E Pleura and Lungs

Total Page:16

File Type:pdf, Size:1020Kb

E Pleura and Lungs Bailey & Love · Essential Clinical Anatomy · Bailey & Love · Essential Clinical Anatomy Essential Clinical Anatomy · Bailey & Love · Essential Clinical Anatomy · Bailey & Love Bailey & Love · Essential Clinical Anatomy · Bailey & Love · EssentialChapter Clinical4 Anatomy e pleura and lungs • The pleura ............................................................................63 • MCQs .....................................................................................75 • The lungs .............................................................................64 • USMLE MCQs ....................................................................77 • Lymphatic drainage of the thorax ..............................70 • EMQs ......................................................................................77 • Autonomic nervous system ...........................................71 • Applied questions .............................................................78 THE PLEURA reections pass laterally behind the costal margin to reach the 8th rib in the midclavicular line and the 10th rib in the The pleura is a broelastic serous membrane lined by squa- midaxillary line, and along the 12th rib and the paravertebral mous epithelium forming a sac on each side of the chest. Each line (lying over the tips of the transverse processes, about 3 pleural sac is a closed cavity invaginated by a lung. Parietal cm from the midline). pleura lines the chest wall, and visceral (pulmonary) pleura Visceral pleura has no pain bres, but the parietal pleura covers the lungs. These two pleural layers are continuous is richly supplied by branches of the somatic intercostal and around the root of the lung and are separated by a thin lm phrenic nerves. Lymph from the pulmonary pleura passes to of serous uid, permitting them to glide easily on each other. a supercial plexus in the lung and then to the hilar nodes. The layers are prevented from separating by the uid’s sur- Parietal pleura drains to the parasternal, diaphragmatic and face tension and the negative pressure in the thoracic cavity. posterior mediastinal nodes. Thus, when the thoracic cage expands, the lung also must expand, and air is inhaled. Parietal pleura lines the ribs, costal cartilages, intercostal spaces, lateral surface of the mediastinum and upper surface 1&2 1&2 of the diaphragm. Superiorly, it extends above the thoracic inlet into the neck as the cervical dome of pleura; inferiorly, around the margin of the diaphragm, it forms a narrow gut- 6 ter, the costodiaphragmatic recess; anteriorly, the left costal and mediastinal surfaces are in contact, extending in front of the heart to form the costomediastinal recess. Mediasti- 1&2 nal pleura invests the main bronchi and pulmonary vessels 3 and passes on to the surface of the lung to become visceral pleura, which covers the lung and extends into its interlobar 4 8a ssures. The surface markings of the pleural sacs should be noted 5 8b 5 (Figs 4.1 and 4.2). On both sides, the upper limit lies about 2 3 cm above the medial third of the clavicle. From here, the lines of pleural reections descend behind the sternoclavic- 1 ular joints to almost meet in the midline at the level of the 7 2nd costal cartilage. At the 4th costal cartilage, whereas the left pleura deviates laterally and descends along the lateral Figure 4.1 Surface markings of the pleura and lungs, anterior aspect: 1, pleural markings; 2, lung markings; 3, cardiac border of the sternum to the 6th costal cartilage, the right notch; 4, horizontal ssure; 5, oblique ssure; 6, trachea; pleural reection continues down, near to the midline, to the 7, costodiaphragmatic recess; 8, diaphragm, (a) inspiration, 6th costal cartilage. At this point, on both sides, the pleural (b) expiration 04_K35605_IllusClinical_2e_Ch4.indd 63 09/07/2018 16:28 PART 1 | THE THORAX 64 CHAPTER 4 The pleura and lungs 1&2 3 1&2 1&2 4a 2 4b 1 (a) Figure 4.2 Surface markings of the pleura and lungs, posterior aspect: 1, pleural markings; 2, lung markings; 3, oblique ssure; 4, diaphragm, (a) inspiration, (b) expiration. The black dotted line shows the incision for opening the chest through 5th intercostal space The pleural sac is a potential space that can in patho- logical conditions ll with uid or air; with blood after intrathoracic haemorrhage (haemothorax); with inam- matory exudate (pleural effusion) or pus (pyothorax) (Fig. 4.3); or with air (pneumothorax) (Fig. 1.6, p. 00) after chest wall trauma that has torn the lung or after the rupture of a lung bulla that has burst the visceral pleura. A distended pleural cavity may interfere with lung expansion. Fluid may be drained from the pleural cavity by insertion of a needle or tube, attached to an underwater seal, into the 7th intercos- (b) tal space in the midaxillary line (Figs 1.7a and 1.9, p. 00). Figure 4.3 (a) Left pleural effusion obliterating much of the lower Insertion below this level runs the risk of the needle pene- lung markings; (b) localized interlobar uid collection (arrow) trating the diaphragm and the underlying liver or spleen. To avoid danger to the neurovascular bundle, it is best to insert the needle along the top of the rib, which avoids the vessels lying in the subcostal groove. Emergency aspiration of air is most safely achieved by inserting a needle, attached to an underwater seal or utter valve, into the 2nd or 3rd THE LUNGS intercostal space in the midclavicular line. These paired organs lie in separate pleural sacs attached to Punch biopsy needles inserted through the intercostal the mediastinum at the hila (Figs 4.1, and Figs 4.6 and 4.7 space allow specimens of pleura to be obtained for histological below). Spongy and elastic in composition, they conform to examination. Pleurisy – inammation of the pleura – causes the contours of the thoracic cavity. The right lung weighs pain that is magnied by respiratory movements. The pain about 620 g, and the left about 560 g. They have a charac- is referred by sensory bres within the parietal pleura to the teristic mottled appearance on radiographs – lung tissue is cutaneous distribution of the nerve supplying it. Thus costal clear; denser shadows at the hilus are caused by hilar lymph inammation is referred to the chest wall or, in the case of nodes, and radiating shadows by blood vessels. A posteroan- lower nerves, to the upper abdominal wall, and inammation terior (PA) chest X-ray will also reveal the normal aortic arch of the diaphragmatic pleura is referred to the area supplied by (knuckle), the inferior vena cava and the outline of the heart. the nerve root (C4) from which originates the phrenic nerve, A lateral view reveals details of the mediastinal structures i.e. to the tip of the shoulder. (Figs 4.4 and 4.5). 04_K35605_IllusClinical_2e_Ch4.indd 64 09/07/2018 16:28 PART 1 | THE THORAX The lungs 65 Figure 4.5 Lateral chest X-ray showing mediastinal structures: 1, manubriosternal joint; 2, sternum; 3, cardiac shadow; 4, trachea; 5, border of scapula; 6, vertebral bodies; 7, retrocardiac space; 8, domes of diaphragm Figure 4.4 Radiograph of the chest: 1, trachea; 2, aortic knuckle; 3, 1st costochondral junction; 4, hilar shadows; 5, left ventricle; 6, left costodiaphragmatic recess; 7, right dome of diaphragm; 8, inferior vena cava; 9, right atrium Upper lobe Groove for left subclavian artery Left pulmonary artery Groove for left common carotid artery Upper lobe Left main bronchus Groove for aortic arch Oblique Pulmonary veins ssure Cardiac impression Groove for descending Oblique ssure Lingula thoracic aorta Pulmonary ligament Cardiac notch Cardiac notch Lingula Lower lobe Lower lobe Inferior surface (a) (b) Inferior border Figure 4.6 Left lung: (a) lateral surface; (b) medial surface Each lung has an apex in the root of the neck, and a base into an upper and lower lobe (Fig. 4.6); oblique and hori- resting on the diaphragm. The base is separated by a sharp zontal ssures divide the right lung into upper, middle and inferior border from a lateral convex costal surface and a lower lobes (Fig. 4.7). The oblique ssure on each side can be medial concave mediastinal surface, in the centre of which marked by a line around the chest wall from the spine of the are the structures of the lung root surrounded by a cuff of 3rd thoracic vertebra to the 6th costochondral junction. The pleura (Figs 4.6 and 4.7). The deeper concavity of the left horizontal ssure is marked by a horizontal line passing from lung accommodates the heart’s left ventricle. The left lung’s the 4th right costal cartilage to the oblique line previously anterior border is deeply indented by the heart to form the drawn (Figs 4.1 and 4.2). The lower lobes of both lungs lie cardiac notch; the rounded posterior border of each lung lies below and behind the oblique ssure and comprise most of in the paravertebral sulcus. the posterior and inferior borders. The upper lobe of the left The lungs are each divided by ssures extending deeply lung is above and anterior to the oblique ssure, and includes into their substance. An oblique ssure divides the left lung the apex and most of the mediastinal and costal surfaces. The 04_K35605_IllusClinical_2e_Ch4.indd 65 09/07/2018 16:28 PART 1 | THE THORAX 66 CHAPTER 4 The pleura and lungs Groove for Apex the superior Groove for right vena cava subclavian artery Upper lobe Division of Impression of right pulmonary azygos vein artery Oblique ssure Oblique Division of right ssure main bronchus Groove for oesophagus Horizontal Anterior border of ssure Pulmonary veins heart Lower lobe Pulmonary Middle lobe Horizontal ligament ssure Groove for inferior vena cava (a) (b) Base of lung Figure 4.7 Right lung: (a) lateral surface; (b) medial surface Right Left Apical (UAP) Posterior (UP) Apico - posterior (UAP) Anterior (UA) Anterior (UA) Superior (SL) Lingular Lateral (LM) Apical basal Inferior (IL) Middle lobe Medial (MM) (LAP) Anterior basal (LA) Medial basal Anterior basal (LA) (LM) Lateral basal (LL) Lateral basal (LL) Posterior basal (a) (LP) Left lung L medial L lateral Right lung R Medial R Lateral UAP UAP UAP UAP UA UP UP UP LAP UA UA LAP UA LAP SL LAP IL SL LP LM MM ML MM IL LP LP LL LA LA LA LM LL LL (b) (c) Figure 4.8 (a) Bronchial tree.
Recommended publications
  • Physiology H Digestive
    2/28/18 Introduction • Provides processes to break down molecules into a state easily used by cells - A disassembly line: Starts at the mouth and ends Digestive System at the anus • Digestive functions are initiated by the parasympathetic division Chapter 29 - Digestion occurs during periods of low activity - Produces more energy than it uses Copyright © 2016 by Elsevier Inc. All rights reserved. 1 Copyright © 2016 by Elsevier Inc. All rights reserved. 2 Anatomy The Digestive System • Oral cavity • Pharynx • Esophagus • Stomach • Small intestine and large intestine • Accessory organs: Pancreas, liver, and gallbladder From Herlihy B: The human body in health and illness, ed 4, St. Louis, 2011, Saunders. Copyright © 2016 by Elsevier Inc. All rights reserved. 3 Copyright © 2016 by Elsevier Inc. All rights reserved. 4 Physiology Gastrointestinal Tract • Ingestion: Taking materials into mouth by • Muscular tube throughout digestive system eating/drinking • Accessory organs and glands secrete • Digestion: Breaking down food into molecules substance to aid in digestion that can be used by the body • GI tract wall has four layers: - Includes mechanical and enzymatic action - Mucosa • Absorption: Simple molecules from the - Submucosa gastrointestinal (GI) tract move into the - Muscle layer: Responsible for peristalsis bloodstream or lymph vessels and then into - Serosa body cells • Defecation: Eliminating indigestible or unabsorbed material from the body Copyright © 2016 by Elsevier Inc. All rights reserved. 5 Copyright © 2016 by Elsevier Inc. All rights reserved. 6 1 2/28/18 Peristalsis Oral Cavity • First portion of GI tract • Contains: - Teeth - Tongue - Openings for salivary glands From Thibodeau GA, Patton KT: Anatomy & physiology, ed 6, St.
    [Show full text]
  • Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-Tailed Opossum (Monodelphis Domestica) and North American Opossum (Didelphis Virginiana)
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2001 Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-tailed Opossum (Monodelphis domestica) and North American Opossum (Didelphis virginiana) Lee Anne Cope University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Animal Sciences Commons Recommended Citation Cope, Lee Anne, "Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-tailed Opossum (Monodelphis domestica) and North American Opossum (Didelphis virginiana). " PhD diss., University of Tennessee, 2001. https://trace.tennessee.edu/utk_graddiss/2046 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Lee Anne Cope entitled "Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-tailed Opossum (Monodelphis domestica) and North American Opossum (Didelphis virginiana)." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Animal Science. Robert W. Henry, Major Professor We have read this dissertation and recommend its acceptance: Dr. R.B. Reed, Dr. C. Mendis-Handagama, Dr. J. Schumacher, Dr. S.E. Orosz Accepted for the Council: Carolyn R.
    [Show full text]
  • THORAX ANATOMY LAB 1: LEARNING OBJECTIVES Thoracic Wall, Pleural Cavities, and Lungs
    THORAX ANATOMY LAB 1: LEARNING OBJECTIVES Thoracic Wall, Pleural Cavities, and Lungs Primary Learning Objectives 1. Define thorax and state the structures that form its anatomical boundaries. 2. Describe the locations and boundaries of the superior thoracic aperture (clinical: thoracic outlet) and the inferior thoracic aperture. Identify the costal arch (margin) and state the ribs that form the arch. 3. Identify and palpate the bones that compose the sternum (manubrium, body, and xiphoid process) and associated osteological features: jugular notch, clavicular notch, and sternal angle. 4. For the sternal angle, identify its associated vertebral level, state its anatomical relationship to the trachea and aorta, state its significance in creating an anatomical division of the mediastinum, and identify the ribs that join the sternum at its location. 5. Identify and palpate the clavicle, sternum, ribs, costal cartilages, intercostal spaces, and thoracic vertebrae. 6. Differentiate true ribs from false and floating ribs. 7. Identify the following osseous features on a rib: head, necK, rib (costal) tubercle, body, shaft, and the costal groove. 8. State the weaKest region of the rib that is commonly fractured and describe the anatomy and physiology involving flail chest. 9. Describe the possible clinical manifestations of supernumerary ribs. 10. Identify the following rib joints: costovertebral (costotransverse joint and vertebral body joint) and sternocostal. 11. Identify the transversus thoracis muscle, the external, internal, and innermost intercostal muscles, and state their innervation, blood supply, and functions. 12. State the structures that compose the neurovascular bundle within each intercostal space and identify each neurovascular bundle by number. 13. Identify the neurovascular bundle inferior to the twelfth rib and state the names of each structure composing the bundle (subcostal artery, subcostal vein, and subcostal nerve).
    [Show full text]
  • Variations in Dimensions and Shape of Thoracic Cage with Aging: an Anatomical Review
    REVIEW ARTICLE Anatomy Journal of Africa, 2014; 3 (2): 346 – 355 VARIATIONS IN DIMENSIONS AND SHAPE OF THORACIC CAGE WITH AGING: AN ANATOMICAL REVIEW ALLWYN JOSHUA, LATHIKA SHETTY, VIDYASHAMBHAVA PARE Correspondence author: S.Allwyn Joshua, Department of Anatomy, KVG Medical College, Sullia- 574327 DK, Karnataka,India. Email: [email protected]. Phone number; 09986380713. Fax number – 08257233408 ABSTRACT The thoracic cage variations in dimensions and proportions are influenced by age, sex and race. The objective of the present review was to describe the age related changes occurring in thoracic wall and its influence on the pattern of respiration in infants, adult and elderly. We had systematically reviewed, compared and analysed many original and review articles related to aging changes in chest wall images and with the aid of radiological findings recorded in a span of four years. We have concluded that alterations in the geometric dimensions of thoracic wall, change in the pattern and mechanism of respiration are influenced not only due to change in the inclination of the rib, curvature of the vertebral column even the position of the sternum plays a pivotal role. Awareness of basic anatomical changes in thoracic wall and respiratory physiology with aging would help clinicians in better understanding, interpretation and to differentiate between normal aging and chest wall deformation. Key words: Thoracic wall; Respiration; Ribs; Sternum; vertebral column INTRODUCTION The thoracic skeleton is an osteocartilaginous cage movement to the volume displacement of the frame around the principal organs of respiration lungs was evaluated by (Agostoni et al,m 1965; and circulation. It is narrow above and broad Grimby et al., 1968; Loring, 1982) for various below, flattened antero-posteriorly and longer human body postures.
    [Show full text]
  • Chapter 22 *Lecture Powerpoint
    Chapter 22 *Lecture PowerPoint The Respiratory System *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • Breathing represents life! – First breath of a newborn baby – Last gasp of a dying person • All body processes directly or indirectly require ATP – ATP synthesis requires oxygen and produces carbon dioxide – Drives the need to breathe to take in oxygen, and eliminate carbon dioxide 22-2 Anatomy of the Respiratory System • Expected Learning Outcomes – State the functions of the respiratory system – Name and describe the organs of this system – Trace the flow of air from the nose to the pulmonary alveoli – Relate the function of any portion of the respiratory tract to its gross and microscopic anatomy 22-3 Anatomy of the Respiratory System • The respiratory system consists of a system of tubes that delivers air to the lung – Oxygen diffuses into the blood, and carbon dioxide diffuses out • Respiratory and cardiovascular systems work together to deliver oxygen to the tissues and remove carbon dioxide – Considered jointly as cardiopulmonary system – Disorders of lungs directly effect the heart and vice versa • Respiratory system and the urinary system collaborate to regulate the body’s acid–base balance 22-4 Anatomy of the Respiratory System • Respiration has three meanings – Ventilation of the lungs (breathing) – The exchange of gases between the air and blood, and between blood and the tissue fluid – The use of oxygen in cellular metabolism 22-5 Anatomy of the Respiratory System • Functions – Provides O2 and CO2 exchange between blood and air – Serves for speech and other vocalizations – Provides the sense of smell – Affects pH of body fluids by eliminating CO2 22-6 Anatomy of the Respiratory System Cont.
    [Show full text]
  • Latin Language and Medical Terminology
    ODESSA NATIONAL MEDICAL UNIVERSITY Department of foreign languages Latin Language and medical terminology TextbookONMedU for 1st year students of medicine and dentistry Odessa 2018 Authors: Liubov Netrebchuk, Tamara Skuratova, Liubov Morar, Anastasiya Tsiba, Yelena Chaika ONMedU This manual is meant for foreign students studying the course “Latin and Medical Terminology” at Medical Faculty and Dentistry Faculty (the language of instruction: English). 3 Preface Textbook “Latin and Medical Terminology” is designed to be a comprehensive textbook covering the entire curriculum for medical students in this subject. The course “Latin and Medical Terminology” is a two-semester course that introduces students to the Latin and Greek medical terms that are commonly used in Medicine. The aim of the two-semester course is to achieve an active command of basic grammatical phenomena and rules with a special stress on the system of the language and on the specific character of medical terminology and promote further work with it. The textbook consists of three basic parts: 1. Anatomical Terminology: The primary rank is for anatomical nomenclature whose international version remains Latin in the full extent. Anatomical nomenclature is produced on base of the Latin language. Latin as a dead language does not develop and does not belong to any country or nation. It has a number of advantages that classical languages offer, its constancy, international character and neutrality. 2. Clinical Terminology: Clinical terminology represents a very interesting part of the Latin language. Many clinical terms came to English from Latin and people are used to their meanings and do not consider about their origin.
    [Show full text]
  • Yagenich L.V., Kirillova I.I., Siritsa Ye.A. Latin and Main Principals Of
    Yagenich L.V., Kirillova I.I., Siritsa Ye.A. Latin and main principals of anatomical, pharmaceutical and clinical terminology (Student's book) Simferopol, 2017 Contents No. Topics Page 1. UNIT I. Latin language history. Phonetics. Alphabet. Vowels and consonants classification. Diphthongs. Digraphs. Letter combinations. 4-13 Syllable shortness and longitude. Stress rules. 2. UNIT II. Grammatical noun categories, declension characteristics, noun 14-25 dictionary forms, determination of the noun stems, nominative and genitive cases and their significance in terms formation. I-st noun declension. 3. UNIT III. Adjectives and its grammatical categories. Classes of adjectives. Adjective entries in dictionaries. Adjectives of the I-st group. Gender 26-36 endings, stem-determining. 4. UNIT IV. Adjectives of the 2-nd group. Morphological characteristics of two- and multi-word anatomical terms. Syntax of two- and multi-word 37-49 anatomical terms. Nouns of the 2nd declension 5. UNIT V. General characteristic of the nouns of the 3rd declension. Parisyllabic and imparisyllabic nouns. Types of stems of the nouns of the 50-58 3rd declension and their peculiarities. 3rd declension nouns in combination with agreed and non-agreed attributes 6. UNIT VI. Peculiarities of 3rd declension nouns of masculine, feminine and neuter genders. Muscle names referring to their functions. Exceptions to the 59-71 gender rule of 3rd declension nouns for all three genders 7. UNIT VII. 1st, 2nd and 3rd declension nouns in combination with II class adjectives. Present Participle and its declension. Anatomical terms 72-81 consisting of nouns and participles 8. UNIT VIII. Nouns of the 4th and 5th declensions and their combination with 82-89 adjectives 9.
    [Show full text]
  • GROSS ANATOMY Lecture Syllabus 2008
    GROSS ANATOMY Lecture Syllabus 2008 ANAT 6010 - Gross Anatomy Department of Neurobiology and Anatomy University of Utah School of Medicine David A. Morton K. Bo Foreman Kurt H. Albertine Andrew S. Weyrich Kimberly Moyle 1 GROSS ANATOMY (ANAT 6010) ORIENTATION, FALL 2008 Welcome to Human Gross Anatomy! Course Director David A. Morton, Ph.D. Offi ce: 223 Health Professions Education Building; Phone: 581-3385; Email: [email protected] Faculty • Kurt H. Albertine, Ph.D., (Assistant Dean for Faculty Administration) ([email protected]) • K. Bo Foreman, PT, Ph.D, (Gross and Neuro Anatomy Course Director in Dept. of Physical Therapy) (bo. [email protected]) • David A. Morton, Ph.D. (Gross Anatomy Course Director, School of Medicine) ([email protected]. edu) • Andrew S. Weyrich, Ph.D. (Professor of Human Molecular Biology and Genetics) (andrew.weyrich@hmbg. utah.edu) • Kerry D. Peterson, L.F.P. (Body Donor Program Director) Cadaver Laboratory staff Jordan Barker, Blake Dowdle, Christine Eckel, MS (Ph.D.), Nick Gibbons, Richard Homer, Heather Homer, Nick Livdahl, Kim Moyle, Neal Tolley, MS, Rick Webster Course Objectives The study of anatomy is akin to the study of language. Literally thousands of new words will be taught through- out the course. Success in anatomy comes from knowing the terminology, the three-dimensional visualization of the structure(s) and using that knowledge in solving problems. The discipline of anatomy is usually studied in a dual approach: • Regional approach - description of structures regionally
    [Show full text]
  • Thoracic Wall Foreign Bodies Following Penetrating Trauma in Pediatric Age Group: Report of Two Cases with Literature Review
    CASE REPORT East J Med 25(1): 173-176, 2020 DOI: 10.5505/ejm.2020.68094 Thoracic Wall Foreign Bodies Following Penetrating Trauma In Pediatric Age Group: Report of Two Cases With Literature Review Volkan Sarper Erikci Department of Pediatric Surgery, Sağlık Bilimleri University Tepecik Training Hospital, Izmir, Turkey ABSTRACT Penetrating chest trauma is rarely seen in childhood. Following penetrative trauma various foreign objects may be detected as embedded in the tissues. A precise and prompt diagnosis together with an appropriate surgical management is paramount in these cases for a good prognosis. Here we present 2 cases with 2 different foreign bodies embedded in thoracic wall following different penetrating thoracic traumas. The purpose this report to critique the properties and handling of penetrative chest wall trauma in children with regard to post-traumatic retained FBs in thoracic wall and the topic is discussed under the light of relevant literature. Key Words: Chest wall trauma-retained foreign body-children Introduction cartridge bullet (Figure 1). There were not any findings consistent with hemo-pneumothorax or Penetrating chest injury may pose difficulty in pulmonary parenchymal injury in imaging studies like diagnosis of these cases for the health provider. chest roentgenogram and computed tomography. An Foreign bodies (FB) in thoracic wall after a easily palpable radiopaque FB was observed in the left penetrative injury are scarcely seen in childhood. hemithoracic wall adjacent to thoracic vertebrae There is a wide spectrum of foreign objects retained (Figure 2). Under general anesthesia during surgical in thorax following a trauma and these include bullets, intervention a midline rigid object was palpated 5 cm shrapnel, a piece of wearing, bones, rib particles and medial and away from to the wound.
    [Show full text]
  • Study 1: Effect of Saliva on B2T
    Stability of b2-transferrin and b-trace protein Lyn Boscato Chemical Pathology, St Vincent’s Hospital, Sydney, Australia. [email protected]; Introduction and Aim Study 1: Effect of saliva on B2T b2-transferrin (B2T) and b-trace protein (BTP) are useful markers for SUSPECTED SAMPLE PROBLEM the diagnosis of CSF leakage. A sample received for routine investigation of a suspected CSF Specimens received for analysis are often heavily contaminated with leak was negative for BTP but the transferrin isoform pattern other substances (eg blood, serous fluid, saliva, bacteria, mucus) and suggested CSF presence. Sample was an oral fluid collection so stored under non-ideal conditions (not frozen, large container, very small sample volume, on swabs). sialidase presence was suspected as the oral cavity can have a high bacterial load The aim of this study was to investigate the stability of B2T and BTP in 1 2 3 4 5 the presence of potential contaminants. 1 - CSF 4 - serum+ saliva STUDY 2 - CSF + saliva 5 - serum To determine if saliva contains sialidase 3 - saliva • • Saliva collected by passive drooling and microfuged to remove Figure 1. Transferrin isoforms detected following particulates. Methods IEF- western blotting for CSF and serum incubated • Equal volumes of saliva and serum or CSF were incubated with and without saliva. overnight at RT • Transferrin isoforms detected STUDIES Investigation of the stability of B2T and BTP incubated in the presence of a. saliva as a source of sialidase (enzyme which removes sialic acid from glycoproteins. Normally arises from bacterial or viral Study 2: Stability of B2T and BTP sources).
    [Show full text]
  • SJ FILE Explanations, Comments, Pictures (Edited in MARCH 2018)
    SJ FILE explanations, comments, pictures (edited in MARCH 2018) Explanations: - the total number of Qs is different than in the original file, because I don’t like repeated Qs, so I was removing some while editing - the numbering system is different than in the original file, because I wanted to fit some pictures on a certain page and due to that I had to move around some Qs, so Qs #123 in this file might be #150 in the original file: I was regretting that step while studying with other people, but there’s nothing I can do now - usually the Qs in this file compared to the original are within +/- 20 Qs range, so if you are discussing a Qs with someone else look for it on a certain page, page up & page down = you will find it - this file is a combination between two SJ files available on the group (forgot which ones), if there was a difference in an answer I would look it up and post an explanation - I edited a lot of answers while studying with others, I believe these answers are correct and have minor mistakes - I passed studying from this file - questions with “????” → I didn’t understand the qs and I am not sure of the answer MC = most common Epi = epinephrine NEpi = norepinephrine LN = lymp node 1 1. Papilla of the tongue, no taste: FILIFORM 2. Tracheostomy: PHYSIOLOGICAL DEAD SPACE Physiological dead space = anatomical dead space + alveolar dead space Anatomical dead space doesn’t contribute to gas exchange. Anatomical dead space is decreased by: I.
    [Show full text]
  • Current Models of Ovarian Cancer
    Iowa State University Capstones, Theses and Creative Components Dissertations Fall 2018 Current Models of Ovarian Cancer Ruth Hines Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents Part of the Investigative Techniques Commons, Obstetrics and Gynecology Commons, Oncology Commons, and the Women's Health Commons Recommended Citation Hines, Ruth, "Current Models of Ovarian Cancer" (2018). Creative Components. 65. https://lib.dr.iastate.edu/creativecomponents/65 This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Ruth Hines Creative Component Dr. Gunnar Mair Current Models of Ovarian Cancer ABSTRACT Ovarian cancer has proved to be one of the most difficult cancers to treat. It is often diagnosed in the late stages. When it is detected early, the 5-year survival rate is 93%. However, it is only detected early 15% of the time. For this reason, there is an emphasis on finding better tumor markers that can identify cancerous cells early. Ovarian cancers come from 3 different cell types. There are a variety of cancer subtypes from each type of cell. A one- size fits all treatment method isn’t feasible with so much variation. Models of ovarian cancer help understand the pathway of cancer development, find tumor markers for early detection, improve imagining techniques, and test drug therapies. Current models include transgenic mice, xenograft mice, chick chorioallantoic membrane, the laying hen, and 3-D human tissue cultures.
    [Show full text]