Jahrbuch Über Die Fortschritte Der Mathematik“
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Issue 73 ISSN 1027-488X
NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Feature History Interview ERCOM Hedgehogs Richard von Mises Mikhail Gromov IHP p. 11 p. 31 p. 19 p. 35 September 2009 Issue 73 ISSN 1027-488X S E European M M Mathematical E S Society Geometric Mechanics and Symmetry Oxford University Press is pleased to From Finite to Infinite Dimensions announce that all EMS members can benefit from a 20% discount on a large range of our Darryl D. Holm, Tanya Schmah, and Cristina Stoica Mathematics books. A graduate level text based partly on For more information please visit: lectures in geometry, mechanics, and symmetry given at Imperial College www.oup.co.uk/sale/science/ems London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the FORTHCOMING subject. Differential Equations with Linear 2009 | 460 pp Algebra Paperback | 978-0-19-921291-0 | £29.50 Matthew R. Boelkins, Jack L Goldberg, Hardback | 978-0-19-921290-3 | £65.00 and Merle C. Potter Explores the interplaybetween linear FORTHCOMING algebra and differential equations by Thermoelasticity with Finite Wave examining fundamental problems in elementary differential equations. This Speeds text is accessible to students who have Józef Ignaczak and Martin completed multivariable calculus and is appropriate for Ostoja-Starzewski courses in mathematics and engineering that study Extensively covers the mathematics of systems of differential equations. two leading theories of hyperbolic October 2009 | 464 pp thermoelasticity: the Lord-Shulman Hardback | 978-0-19-538586-1 | £52.00 theory, and the Green-Lindsay theory. Oxford Mathematical Monographs Introduction to Metric and October 2009 | 432 pp Topological Spaces Hardback | 978-0-19-954164-5 | £70.00 Second Edition Wilson A. -
Mathematicians Fleeing from Nazi Germany
Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D. -
Arxiv:1803.02193V1 [Math.HO] 6 Mar 2018 AQE AR IT AZZK EE ENG IHI .KA G
KLEIN VS MEHRTENS: RESTORING THE REPUTATION OF A GREAT MODERN JACQUES BAIR, PIOTR BLASZCZYK, PETER HEINIG, MIKHAIL G. KATZ, JAN PETER SCHAFERMEYER,¨ AND DAVID SHERRY Abstract. Historian Herbert Mehrtens sought to portray the his- tory of turn-of-the-century mathematics as a struggle of modern vs countermodern, led respectively by David Hilbert and Felix Klein. Some of Mehrtens’ conclusions have been picked up by both histo- rians (Jeremy Gray) and mathematicians (Frank Quinn). We argue that Klein and Hilbert, both at G¨ottingen, were not adversaries but rather modernist allies in a bid to broaden the scope of mathematics beyond a narrow focus on arithmetized anal- ysis as practiced by the Berlin school. Klein’s G¨ottingen lecture and other texts shed light on Klein’s modernism. Hilbert’s views on intuition are closer to Klein’s views than Mehrtens is willing to allow. Klein and Hilbert were equally interested in the axiomatisation of physics. Among Klein’s credits is helping launch the career of Abraham Fraenkel, and advancing the careers of Sophus Lie, Emmy Noether, and Ernst Zermelo, all four surely of impeccable modernist credentials. Mehrtens’ unsourced claim that Hilbert was interested in pro- duction rather than meaning appears to stem from Mehrtens’ marx- ist leanings. Mehrtens’ claim that [the future SS-Brigadef¨uhrer] “Theodor Vahlen . cited Klein’s racist distinctions within math- ematics, and sharpened them into open antisemitism” fabricates a spurious continuity between the two figures mentioned and is thus an odious misrepresentation of Klein’s position. arXiv:1803.02193v1 [math.HO] 6 Mar 2018 Contents 1. -
Lecture Notes on Multidimensional Complex Analysis
Lecture notes on multidimensional complex analysis Harold P. Boas Draft of January 6, 2020 Contents 1 Introduction 1 1.1 A note on terminology ............................... 1 1.2 Power series .................................... 3 1.3 Integral representations .............................. 3 1.4 Partial differential equations ........................... 4 1.5 Geometry ...................................... 5 2 Power series 7 2.1 Domain of convergence .............................. 8 2.2 Characterization of domains of convergence ................... 9 2.3 Local properties of holomorphic functions .................... 16 2.4 The Hartogs phenomenon ............................. 18 2.5 Natural boundaries ................................ 20 2.6 Summary: domains of convergence ....................... 32 2.7 Separate holomorphicity implies joint holomorphicity ............. 32 3 Convexity 37 3.1 Real convexity ................................... 37 3.2 Convexity with respect to a class of functions .................. 38 3.2.1 Polynomial convexity ........................... 40 3.2.2 Linear and rational convexity ....................... 48 3.2.3 Holomorphic convexity .......................... 51 3.2.4 Pseudoconvexity .............................. 60 3.3 The Levi problem ................................. 71 3.3.1 The Levi form ............................... 72 3.3.2 Applications of the 휕 problem ...................... 76 3.3.3 Solution of the 휕-equation on smooth pseudoconvex domains ..... 81 4 Holomorphic mappings 86 4.1 Fatou–Bieberbach -
The Nazi Era: the Berlin Way of Politicizing Mathematics
The Nazi era: the Berlin way of politicizing mathematics Norbert Schappacher The first impact of the Nazi regime on mathematical life, occurring essentially be- tween 1933 and 1937. took the form of a wave of dismissals of Jewish or politically suspect civil servants. It affected, overall, about 30 per cent of all mathematicians holding positions at German universities. These dismissals had nothing to do with a systematic policy for science, rather they proceeded according to various laws and decrees which concerned all civil servants alike. The effect on individual institutes depended crucially on local circumstances see [6] , section 3.1, for details. Among the Berlin mathematicians, S0-year-old Richard von Mises was the first to emigrate. He went to Istanbul at the end of 1933. where he was joined by his assistant and future second wife Hilda Pollaczek-Geiringer who had been dismissed from her position in the summer of 1933. Formally, von N{ises resigned of his own free will he was exempt from the racial clause of the first Nazi law about civil servants because he had already been a civil servant before August 1914. Having seen what the "New Germany" of the Nazis was like, he preferred to anticipate later, stricter laws, which would indeed have cost him his job and citizenship in the autumn of 1935. The Jewish algebraist Issai Schur who, like von Mises. had been a civil servant already before World War I was temporarily put on Ieave in the summer of 1933, and even though this was revoked in October 1933 he would no longer teach the large classes which for years had been a must even for students who were not primarily into pure mathematics. -
Mathematik in Der Heidelberger Akademie Der Wissenschaften
Universitatsbibliothek¨ Heidelberger Akademie Heidelberg der Wissenschaften Mathematik in der Heidelberger Akademie der Wissenschaften zusammengestellt von Gabriele D¨orflinger Stand: April 2014 LATEX-Dokumentation der Web-Seite http://ub-fachinfo.uni-hd.de/akademie/Welcome.html und ihrer HTML-Unterseiten. — Ein Projekt der Fachinformation Mathematik der Universit¨atsbibliothek Heidelberg. S¨amtliche Links werden als Fußnoten abgebildet. Die Fußnote wird durch den Text Link:“ eingeleitet. ” Am Ende jedes Unterdokuments ist die URL angegeben. Externe Links sind durch @⇒ und interne durch I gekennzeichnet. Die farbigen Symbole der Webseite wurden auf schwarz-weiße Zeichen umgesetzt. Der Verweis auf gedruckte Literatur erfolgt in den WWW-Seiten durch einen schwarzen Pfeil (I ). In der Dokumentation wird er — um Verwechslungen mit internen Links zu vermeiden — durch . dargestellt. Inhaltsverzeichnis Ubersicht¨ 6 Mathematiker in der Heidelberger Akademie 9 Baldus, Richard . 12 Batyrev, Victor . 13 Bock, Hans Georg . 13 Boehm, Karl . 14 Cantor, Moritz . 15 Gluckw¨ unsche¨ zum 60j¨ahrigen Doktorjubil¨aums Moritz Cantors . 16 Dinghas, Alexander . 17 Doetsch, Gustav . 18 Dold, Albrecht . 19 Fr¨ohlich, Albrecht . 20 G¨ortler, Henry . 21 Henry G¨ortler — Nachruf von Hermann Witting . 21 Goldschmidt, Victor . 24 Heffter, Lothar . 25 Hermes, Hans . 26 Hirzebruch, Friedrich . 27 Hopf, Heinz . 28 Huisken, Gerhard . 28 J¨ager, Willi . 29 Kirchg¨aßner, Klaus . 30 Kneser,Hellmuth.............................................. 31 Koch, Helmut . 32 Koebe,Paul................................................. 32 Koenigsberger, Leo . 33 Rede Leo Koenigsbergers bei der Enthullung¨ des Denkmals Heinrich Lanz’ . 37 50j¨ahriges Doktorjubil¨aum Leo Koenigsbergers . 37 K¨othe, Gottfried . 39 Gottfried K¨othe. Nachruf von Helmut H. Schaefer . 41 Krazer, Adolf . 42 Kreck, Matthias . 43 Leopoldt, Heinrich-Wolfgang . 44 Antrittsrede von Heinrich-Wolfgang Leopoldt am 31.5.1980 . -
Nachlass Peschl: Kapsel 1: Korrespondenz Und Notizen
Nachlass ERNST PESCHL (1906-1986) Inhaltsverzeichnis Bearbeitet von Lea Korb und Marie-Claire Born Bonn, 2019 2 Ernst Peschl wurde am 1. September 1906 in Passau geboren. Nach dem Besuch der dortigen Oberrealschule nahm er 1925 ein Studium der Mathematik, Physik und Astronomie in München auf. Im Jahr 1929 bestand Peschl das Staatsexamen, 1931 erfolgte seine Promotion bei Constantin Carathéodory. In den folgenden Jahren arbeitete er als Assistent für Robert König in Jena und für Heinrich Behnke in Münster. Im Jahr 1935 habilitierte sich Peschl in Jena und wurde 1938 außerordentlicher Professor an der Universität Bonn. Seinen Kriegsdienst leistete Peschl in den Jahren 1941-43 in der Deutschen Forschungsanstalt für Luftfahrt in Braunschweig. 1945 wurde er Direktor des Mathematischen Institutes der Universität Bonn und im Jahr 1948 ordentlicher Professor. Peschl war maßgeblich am Aufbau des Instituts für reine und angewandte Mathematik, des Instituts für Instrumentelle Mathematik und der Gesellschaft für Mathematik und Datenverarbeitung beteiligt. Letztere leitete er gemeinsam mit Heinz Unger von 1969 bis 1974. Im Jahr 1965 wurde Peschl mit der Pierre-Fermat-Medaille ausgezeichnet. 1969 erhielt er die Ehrendoktorwürde der Universität Toulouse und wurde 1970 Mitglied der Nordrhein-Westfälischen, Bayerischen und Österreichischen Akademie der Wissenschaften. 1975 wurde Peschl von der französischen Regierung zum „Officier des Palmes Académiques“ ernannt. Im Jahr 1982 folgte die Ehrendoktorwürde der Universität Graz und im Folgejahr zeichnete man Peschl mit dem Verdienstkreuz 1. Klasse der Bundesrepublik Deutschland aus. Ernst Peschl verstarb am 9. Juni 1986 in Eitorf. Sein umfangreicher Nachlass wurde 2018 vom Mathematischen Institut übernommen. Weitere Nachlassteile befinden sich im Nachlass von Erich Bessel-Hagen. -
Zum Korrespondenznachlaß Erich Bessel-Hagen
1 Nachlass Erich BESSEL-HAGEN Inhaltsverzeichnis Bearbeitet von den Mitarbeitern der Handschriftenabteilung Bonn, 2018 2 Vorwort Erich Bessel-Hagen wurde am 12. September 1898 als Sohn von Fritz Karl Bessel-Hagen (1856 – 1945, Chirurg und Direktor des städtischen Krankenhauses Charlottenburg – Wes- tend) in Charlottenburg geboren. Sein Urgroßvater war der Astronom Friedrich Wilhelm Bes- sel (1784 – 1846). Nach dem Abitur am Kaiserin-Augusta-Gymnasium nahm er 1917 in Berlin ein Studium der Mathematik und Physik auf. Während seiner Studienzeit hörte er u.a. bei Max Planck, Erhard Schmiss und Issai Schur. Wegen seiner körperlichen Konstitution und seiner Kurzsichtigkeit entging er dem Militäreinsatz im Ersten Weltkrieg. Im Jahr 1920 promovierte Erich Bessel- Hagen bei Constantin Carathédorg über das Thema „unstetige Variationsprobleme“. Im Anschluss an die Promotion arbeitete er von 1921 bis 1924 als privater Assistent von Felix Klein an der Universität Göttingen. 1925 habilitierte sich Bessel–Hagen an der Universität Göttingen mit dem Thema „ellipti- sche Modulfunktionen“ und wurde Privatdozent. 1927 und 1928 folgten Umhabilitierungen an die Universität Halle und die Universität Bonn. Dort wurde Bessel-Hagen 1931 zunächst nichtbeamteter außerordentlicher Professor und 1939 außerplanmäßiger Professor. 1935 übernahm er die Leitung der Historischen Abteilung des Mathematischen Seminars als Nachfolger des amtsenthobenen Otto Toeplitz. Dem Nationalsozialismus gegenüber äußerst kritisch eingestellt, hielt er auch nach deren Entlassung weiterhin Kontakt zu seinen jüdischen Fachgenossen Felix Hausdorff und Otto Toeplitz. Während des Zweiten Weltkrieges kümmerte sich Erich Bessel-Hagen, der auf- grund einer starken Gehbehinderung und anderer Krankheiten kriegsuntauglich in Bonn ver- blieb, um die Studenten seiner eingezogenen Kollegen und um die Sicherung der Bestände des mathematikhistorischen Instituts und des Nachlasses von Felix Hausdorff. -
Werner Fenchel, a Pioneer in Convexity Theory and a Migrant Scientist
Normat. Nordisk matematisk tidskrift 61:2–4, 133–152 Published in March 2019 Werner Fenchel, a pioneer in convexity theory and a migrant scientist Christer Oscar Kiselman Abstract. Werner Fenchel was a pioneer in introducing duality in convexity theory. He got his PhD in Berlin, was forced to leave Germany, moved to Denmark, and lived during almost two years in Sweden. In a private letter he explained his views on the development of duality in convexity theory and the many terms that have been used to describe it. The background for his move from Germany is sketched. 1. Introduction Werner Fenchel (1905–1988) was a pioneer in convexity theory and in particular the use of duality there. When asked about his views on the many terms used to express this duality he described in a private letter (1977) the whole development from Legendre and onwards, as well as his preferences concerning the choice of terms. The background for his leaving Germany and moving to Denmark and later to Sweden is sketched in Section 12. 2. Convex sets and convex functions In a vector space E over the field R of real numbers—think of E as the two- dimensional plane, identified with R2, or three-dimensional space, identified with R3—we define, given two points a and b, the segment with endpoints a and b: [a, b] = {(1 − t)a + tb; t ∈ R, 0 6 t 6 1}. A subset A of E is said to be convex if {a, b} ⊂ A implies that [a, b] ⊂ A. The modern theory of convex sets starts with the work of Hermann Minkowski (1864–1909); see his book (1910), a large part of which was published in 1896. -
Appendix a I
Appendix A I Appendix A Professional Institutions and Associations AVA: Aerodynamische Versuchsanstalt (see under --+ KWIS) DFG: Deutsche Forschungs-Gemeinschaft (previously --+ NG) German Scientific Research Association. Full title: Deutsche Gemeinschaft zur Erhaltung und Forderung der Forschung (German Association for the Support and Advancement of Sci entific Research). Successor organization to the --+ NG, which was renamed DFG unofficially since about 1929 and officially in 1937. During the terms of its presidents: J. --+ Stark (June 1934-36); R. --+ Mentzel (Nov. 1936-39) and A. --+ Esau (1939-45), the DFG also had a dom inant influence on the research policy of the --+ RFR. It was funded by government grants in the millions and smaller contributions by the --+ Stifterverband. Refs.: ~1entzel [1940]' Stark [1943]c, Zierold [1968], Nipperdey & Schmugge [1970]. DGtP: Deutsche Gesellschaft fiir technische Physik German Society of Technical Physics. Founded on June 6, 1919 by Georg Gehlhoff as an alternative to the --+ DPG with a total of 13 local associations and its own journal --+ Zeitschrift fUr technische Physik. Around 1924 the DGtP had approximately 3,000 members, thus somewhat more than the DPG, but membership fell by 1945 to around 1,500. Chairmen: G. Gehlhoff (1920-31); K. --+ Mey (1931-45). Refs.: Gehlhoff et al. [1920]' Ludwig [1974], Richter [1977], Peschel (Ed.) [1991]' chap. 1, Heinicke [1985]' p. 43, Hoffmann & Swinne [1994]. DPG: Deutsche Physikalische Gesellschaft German Physical Society. Founded in 1899 a national organization at to succeed the Berlin Physical Society, which dates back to 1845. The Society issued regular biweekly proceedings, reports (Berichte) on the same, as well as the journal: Fortschritte der Physik (since 1845). -
Homo Heidelbergensis Mathematicus
Digitale Bibliothek Mathematik Homo Heidelbergensis mathematicus Eine Materialsammlung zu bekannten Heidelberger Mathematikern zusammengestellt von Gabriele D¨orflinger Stand: 20. Mai 2014 Bekannte Mathematiker mit Bezug zu Heidelberg, d.h. Mathematiker, die in Heidelberg lebten, studierten oder lehrten oder Mitglieder der Heidelberger Akademie der Wissenschaften waren. LATEX-Dokumentation der Web-Seite http://ub-fachinfo.uni-hd.de/homoheid.htm und der direkt davon auf- gerufenen Unterseiten der Universit¨atsbibliothek Heidelberg. Nach allgemeinen Dokumenten zur Heidelberger Mathematikgeschichte folgen Einzelportraits von knapp 60 Mathematikern. Zwar gibt es noch viele Mathematiker, die die Auswahlbedingungen • Mathematiker • bekannt (nicht unbedingt als Mathematiker), • Aufenthalt in Heidelberg (mit Ausnahme von Kongressbesuchen) oder aktives Mitglied der Heidelberger Akademie der Wissenschaften erfullen,¨ aber der Aufwand ist zu hoch, um noch weitere Personen in die Sammlung zu integrieren. Die Informationen zu den einzelnen Personen sind immer in gleicher Weise gegliedert. • Bezug zu Heidelberg • Lexika • Biographische Informationen – im Internet – gedruckte Biographien • Werk – im Internet – in Heidelberg vorhandene Schriften – Literatur uber¨ das Werk • Bibliographien S¨amtliche Links werden als Fußnoten abgebildet. Die Fußnote wird durch den Text Link:“ eingeleitet. Web- ” Formulare erhalten die Kennung Formular:“ in der Fußnote. Es wird nur das aufrufende Programm ohne ” Parameter angegeben. Bilder erhalten die Kennung Bild:“ in der Fußnote und werden durch [BILD]“ im ” ” Text markiert. Am Ende jedes Unterdokuments ist die URL angegeben. Externe Links sind durch @⇒ und interne durch I gekennzeichnet. Die farbigen Symbole der Webseite wurden auf schwarz-weiße Zeichen umgesetzt. 2 Inhaltsverzeichnis Allgemeine Bemerkungen 4 Zur Geschichte des Mathematischen Instituts der Universit¨at Heidelberg. 6 Mathematiker im Heidelberger Gelehrtenlexikon . 8 Jakob Christmann, Valentin Otho, Bartholom¨aus Pitiscus . -
Richard-Rado-Preis 2020 … Mathematische
MITTEILUNGEN DER DEUTSCHEN MATHEMATIKER- VEREINIGUNG 2020 28 2 RICHARD-RADO-PREIS 2020 … MATHEMATISCHE KOMPLEXITÄTSREDUKTION … MARIE-FRANÇOISE ROY IM GESPRÄCH … 150 JAHRE JAHRBUCH ÜBER DIE FORTSCHRITTE DER MATHEMATIK … DIE TRANSFORMATION VON ZBMATH MITTEILUNGEN DER DMV online Als Mitglied der DMV können Sie alle in den neuesten Mit- 3. Klicken Sie auf den blau hinterlegten Link in der nun ge- teilungen erschienenen Beiträge als PDF-Datei herunterla- öffneten Seite, um auf die de Gruyter-Webseite weiterge- den, sobald Sie sich auf mathematik.de angemeldet haben. leitet zu werden: Beginnend mit diesem Jahrgang können die einzelnen Aus- gaben der Mitteilungen jetzt auch als Gesamt-PDF-Datei ab- gerufen werden. Beiträge in den Mitteilungen, deren Erscheinen mehr als zwölf Monate zurückliegt, sind unter www.degruyter.com/ view/journals/dmvm/dmvm-overview.xml frei zugänglich. So funktioniert es: 1. Rufen Sie mathematik.de auf, klicken Sie auf das Per- 4. Sie sind nun auf der de Gruyter-Plattform angemeldet sonensymbol, anschließend auf „Login“ und geben Sie und haben uneingeschränkten Zugriff auf die Mitteilun- dann in der Maske Ihren Benutzernamen und Ihr Pass- gen. Wählen Sie „Neuestes Heft“ für die aktuelle Ausgabe wort ein. (Wenn Sie sich erstmals anmelden, müssen Sie oder „Hefte“, um einen Beitrag in einer anderen Ausgabe sich hier zuerst registrieren.) abzurufen. 2. Öffne Sie Ihr „Profil“ und klicken Sie auf „DMV- 5. Wählen Sie die gewünschte Datei aus – im folgenden Mitteilungen online“: Screenshot ist es die Gesamtdatei des Heftes: Editorial Im Film Truman Show werden Dutzende Menschen dafür Spanischen Bürgerkrieg ist Pablo mit zwei Gefährten gefan- bezahlt, einem einzigen Mann vorzugaukeln, die greifba- gen und erwartet seine Hinrichtung.