. Head: o Articulates (joins) with acetabulum of hip bone to form the hip joint. o Has a depression in the center called Fovea Capitis. o The fovea capitis is for the attachment of ligament of the head of Femur. o An artery called Obturator Artery passes along this ligament to supply head of Femur. B. Neck: o Connects head to the shaft.
    [Show full text]
  • Morphological Characterization and Preparation of Knee Joint Porcino, Verisimilitude and Contributions As Alternative Material for Teaching Human Anatomy
    International Journal of Research Studies in Biosciences (IJRSB) Volume 3, Issue 7, July 2015, PP 35-41 ISSN 2349-0357 (Print) & ISSN 2349-0365 (Online) www.arcjournals.org Morphological Characterization and Preparation of Knee Joint Porcino, Verisimilitude and Contributions as Alternative Material for Teaching Human Anatomy Mauricio Ferraz De Arruda 1Physiotherapist, PhD in Bioscience and Biotechnology Morphology sub area Professor of the Anatomy in the Municipal Institute of Higher Education IMES-Catanduva-Brazil [email protected] Gustavo Salomão 2Biologist Graduate in The Municipal Institute of Higher Education IMES-Catanduva-Brazil Abstract: The teaching of human anatomy, temporal this moment passes by legislative and methodological modification, thus it is increasingly common to use plastic parts to simulate various body parts. Many team not bringing the quality and / or similarity to the natural ones. Thus in our study brings to the specific topic of the knee, a very complex and with many nuances to be displayed and stored, linked to the use of new methodologies and alternative teaching materials for this part. We can create various methods to improve this teaching, the use of anatomical parts similar to human animals, with the proposed this study using the porcine knee. Our work showed that were there 15 similar structures in the comparison between human and porcine knee Keywords: Teaching, anatomy, knee, human, porcine. 1. INTRODUCTION Currently are found difficulties in order to improve the learning of anatomical structures for various reasons, one of them is the difficulty in memorizing anatomical terminology since most of the terms derived from Latin and Greek, as well as the inadequate preparation of the anatomical parts, preventing the close observation, and hindering the learning process [1].
    [Show full text]
  • Leg and Foot
    Dr. Sangeeta Kotrannavar Assistant Professor Dept. of Anatomy USM-KLE IMP, Belagavi Describe the bony landmarks of tibia and fibula Describe the osteology of tibia, fibula, tarsals, metatarsals and phalanges State the anterior, posterior and lateral compartments of the leg Describe the attachments, actions and innervations of the muscles in each compartment Describe the blood supply and nerve supply in each compartment Describe the tarsal tunnel and its contents State the four layers of muscles in the sole of the foot Describe the blood supply and innervation of the sole of the foot Explain the arches of the foot and its significant Describe the applied anatomy of the foot Leg is between the knee and ankle joint – bones tibia & fibula Foot is distal to the ankle joint Lat. Medial Tibia is large, weight-bearing shin bone Medially placed, Long bone Equivalent to radius Parts Upper end, Lower end, Shaft • Upper end - med. & Lat. Condyles, intercondylar area (non articular), tibial tuberosity • Condyles articulates with condyles of femur. • Intercondylar area—attachment fro before backwards: Ant. Horn of med. Miniscus, ant. Cruciate lig., ant. Horn of lat. Miniscus. post. Horn of lat. Miniscus, post. Horn of med. Miniscus, post. Cruciate lig. • Med. Condyle - post - semimembranosus. Ant. - sartorius, gracilus, semitendinosus. • Tibial tuberosity - ligamentum patellae. • Lower end - medial malleolus – tip - deltoid lig. • Shaft - triangular. Borders - ant., med., lat • Shaft - Surfaces - anteromedial (subcutaneous), anterolat.
    [Show full text]
  • Area Intercondylaris Tibiae: Osseous Surface Structure and Its Relation to Soft Tissue Str Es and Applications to Radiography C
    J. Anat. (1974), 117, 3, pp. 605-618 605 With 5 figures Printed in Great Britain Area intercondylaris tibiae: Osseous surface structure and its relation to soft tissue str es and applications to radiography C KLAUS JACOBSEN t LR As Department of Orthopaedic Suirgerv T-3, The Gentofte H 1, Copenhagren, Dennmark 6 (Accepted 13 A!arch 1974) INTRODUCTION A more detailed anatomical description of the fine osseous surface features in the knee joint has become necessary now that Kennedy & Fowler (1971) have published their special radiological method for estimating medial instability and the 'drawer' sign in the joint by measuring the shift between skeletal parts during the application of known forces. Exact identification of skeletal parts from film to film presupposes exact anatomical knowledge. However, such knowledge seems to be lacking for the area between the tibial condyles. The anatomical textbooks of Hamilton (1956), Hollinshead (1964), Lang & Wachs- muth (1972), Gray (1962), and Cunningham (1972) give good accounts of this region, but not in sufficient detail to permit certain recognition on radiographs. In particular, the topographic relations of the soft tissues close to their bony attachments and in relation to bone surface features are not clearly described: the early work of Robert (1855) has been overlooked. Parsons (1906) gave an excellent account of the way the soft tissue attachments left their marks on the bones. Negru (1943) described the area intercondylaris anterior as having a lateral, deeply excavated half and a medial taller, domed half. At the junction of these two parts he described a ridge, for which he suggested the term 'crista areae intercondylaris anterior'.
    [Show full text]
  • Lab Manual Appendicular Skele
    1 PRE-LAB EXERCISES When studying the skeletal system, the bones are often sorted into two broad categories: the axial skeleton and the appendicular skeleton. This lab focuses on the appendicular skeleton, which is formed from the pectoral and pelvic girdles and the upper and lower limbs. View Module 7.2 Axial and Appendicular Skeleton to highlight the bones of the appendicular skeleton and compare them to those of the axial skeleton. Examine Module 11.1 Appendicular Skeleton to view only the bones of the appendicular skeleton. In addition to learning about all the bones of the appendicular skeleton, it is also important to identify some significant bone markings. Bone markings can have many shapes, including holes, round or sharp projections, and shallow or deep valleys, among others. These markings on the bones serve many purposes, including forming attachments to other bones or muscles and allowing passage of a blood vessel or nerve. It is helpful to understand the meanings of some of the more common bone marking terms. Before we get started, look up the definitions of these common bone marking terms: Canal: Condyle: Facet: Fissure: Foramen: (see Module 10.18 Foramina of Skull) Fossa: Margin: Process: Proximal: Trochanter: Tubercle: Tuberosity: Throughout this exercise, you will notice bold terms. This is meant to focus your attention on these important words. Make sure you pay attention to any bold words and know how to explain their definitions and/or where they are located. Use the following modules to guide your exploration of the appendicular skeleton. As you explore these bones in Visible Body’s app, also locate the bones and bone markings on any available charts, models, or specimens.
    [Show full text]
  • Medd 421 Anatomy Project ~
    MEDD 421 ANATOMY PROJECT ~ KURT MCBURNEY, ASSISTANT TEACHING PROFESSOR - IMP NICHOLAS BYERS - SMP PETER BAUMEISTER - SMP Proof of Permission for Cadaveric Photos LABORATORY 1 ~ OSTEOLOGY INDEX Acetabular labrum Gluteal surface Metatarsals (1-5) Acetabulum Greater sciatic notch Navicular Anterior intercondylar area Greater Trochanter Neck of Fibula Anterior superior iliac spine (ASIS) Head of Femur Neck of Talus Calcaneal Tuberosity Head of Fibula Obturator foramen Calcaneus Head of Talus Patellar Surface Cuboid Iliac crest Phalanges Cuneiform Intercondylar eminence Phalanges (medial, intermediate, and lateral) Ischial spine Posterior superior iliac spine (PSIS) Femoral Condyles Ischial tuberosity Round ligament of the head of the femur Femoral Epicondyles Lateral Malleolus Shaft Fovea Capitis Lesser sciatic notch Sustentaculum tali Neck of Femur Linea Aspera Talus Gerdy’s tubercle Lunate surface Tarsus Medial / Lateral Tibial Condyles Tibial tuberosity Medial Malleolus Trochlear surface OSTEOLOGY: THE FOOT Structures in View: Calcaneus Talus Cuboid Navicular Cuneiform (Medial specific) Metatarsals (5th specific) Phalanges Calcaneus Structures in View: Sustentaculum Tali Calcaneal Tuberosity (Insertion of Achilles) Talus Structures in View: Head Neck Trochlear Surface (Not the spring) Metatarsals Structures in View: Head Shaft Base First Metatarsal Fifth Metatarsal Phalanges Structures in View: Proximal Distal Proximal Middle Distal Femur (anterior) Structures in View: Patellar Surface Medial Epicondyle Lateral Epicondyle Medial Condyle
    [Show full text]
  • Upper Extremity 2 Lower Extremity 1
    Upper extremity 2 Lower extremity 1 Carpal bones Scaphoid Lunate Triquetrum Pisiform Trapezium Phalanges Metacarpals [I-V] Proximal phalanx Base Trapezoid Middle phalanx Shaft; Body Capitate Distal phalanx Head Hamate Tuberosity of distal phalanx Styloid process of Hook of hamate Base of phalanx third metacarpal [III] Carpal groove Body of phalanx Head of phalanx,Trochlea of phalanx Hip bone; Coxal bone; Pelvic bone Ischium, Ilium, Pubic Acetabulum Acetabular margin Acetabular fossa Acetabular notch Lunate surface Ischiopubic ramus Obturator foramen Greater sciatic notch Ilium Body of ilium Ala of ilium; Wing of ilium Arcuate line Iliac crest Anterior superior iliac spine Anteriror inferior iliac spine Posterior superior iliac spine Posterior inferior iliac spine Iliac fossa Gluteal surface Anterior gluteal line Posterior gluteal line Inferior gluteal line Sacropelvic surface Auricular surface Iliac tuberosity Ischium Body Ramus Ischial tuberosity Ischial spine Lesser sciatic notch Pubis Body Pubic tubercle Symphysial surface Superior pubic ramus Iliopubic ramus Pecten pubis; Pectineal line Obturator groove Inferior pubic ramus Head Fovea for ligament Neck Lesser trochanter Intertrochanteric line and crest Shaft of femur; Body of femur Linea aspera, Lateral lip, Medial lip Pectinal line; Gluteal tuberosity Popliteal surface Medial condyle, Medial epicondyle Adductor tubercle Lateral condyle and epicondyle Patellar surface Intercondylar fossa Intercondylar line The proximal femur is bent (L-shaped) so that the long axis of the head and neck project superomedially at an angle to that of the obliquely oriented shaft This obtuse angle of inclination in the adult is 115 to 140 degrees, averaging 126 degrees. The angle is less in females because of the increased width between the acetabula and the greater obliquity of the shaft.
    [Show full text]
  • Hip, Knee & Ankle Joints
    BY DR.SANAA ALSHAARAWY HIP JOINT OBJECTIVES At the end of the lecture, students should be able to: § List the type & articular surfaces of hip joint. § Describe the ligaments of hip joints. § Describe movements of hip joint. TYPES & ARTICULAR SURFACES § TYPE: • It is a synovial, ball & socket joint. § ARTICULAR SURFACES: • Acetabulum of hip (pelvic) bone • Head of femur. LIGAMENTS (3 Extracapsular) Intertrochanteric line §Iliofemoral ligament: Y-shaped strong ligament, anterior to joint, limits extension §Pubofemoral ligament: antero-inferior to joint, limits abduction & lateral rotation §Ischiofemoral ligament: posterior to joint, limits medial rotation LIGAMENTS (3 Intracapsular) §Acetabular labrum: fibro-cartilaginous collar attached to margins of acetabulum to increase its depth for better retaining of head of femur (it is completed inferiorly by transverse ligament). §Transverse acetabular ligament: converts acetabular notch into foramen (acetabular foramen) through which pass acetabular vessels. §Ligament of femoral head: carries vessels to head of femur MOVEMENTS § FLEXION: Iliopsoas (mainly), sartorius, pectineus, rectus femoris. § EXTENSION: Hamstrings (mainly), gluteus maximus (powerful extensor). § ABDUCTION: Gluteus medius & minimus, sartorius. § ADDUCTION: Adductors, gracilis. § MEDIAL ROTATION: Gluteus medius & minimus. § LATERAL ROTATION: Gluteus maximus, quadratus femoris, piriformis, obturator externus & internus. KNEE JOINT OBJECTIVES At the end of the lecture, students should be able to: § List the type & articular surfaces of knee joint. § Describe the capsule of knee joint, its extra- & intra-capsular ligaments. § List important bursae in relation to knee joint. § Describe movements of knee joint. TYPES & ARTICULAR SURFACES Knee joint is formed of: §Three bones. §Three articulations. §Femoro-tibial articulations: between the 2 femoral condyles & upper surfaces of the 2 tibial condyles (Type: synovial, modified hinge).
    [Show full text]
  • Bones of Lower Limb
    BONES OF LOWER LIMB ANATOMY DEPARTMENT Dr. Mohammad Saeed Vohra [email protected] OBJECTIVES • At the end of the lecture the students should be able to: • Classify the bones of the three regions of the lower limb (thigh, leg and foot). • Differentiate the bones of the lower limb from the bones of the upper limb • Memorize the main features of the – Bones of the thigh (femur & patella) – Bones of the leg (tibia & Fibula) – Bones of the foot (tarsals, metatarsals and phalanges) • Recognize the side of the bone BONES OF THIGH (Femur and Patella) Femur: . Articulates above with acetabulum of hip bone to form the hip joint . Articulates below with tibia and patella to form the knee joint BONES OF THIGH (Femur and Patella) • Femur Consists of: • Upper end • Shaft • Lower end UPPER END OF FEMUR • Head: • It articulates with acetabulum of hip bone to form hip joint • Has a depression in the center (fovea capitis), for the attachment of ligament of the head • Obturator artery passes along this ligament to supply head of femur • Neck: • It connects head to the shaft UPPER END OF FEMUR • Greater and lesser trochanters • Anteriorly connecting the 2 trochanters the inter-trochanteric line, where the iliofemoral ligament is attached • Posteriorly the inter-trochanteric crest, on which is the quadrate tubercle SHAFT OF FEMUR It has 3 borders Two rounded medial and lateral One thick posterior border or ridge called linea aspera It has 3 surfaces Anterior Medial Lateral SHAFT OF FEMUR • Posteriorly: below the greater trochanter is the gluteal tuberosity
    [Show full text]