DIGESTIVE SYSTEM in Anatomy Today Abdominopelvic Quadrants Abdominopelvic Regions Body Cavities Body Cavities Serous Membranes

Total Page:16

File Type:pdf, Size:1020Kb

DIGESTIVE SYSTEM in Anatomy Today Abdominopelvic Quadrants Abdominopelvic Regions Body Cavities Body Cavities Serous Membranes Human Anatomy Unit 2 DIGESTIVE SYSTEM In Anatomy Today Abdominopelvic Quadrants Abdominopelvic Regions Body Cavities Body Cavities Serous Membranes • A simple squamous epithelium and its underlying connective tissue – Produces a serous fluid – Lubricates, prevent frictional damage • Pericardial cavity – Visceral pericardium – Parietal pericardium • Pleural cavity – Visceral pleura – Parietal pleura • Abdominal cavity – Visceral peritoneum – Parietal peritoneum Components of the Digestive System Functions • Motility – ingestion – mastication – deglutition – peristalsis • Secretion – exocrine – endocrine • Digestion • Absorption Terminology • Ingestion • to take in food • Mastication • chewing (mechanical breakdown of food) • Deglutition • swallowing • Digestion • chemical breakdown of food • Absorption • passage of nutrients from the gi tract lumen to the blood • Peristalsis • Waves of smooth muscle contraction to propel food • Defecation • formation and excretion of solid waste Mucosa • Absorptive layer, large surface area • 3 major components – Mucosal epithelium • Columnar epithelium (stomach, intestines) or stratified squamous • Gastric Pits, Crypts of Leiberkuhn, Intestinal Crypts – folds in the mucosa of the small intestines, colon – source of new epithelial cells – digestive enzymes – Lamina propria • Loose CT of the mucosa, with capillaries that receive absorbed nutrients • lymphatic tissue: capillaries and lymphatic nodules involved in absorption of fat • Peyer’s Patches: aggregates of lymph nodes, significant protection against intestinal infections – Muscularis mucosa • a thin layer of smooth muscle that keeps the folds of the mucosa folded Submucosa, Muscularis Externa, Serosa • Submucosa – tissue: dense irregular CT – Submucosal plexus • nerve supply to the muscularis mucosa • Muscularis Externa – mostly a double layer of smooth muscle, propels and mixes digestive contents • circular layer: thick inner layer, muscle fibers describe a circle • longitudinal layer: thin outer layer, muscle fibers run along the length of the GI tract – Myenteric plexus: nerve supply to the muscularis externa • Serosa – loose CT + simple squamous epithelium – outer wall of the GI tract – Is the visceral peritoneum Enteric Nervous System Movement Through the Digestive Tube Mesentaries • Sheets of serous membrane that connect the parietal and visceral peritoneum – Suspends organs in the space – Provides a route for blood vessels, nerves, lymphatics • Lesser omentum • Greater omentum • Mesentery proper • Mesocolon • Transverse mesocolon • Sigmoidal mesocolon Oral Cavity The Tongue • Body • Root • Papillae • Taste buds • Frenulum Salivary Glands • Release water, lysozyme, digestive enzymes, mucus – Salivary amylase • Parotid – Pure serous – Parotid duct • Sublingual – Pure mucus – Sublingual ducts • numerous • Submandibular – Mixed serous/mucus – Submandibular ducts • numerous Teeth • Neck • Crown • Gingivae • Enamel • Dentine • Pulp cavity – Apical foramen • Periodontal ligaments • Cementum Types of Teeth Pharynx • Passageway for air, water, food • Divisions – Nasopharynx – Oropharynx – Laryngeal pharynx Swallowing Esophagus • Function – move food to the stomach • Lining epithelium – stratified squamous • Muscle layer – 1st third • skeletal muscle – 2nd third • a mixture of skeletal and smooth muscle – 3rd third • smooth muscle Esophageal Gastric Juncture Gross Anatomy of the Stomach • Lesser curvature • Greater curvature • Cardia – Cardiac orifice • Fundus • Body • Pylorus – Pyloric sphincter • Rugae Layers of the Stomach Functions of the Stomach • Functions – Food storage – Chemical digestion • Chief cells • Parietal cells – Mechanical digestion • Churning by 3 layers of smooth muscle – Kills bacteria – Moves food to SI – Hormonal regulation of digestion • G cells Histology of the Stomach • Lining epithelium – simple columnar epithelium – Mucon neck cells • Gastric glands – microscopic folds, secrete gastric juice. • Gastric pits – openings from gastric glands to gastric lumen The Small Intestine • ~ 3 meters long • Function – Digestion and absorption • Duodenum • Jejunum • Ileum • Support of the small intestine – Mesentary proper Intestinal Surface Area • Plicae circularis – macroscopic permanent folds (permanent until death) – Circular pleats like conduit • Villi – fingerlike projections • Microvilli – submicroscopic folds on apical surface of columnar cells – “brush border” Histological Organization of the Small Intestine Serosa versus Adventitia Histology of the Small Intestine • Intestinal villi • Microvilli • Goblet cells • Crypts of Lieberkühn Regions of the Colon • Ascending colon – Right colic flexure • Transverse colon – Left colic flexure • Descending colon • Sigmoid colon – Sigmoid flexure Large Intestine • Cecum – Ileal papilla – Iliocecal valve – appendix • The colon – Thin wall – Larger diameter – Haustra – Taeniae coli Appendix: an extension of lymphatic – Fatty appendices tissue near the ileocecal junction The Rectum • Last 15 cm • Anal canal • Anal columns • Internal anal sphincter • External anal sphincter Histology of The Large Intestine • Lacks villi • Abundant goblet cells • Intestinal crypts – Deeper – More goblet cells • Large lymphoid nodules • Taenia coli – Reduced longitudinal muscularis layer Accessory Glandular Digestive Organs • Liver • Gall bladder • Pancreas Anatomy of the Liver • Lobes – Left, right, caudate, quadrate • Ligaments – Falciform ligament • Liver to anterior body wall – Coronary ligament • Liver to diaphragm – Ligamentum teres hepatis (also called the round ligament) • Falciform ligament to umbilicus • Left, right hepatic ducts Liver Lobules • Functional unit of the liver • Hepatic triad – Hepatic artery – Hepatic portal vein – Bile duct • Bile canaliculi • Hepatocytes – Hepatic plates (cords) • Kupffer cells – macrophages • Central vein • Sinusoids The Gall Bladder • Fundus • Body • Neck • Stores, concentrates bile • Ducts – Left, right hepatic ducts – Common hepatic duct – Cystic duct – Common bile duct • Hepatopancreatic sphincter – Ampulla of Vater – Sphincter of Oddi The Pancreas • Head • Body • Tail • Pancreatic duct – Sphincter of Oddi • Accessory pancreatic duct – Duct of Santorini Histology of the Pancreas • Pancreatic acini – Exocrine glands – Pancreatic juice • Islets of Langerhans – Endocrine glands – Alpha cells • glucagon – Beta cells • insulin Blood Flow.
Recommended publications
  • The Anatomy of the Rectum and Anal Canal
    BASIC SCIENCE identify the rectosigmoid junction with confidence at operation. The anatomy of the rectum The rectosigmoid junction usually lies approximately 6 cm below the level of the sacral promontory. Approached from the distal and anal canal end, however, as when performing a rigid or flexible sigmoid- oscopy, the rectosigmoid junction is seen to be 14e18 cm from Vishy Mahadevan the anal verge, and 18 cm is usually taken as the measurement for audit purposes. The rectum in the adult measures 10e14 cm in length. Abstract Diseases of the rectum and anal canal, both benign and malignant, Relationship of the peritoneum to the rectum account for a very large part of colorectal surgical practice in the UK. Unlike the transverse colon and sigmoid colon, the rectum lacks This article emphasizes the surgically-relevant aspects of the anatomy a mesentery (Figure 1). The posterior aspect of the rectum is thus of the rectum and anal canal. entirely free of a peritoneal covering. In this respect the rectum resembles the ascending and descending segments of the colon, Keywords Anal cushions; inferior hypogastric plexus; internal and and all of these segments may be therefore be spoken of as external anal sphincters; lymphatic drainage of rectum and anal canal; retroperitoneal. The precise relationship of the peritoneum to the mesorectum; perineum; rectal blood supply rectum is as follows: the upper third of the rectum is covered by peritoneum on its anterior and lateral surfaces; the middle third of the rectum is covered by peritoneum only on its anterior 1 The rectum is the direct continuation of the sigmoid colon and surface while the lower third of the rectum is below the level of commences in front of the body of the third sacral vertebra.
    [Show full text]
  • THE DIGESTIVE SYSTEM: Introduction and Upper GI
    THE DIGESTIVE SYSTEM: Introduction and upper GI Dalay Olson Ph.D Office: Jackson Hall 3-120 Office hours: Monday 2-3pm INTRODUCTION TO GI LEARNING OBJECTIVES 3 Distinguish between the wall layers of the esophagus and those classically represented by the small intestine. ESOPHAGUS STRUCTURE UPPER THIRD ESOPHAGUS STRUCTURE LOWER TWO-THIRDS 4 Describe the voluntary and reflex components of swallowing. PHASES OF SWALLOWING Swallowing is integrated in the medulla oblongata. Voluntary Phase Pharyngeal Phase Esophageal Phase The swallowing reflex requires input from sensory afferent nerves, somatic motor nerves and autonomic nerves. VOLUNTARY PHASE The tongue pushes the bolus of food back and upwards towards the back of the mouth. Once the food touches the soft palate and the back of the mouth it triggers the swallowing reflex. This is the stimulus! PHARYNGEAL PHASE • Once the food touches the soft palate and the back of the mouth it triggers the swallowing reflex. This is the stimulus! • The medulla oblongata (control center) then initiates the swallowing reflex causing the soft palate to elevate, closing of the glottis and opening of the esophageal sphincter (response). • Once the food moves into the esophagus the sphincter closes once again. The glottis then opens again and breathing resumes. ESOPHAGEAL PHASE 1. Food moves along the esophagus by peristalsis (waves of smooth muscle contractions) • If the food gets stuck, short reflexes will continue peristalsis. • Myogenic reflex (you will learn about this later) produces contractions that move food forward. 2. As the bolus of food moves toward the stomach the lower esophageal sphincter relaxes and opens allowing the food to move into the stomach.
    [Show full text]
  • The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
    life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions.
    [Show full text]
  • Rectum & Anal Canal
    Rectum & Anal canal Dr Brijendra Singh Prof & Head Anatomy AIIMS Rishikesh 27/04/2019 EMBRYOLOGICAL basis – Nerve Supply of GUT •Origin: Foregut (endoderm) •Nerve supply: (Autonomic): Sympathetic Greater Splanchnic T5-T9 + Vagus – Coeliac trunk T12 •Origin: Midgut (endoderm) •Nerve supply: (Autonomic): Sympathetic Lesser Splanchnic T10 T11 + Vagus – Sup Mesenteric artery L1 •Origin: Hindgut (endoderm) •Nerve supply: (Autonomic): Sympathetic Least Splanchnic T12 L1 + Hypogastric S2S3S4 – Inferior Mesenteric Artery L3 •Origin :lower 1/3 of anal canal – ectoderm •Nerve Supply: Somatic (inferior rectal Nerves) Rectum •Straight – quadrupeds •Curved anteriorly – puborectalis levator ani •Part of large intestine – continuation of sigmoid colon , but lacks Mesentery , taeniae coli , sacculations & haustrations & appendices epiploicae. •Starts – S3 anorectal junction – ant to tip of coccyx – apex of prostate •12 cms – 5 inches - transverse slit •Ampulla – lower part Development •Mucosa above Houstons 3rd valve endoderm pre allantoic part of hind gut. •Mucosa below Houstons 3rd valve upto anal valves – endoderm from dorsal part of endodermal cloaca. •Musculature of rectum is derived from splanchnic mesoderm surrounding cloaca. •Proctodeum the surface ectoderm – muco- cutaneous junction. •Anal membrane disappears – and rectum communicates outside through anal canal. Location & peritoneal relations of Rectum S3 1 inch infront of coccyx Rectum • Beginning: continuation of sigmoid colon at S3. • Termination: continues as anal canal, • one inch below
    [Show full text]
  • Organization of the Gastrointestinal Tract
    Organization of the gastrointestinal tract Development of the Foregut, Midgut, and Hindgut Development of the alimentary canal It constitutes during the 4th week from 3 separate embryonic anlages (organs): - The stomodeum (primitive mouth) – develops on the cephalic end of the embryo, is limited by 5 frominences (frontonasal, 2 maxillary, 2 mandibular) ectoderm oropharyngeal membrane. - The primitive gut arises by incorporation of the dorsal part of the yolk sac into embryo during cephalocaudal and lateral folding of the embryo gut is connected to the yolk sac by means of the vitelline (omphalomesenteric) duct endoderm cloacal membrane - The proctodeum (anal pit) - develops on the caudal end of the embryo between future bases of lower limbs - ectoderm - while the ectoderm of the stomodeum and proctodeum as well as the endoderm of the gut differentiate into the epithelium of the alimentary canal, - The muscular and fibrous elements + visceral peritoneum derive from the splanchnic mesenchyma that surrounds the lining of the primitive gut. Development of associated glands: - (salivary glands, liver and pancreas) develop from the endoderm (ectoderm) that gives rise to specific cells (hepatocytes, exo- and endocrine cells of the pancreas (the parenchyma) DERIVATIVES OF THE PRIMITIVE GUT The foregut: . the pharynx and branchiogenic organs . the lower respiratory tract . the esophagus . the stomach . the duodenum proximal to the opening of the bile duct . the liver and pancreas + the biliary apparatus The midgut: . the small intestines, including the part of the duodenum distal to the opening of the bile duct . the caecum and appendix . the ascending colon . the transverse colon The hindgut: . the descending colon . the sigmoid colon .
    [Show full text]
  • Physiology H Digestive
    2/28/18 Introduction • Provides processes to break down molecules into a state easily used by cells - A disassembly line: Starts at the mouth and ends Digestive System at the anus • Digestive functions are initiated by the parasympathetic division Chapter 29 - Digestion occurs during periods of low activity - Produces more energy than it uses Copyright © 2016 by Elsevier Inc. All rights reserved. 1 Copyright © 2016 by Elsevier Inc. All rights reserved. 2 Anatomy The Digestive System • Oral cavity • Pharynx • Esophagus • Stomach • Small intestine and large intestine • Accessory organs: Pancreas, liver, and gallbladder From Herlihy B: The human body in health and illness, ed 4, St. Louis, 2011, Saunders. Copyright © 2016 by Elsevier Inc. All rights reserved. 3 Copyright © 2016 by Elsevier Inc. All rights reserved. 4 Physiology Gastrointestinal Tract • Ingestion: Taking materials into mouth by • Muscular tube throughout digestive system eating/drinking • Accessory organs and glands secrete • Digestion: Breaking down food into molecules substance to aid in digestion that can be used by the body • GI tract wall has four layers: - Includes mechanical and enzymatic action - Mucosa • Absorption: Simple molecules from the - Submucosa gastrointestinal (GI) tract move into the - Muscle layer: Responsible for peristalsis bloodstream or lymph vessels and then into - Serosa body cells • Defecation: Eliminating indigestible or unabsorbed material from the body Copyright © 2016 by Elsevier Inc. All rights reserved. 5 Copyright © 2016 by Elsevier Inc. All rights reserved. 6 1 2/28/18 Peristalsis Oral Cavity • First portion of GI tract • Contains: - Teeth - Tongue - Openings for salivary glands From Thibodeau GA, Patton KT: Anatomy & physiology, ed 6, St.
    [Show full text]
  • IDP Biological Systems Gastrointestinal System
    IDP Biological Systems Gastrointestinal System Section Coordinator: Jerome W. Breslin, PhD, Assistant Professor of Physiology, MEB 7208, 504-568-2669, [email protected] Overall Learning Objectives 1. Characterize the important anatomical features of the GI system in relation to GI function. 2. Describe the molecular and cellular mechanisms underlying GI motility. Highlight the neural and endocrine regulatory mechanisms. Characterize the different types of GI motility in different segments of the GI tract. 3. Define the major characteristics and temporally relate the cephalic, gastric, and intestinal phases of GI tract regulation. 4. For carbohydrates, proteins, fats, vitamins, minerals, and oral drugs, differentiate the processes of ingestion, digestion, absorption, secretion, and excretion, including the location in the GI tract where each process occurs. 5. Contrast the sympathetic and parasympathetic modulation of the enteric nervous system and the effector organs of the GI tract. 6. Describe the similarities and differences in regulating gastrointestinal function by nerves, hormones, and paracrine regulators. Include receptors, proximity, and local vs. global specificity. 7. Understand the basic mechanisms underlying several common GI disorders and related treatment strategies. Learning Objectives for Specific Hours: Hour 1 – Essential Concepts: Cellular transport mechanisms and Mechanisms of Force Generation 1. Describe the composition of cell membranes and how distribution of phospholipids and proteins influence membrane permeability of ions, hydrophilic, and hydrophobic compounds. 2. Using a cell membrane as an example, define a reflection coefficient, and explain how the relative permeability of a cell to water and solutes will generate osmotic pressure. Contrast the osmotic pressure generated across a cell membrane by a solution of particles that freely cross the membrane with that of a solution with the same osmolality, but particles that cannot cross the cell membrane.
    [Show full text]
  • Secretin-Induced Gastric Relaxation Is Mediated by Vasoactive Intestinal Polypeptide and Prostaglandin Pathways
    Neurogastroenterol Motil (2009) 21, 754–e47 doi: 10.1111/j.1365-2982.2009.01271.x Secretin-induced gastric relaxation is mediated by vasoactive intestinal polypeptide and prostaglandin pathways Y. LU & C. OWYANG Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA Abstract Secretin has been shown to delay gastric vagally mediated pathway. Through nicotinic emptying and inhibit gastric motility. We have dem- synapses, secretin stimulates VIP release from post- onstrated that secretin acts on the afferent vagal ganglionic neurons in the gastric myenteric plexus, pathway to induce gastric relaxation in the rat. How- which in turn induces gastric relaxation through a ever, the efferent pathway that mediates the action of prostaglandin-dependent pathway. secretin on gastric motility remains unknown. We Keywords gastric relaxation, indomethacin, vagus recorded the response of intragastric pressure to graded nerve. doses of secretin administered intravenously to anaesthetized rats using a balloon attached to a cath- eter and placed in the body of the stomach. Secretin INTRODUCTION evoked a dose-dependent decrease in intragastric Secretin has been shown to inhibit gastric contrac- pressure. The threshold dose of secretin was 1.4 pmol tions and delay gastric emptying of liquids and kg)1 h)1 and the effective dose, 50% was 5.6 pmol kg)1 solids.1–3 However, the mechanisms of secretinÕs h)1. Pretreatment with hexamethonium markedly inhibitory effects on gastric motility remain unclear. reduced gastric relaxation induced by secretin The gene expression of secretin receptor has been (5.6 pmol kg)1 h)1). Bilateral vagotomy also signifi- demonstrated in the rat nodose ganglia.4 We have cantly reduced gastric motor responses to secretin.
    [Show full text]
  • Pathophysiology, 6Th Edition
    McCance: Pathophysiology, 6th Edition Chapter 38: Structure and Function of the Digestive System Key Points – Print SUMMARY REVIEW The Gastrointestinal Tract 1. The major functions of the gastrointestinal tract are the mechanical and chemical breakdown of food and the absorption of digested nutrients. 2. The gastrointestinal tract is a hollow tube that extends from the mouth to the anus. 3. The walls of the gastrointestinal tract have several layers: mucosa, muscularis mucosae, submucosa, tunica muscularis (circular muscle and longitudinal muscle), and serosa. 4. Except for swallowing and defecation, which are controlled voluntarily, the functions of the gastrointestinal tract are controlled by extrinsic and intrinsic autonomic nerves (enteric plexus) and intestinal hormones. 5. Digestion begins in the mouth, with chewing and salivation. The digestive component of saliva is α-amylase, which initiates carbohydrate digestion. 6. The esophagus is a muscular tube that transports food from the mouth to the stomach. The tunica muscularis in the upper part of the esophagus is striated muscle, and that in the lower part is smooth muscle. 7. Swallowing is controlled by the swallowing center in the reticular formation of the brain. The two phases of swallowing are the oropharyngeal phase (voluntary swallowing) and the esophageal phase (involuntary swallowing). 8. Food is propelled through the gastrointestinal tract by peristalsis: waves of sequential relaxations and contractions of the tunica muscularis. 9. The lower esophageal sphincter opens to admit swallowed food into the stomach and then closes to prevent regurgitation of food back into the esophagus. 10. The stomach is a baglike structure that secretes digestive juices, mixes and stores food, and propels partially digested food (chyme) into the duodenum.
    [Show full text]
  • Vestibule Lingual Frenulum Tongue Hyoid Bone Trachea (A) Soft Palate
    Mouth (oral cavity) Parotid gland Tongue Sublingual gland Salivary Submandibular glands gland Esophagus Pharynx Stomach Pancreas (Spleen) Liver Gallbladder Transverse colon Duodenum Descending colon Small Jejunum Ascending colon intestine Ileum Large Cecum intestine Sigmoid colon Rectum Appendix Anus Anal canal © 2018 Pearson Education, Inc. 1 Nasopharynx Hard palate Soft palate Oral cavity Uvula Lips (labia) Palatine tonsil Vestibule Lingual tonsil Oropharynx Lingual frenulum Epiglottis Tongue Laryngopharynx Hyoid bone Esophagus Trachea (a) © 2018 Pearson Education, Inc. 2 Upper lip Gingivae Hard palate (gums) Soft palate Uvula Palatine tonsil Oropharynx Tongue (b) © 2018 Pearson Education, Inc. 3 Nasopharynx Hard palate Soft palate Oral cavity Uvula Lips (labia) Palatine tonsil Vestibule Lingual tonsil Oropharynx Lingual frenulum Epiglottis Tongue Laryngopharynx Hyoid bone Esophagus Trachea (a) © 2018 Pearson Education, Inc. 4 Visceral peritoneum Intrinsic nerve plexuses • Myenteric nerve plexus • Submucosal nerve plexus Submucosal glands Mucosa • Surface epithelium • Lamina propria • Muscle layer Submucosa Muscularis externa • Longitudinal muscle layer • Circular muscle layer Serosa (visceral peritoneum) Nerve Gland in Lumen Artery mucosa Mesentery Vein Duct oF gland Lymphoid tissue outside alimentary canal © 2018 Pearson Education, Inc. 5 Diaphragm Falciform ligament Lesser Liver omentum Spleen Pancreas Gallbladder Stomach Duodenum Visceral peritoneum Transverse colon Greater omentum Mesenteries Parietal peritoneum Small intestine Peritoneal cavity Uterus Large intestine Cecum Rectum Anus Urinary bladder (a) (b) © 2018 Pearson Education, Inc. 6 Cardia Fundus Esophagus Muscularis Serosa externa • Longitudinal layer • Circular layer • Oblique layer Body Lesser Rugae curvature of Pylorus mucosa Greater curvature Duodenum Pyloric Pyloric sphincter antrum (a) (valve) © 2018 Pearson Education, Inc. 7 Fundus Body Rugae of mucosa Pyloric Pyloric (b) sphincter antrum © 2018 Pearson Education, Inc.
    [Show full text]
  • The Digestive System Overview of the Digestive System • Organs Are Divided Into Two Groups the Alimentary Canal and Accessory
    C H A P T E R 23 The Digestive System 1 Overview of the Digestive System • Organs are divided into two groups • The alimentary canal • Mouth, pharynx, and esophagus • Stomach, small intestine, and large intestine (colon) • Accessory digestive organs • Teeth and tongue • Gallbladder, salivary glands, liver, and pancreas 2 The Alimentary Canal and Accessory Digestive Organs Mouth (oral cavity) Parotid gland Tongue Sublingual gland Salivary glands Submandibular gland Esophagus Pharynx Stomach Pancreas (Spleen) Liver Gallbladder Transverse colon Duodenum Descending colon Small intestine Jejunum Ascending colon Ileum Cecum Large intestine Sigmoid colon Rectum Anus Vermiform appendix Anal canal Figure 23.1 3 1 Digestive Processes • Ingestion • Propulsion • Mechanical digestion • Chemical digestion • Absorption • Defecation 4 Peristalsis • Major means of propulsion • Adjacent segments of the alimentary canal relax and contract Figure 23.3a 5 Segmentation • Rhythmic local contractions of the intestine • Mixes food with digestive juices Figure 23.3b 6 2 The Peritoneal Cavity and Peritoneum • Peritoneum – a serous membrane • Visceral peritoneum – surrounds digestive organs • Parietal peritoneum – lines the body wall • Peritoneal cavity – a slit-like potential space Falciform Anterior Visceral ligament peritoneum Liver Peritoneal cavity (with serous fluid) Stomach Parietal peritoneum Kidney (retroperitoneal) Wall of Posterior body trunk Figure 23.5 7 Mesenteries • Lesser omentum attaches to lesser curvature of stomach Liver Gallbladder Lesser omentum
    [Show full text]
  • Gastrointestinal Motility Physiology
    GASTROINTESTINAL MOTILITY PHYSIOLOGY JAYA PUNATI, MD DIRECTOR, PEDIATRIC GASTROINTESTINAL, NEUROMUSCULAR AND MOTILITY DISORDERS PROGRAM DIVISION OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, CHILDREN’S HOSPITAL LOS ANGELES VRINDA BHARDWAJ, MD DIVISION OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION CHILDREN’S HOSPITAL LOS ANGELES EDITED BY: CHRISTINE WAASDORP HURTADO, MD REVIEWED BY: JOSEPH CROFFIE, MD, MPH NASPGHAN PHYSIOLOGY EDUCATION SERIES SERIES EDITORS: CHRISTINE WAASDORP HURTADO, MD, MSCS, FAAP [email protected] DANIEL KAMIN, MD [email protected] CASE STUDY 1 • 14 year old female • With no significant past medical history • Presents with persistent vomiting and 20 lbs weight loss x 3 months • Initially emesis was intermittent, occurred before bedtime or soon there after, 2-3 hrs after a meal • Now occurring immediately or up to 30 minutes after a meal • Emesis consists of undigested food and is nonbloody and nonbilious • Associated with heartburn and chest discomfort 3 CASE STUDY 1 • Initial screening blood work was unremarkable • A trial of acid blockade was started with improvement in heartburn only • Antiemetic therapy with ondansetron showed no improvement • Upper endoscopy on acid blockade was normal 4 CASE STUDY 1 Differential for functional/motility disorders: • Esophageal disorders: – Achalasia – Gastroesophageal Reflux – Other esophageal dysmotility disorders • Gastric disorders: – Gastroparesis – Rumination syndrome – Gastric outlet obstruction : pyloric stricture, pyloric stenosis •
    [Show full text]