Vestibule Lingual Frenulum Tongue Hyoid Bone Trachea (A) Soft Palate

Total Page:16

File Type:pdf, Size:1020Kb

Vestibule Lingual Frenulum Tongue Hyoid Bone Trachea (A) Soft Palate Mouth (oral cavity) Parotid gland Tongue Sublingual gland Salivary Submandibular glands gland Esophagus Pharynx Stomach Pancreas (Spleen) Liver Gallbladder Transverse colon Duodenum Descending colon Small Jejunum Ascending colon intestine Ileum Large Cecum intestine Sigmoid colon Rectum Appendix Anus Anal canal © 2018 Pearson Education, Inc. 1 Nasopharynx Hard palate Soft palate Oral cavity Uvula Lips (labia) Palatine tonsil Vestibule Lingual tonsil Oropharynx Lingual frenulum Epiglottis Tongue Laryngopharynx Hyoid bone Esophagus Trachea (a) © 2018 Pearson Education, Inc. 2 Upper lip Gingivae Hard palate (gums) Soft palate Uvula Palatine tonsil Oropharynx Tongue (b) © 2018 Pearson Education, Inc. 3 Nasopharynx Hard palate Soft palate Oral cavity Uvula Lips (labia) Palatine tonsil Vestibule Lingual tonsil Oropharynx Lingual frenulum Epiglottis Tongue Laryngopharynx Hyoid bone Esophagus Trachea (a) © 2018 Pearson Education, Inc. 4 Visceral peritoneum Intrinsic nerve plexuses • Myenteric nerve plexus • Submucosal nerve plexus Submucosal glands Mucosa • Surface epithelium • Lamina propria • Muscle layer Submucosa Muscularis externa • Longitudinal muscle layer • Circular muscle layer Serosa (visceral peritoneum) Nerve Gland in Lumen Artery mucosa Mesentery Vein Duct oF gland Lymphoid tissue outside alimentary canal © 2018 Pearson Education, Inc. 5 Diaphragm Falciform ligament Lesser Liver omentum Spleen Pancreas Gallbladder Stomach Duodenum Visceral peritoneum Transverse colon Greater omentum Mesenteries Parietal peritoneum Small intestine Peritoneal cavity Uterus Large intestine Cecum Rectum Anus Urinary bladder (a) (b) © 2018 Pearson Education, Inc. 6 Cardia Fundus Esophagus Muscularis Serosa externa • Longitudinal layer • Circular layer • Oblique layer Body Lesser Rugae curvature of Pylorus mucosa Greater curvature Duodenum Pyloric Pyloric sphincter antrum (a) (valve) © 2018 Pearson Education, Inc. 7 Fundus Body Rugae of mucosa Pyloric Pyloric (b) sphincter antrum © 2018 Pearson Education, Inc. 8 Gastric pits Surface epithelium Pyloric sphincter pit Gastric Mucous neck cells Parietal cells Gastric Gastric gland Gastric glands Chief cells (c) © 2018 Pearson Education, Inc. 9 Pepsinogen Pepsin HCl Parietal cells Chief cells Enteroendocrine (d) cell © 2018 Pearson Education, Inc. 10 Right and leFt hepatic ducts from liver Cystic duct Common hepatic duct Bile duct and sphincter Accessory pancreatic duct Pancreas Gallbladder Jejunum Duodenal papilla Main pancreatic duct and sphincter Hepatopancreatic ampulla and sphincter Duodenum © 2018 Pearson Education, Inc. 11 Blood vessels serving the small intestine Lumen Muscle layers Circular folds (plicae circulares) Villi (a) Small intestine © 2018 Pearson Education, Inc. 12 Absorptive cells Lacteal Villus Blood capillaries Lymphoid tissue Intestinal crypt Muscularis Venule mucosae Lymphatic vessel (b) Villi Submucosa © 2018 Pearson Education, Inc. 13 Microvilli (brush border) (c) Absorptive cells © 2018 Pearson Education, Inc. 14 LeFt colic (splenic) flexure Transverse Right colic mesocolon (hepatic) flexure Transverse colon Haustrum Descending colon Ascending colon IIeum (cut) Cut edge oF mesentery IIeocecal valve Teniae coli Sigmoid colon Cecum Appendix Rectum Anal canal External anal sphincter © 2018 Pearson Education, Inc. 15 Enamel Dentin Crown Pulp cavity (contains blood vessels and nerves) Neck Gum (gingiva) Cement Root canal Root Periodontal membrane (ligament) Bone © 2018 Pearson Education, Inc. 16 Foodstuff Enzyme(s) and source Site of action Starch and disaccharides Digestion of Salivary amylase Mouth carbohydrates Pancreatic amylase Small intestine Oligosaccharides* and disaccharides Brush border enzymes Small intestine Lactose Maltose Sucrose in small intestine (dextrinase, glucoamylase, lactase, maltase, Galactose Glucose Fructose and sucrase) The monosaccharides glucose, galactose, and Fructose Absorption of enter the capillary blood in the villi and are transported to carbohydrates the liver via the hepatic portal vein. *Oligosaccharides consist of a few linked monosaccharides. © 2018 Pearson Education, Inc. 17 Foodstuff Enzyme(s) and source Site of action Protein Digestion of proteins Pepsin (stomach glands) Stomach in the presence oF HCl Large polypeptides Pancreatic enzymes Small intestine (trypsin, chymotrypsin, Small polypeptides carboxypeptidase) Brush border enzymes Small intestine (aminopeptidase, Amino acids carboxypeptidase, (some dipeptides and dipeptidase) and tripeptides) Absorption Amino acids enter the capillary blood in the villi and are of proteins transported to the liver via the hepatic portal vein. © 2018 Pearson Education, Inc. 18 Foodstuff Enzyme(s) and source Site of action UnemulsiFied Fats Digestion Small intestine of fats EmulsiFied by the detergent action of bile salts From the liver Pancreatic lipase Small intestine Monoglycerides Glycerol and and Fatty acids fatty acids Fatty acids and monoglycerides enter the lacteals oF the villi Absorption and are transported to the systemic circulation via the lymph of fats in the thoracic duct. (Glycerol and short-chain Fatty acids are absorbed into the capillary blood in the villi and transported to the liver via the hepatic portal vein.) © 2018 Pearson Education, Inc. 19 Ingestion Food Mechanical breakdown Pharynx • Chewing (mouth) Esophagus • Churning (stomach) Propulsion • Segmentation • Swallowing (small intestine) (oropharynx) • Peristalsis Digestion (esophagus, stomach, small intestine, large intestine) Stomach Absorption Lymph vessel Small intestine Blood Large vessel intestine Mainly H2O Feces Anus Defecation © 2018 Pearson Education, Inc. 20 Bolus of food Tongue Pharynx Epiglottis up Upper esophageal Glottis (lumen) sphincter of larynx Trachea Esophagus 1 Upper esophageal sphincter contracted © 2018 Pearson Education, Inc. 21 Uvula Bolus Epiglottis down Larynx up Esophagus 2 Upper esophageal sphincter relaxed © 2018 Pearson Education, Inc. 22 Bolus 3 Upper esophageal sphincter contracted © 2018 Pearson Education, Inc. 23 Relaxed muscles Cardioesophageal sphincter open 4 Cardioesophageal sphincter relaxed © 2018 Pearson Education, Inc. 24 Pyloric Pyloric Pyloric valve valve valve closed slightly closed opened 1 Propulsion: Peristaltic 2 Grinding: The most 3 Retropulsion: The waves move From the Fundus vigorous peristalsis and peristaltic wave closes the toward the pylorus. mixing action occur close pyloric valve, Forcing most of to the pylorus. The pyloric the contents of the pylorus end oF the stomach acts as backward into the stomach. a pump that delivers small amounts oF chyme into the duodenum. © 2018 Pearson Education, Inc. 25 4 Secretin causes the liver to secrete more bile; CCK stimulates the gallbladder 1 Chyme entering to release stored duodenum causes bile and the duodenal entero- hepatopancreatic endocrine cells to sphincter to relax release cholecystokinin (allows bile from (CCK) and secretin. both sources to enter the duodenum). 2 CCK (red dots) and secretin (blue dots) 5 Stimulation enter the bloodstream. by vagal nerve fibers causes 3 Upon reaching the release oF pancreas, CCK induces pancreatic juice secretion oF enzyme- and weak rich pancreatic juice; contractions oF secretin causes the gallbladder. secretion oF bicarbonate- rich pancreatic juice. © 2018 Pearson Education, Inc. 26 (a) (b) © 2018 Pearson Education, Inc. 27 Tryptophan Beans and other Methionine legumes Valine Threonine Phenylalanine Leucine Corn and Isoleucine other grains Lysine © 2018 Pearson Education, Inc. 28 (a) Carbohydrates: polysaccharides, disaccharides; composed of simple sugars (monosaccharides) ATP Glycogen and fat Polysaccharides Cellular uses broken down for ATP formation GI digestion to simple sugars To Excess stored as capillary glycogen or fat Broken down to glucose Monosaccharides and released to blood © 2018 Pearson Education, Inc. 29 (b) Fats: composed of 1 glycerol molecule and 3 fatty acids; triglycerides Cellular ATP Fats are the Metabolized uses Lipid (fat) primary fuels by liver to Fatty in many cells acetic acid, etc. acids GI digestion to fatty acids and glycerol Insulation and fat Fats build myelin cushions to protect sheaths and cell body organs membranes Glycerol © 2018 Pearson Education, Inc. 30 (c) Proteins: polymers of amino acids ATP formation if inadequate ATP glucose and fats or if essential Protein Normally amino acids are lacking infrequent Functional proteins GI digestion to (enzymes, antibodies, amino acids Cellular hemoglobin, etc.) uses Structural proteins Amino (connective tissue fibers, acids muscle proteins, etc.) © 2018 Pearson Education, Inc. 31 (d) ATP formation (fueling the metabolic furnace): all categories of food can be oxidized to provide energy molecules (ATP) Carbon dioxide Cellular Monosaccharides metabolic “furnace”: Water Citric acid cycle Fatty acids and electron transport Amino acids chain (amine first removed ATP and combined with CO2 by the liver to form urea) © 2018 Pearson Education, Inc. 32 Glycogenesis: Glucose converted to glycogen and stored IMBALANCE Stimulus: Rising blood glucose level HOMEOSTATIC BLOOD SUGAR IMBALANCE Stimulus: Falling blood glucose level Glycogenolysis: Stored glycogen converted to glucose Gluconeogenesis: Amino acids and Fats converted to glucose © 2018 Pearson Education, Inc. 33.
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Jemds.Com Case Report
    Jemds.com Case Report RIGHT SIDED SIGMOID COLON AND REDUNDANT DESCENDING COLON ON CONVENTIONAL AND CT IMAGING Mandeep Singh1, Madhan Kumar2, Daisy Gupta3 1Junior Resident, Department of Radiodiagnosis, Government Medical College, Amritsar, Punjab, India. 2Junior Resident, Department of Radiodiagnosis, Government Medical College, Amritsar, Punjab, India. 3Assistant Professor, Department of Radiodiagnosis, Government Medical College, Amritsar, Punjab, India. HOW TO CITE THIS ARTICLE: Singh M, Kumar M, Gupta D. Right sided sigmoid colon and redundant descending colon on conventional and CT imaging. J. Evolution Med. Dent. Sci. 2018;7(44):5617-5620, DOI: 10.14260/jemds/2018/1073 CASE PRESENTATION Investigations A 62-year-old male presented with history of severe On Plain X-Ray Abdomen constipation, abdominal distension, haemorrhoids and blood No abnormal air-fluid levels were seen. There were no in stool in surgical OPD of Guru Nanak Dev Hospital, abnormal radio-opaque shadows seen. Bilateral psoas Amritsar. The patient was referred for barium studies of shadows and soft tissue shadows were identified as normal. colon, which showed a loop of colon in pelvic region (at normal location of ileal loops) and redundant and long On Barium Enema descending colon extending across midline to reach hepatic After filling the rectum, the contrast was identified as filling flexure on right and continuing as sigmoid colon on right side. the sigmoid colon, which was present anomalously towards Transverse colon and ascending colon were normal in length the right side. Filling of barium outlined the extension of and position. On CECT abdomen of the patient, a long colon from sigmoid on right side with coiling in right iliac segment of descending colon was identified.
    [Show full text]
  • Selecting Different Approaches for Palate and Pharynx Surgery
    SPECIAL ISSUE 4: INVITED ARTICLE Selecting Different Approaches for Palate and Pharynx Surgery: Palatopharyngeal Arch Staging System Rodolfo Lugo-Saldaña1 , Karina Saldívar-Ponce2 , Irina González-Sáez3 , Daniela Hernández-Sirit4 , Patricia Mireles-García5 ABSTRACT The examination of the anatomical structures involved in the upper airway collapse in patients with the obstructive sleep apnea-hypopnea syndrome (OSAHS) is a key for integrated evaluation of patients. Our proposal is for a noninvasive classification system that guides us about the presence of anatomical differences between the palatopharyngeal muscle (PFM). The functions of the PFM are narrowing the isthmus, descending the palate, and raising the larynx during swallowing; these characteristics give the PFM a special role in the collapse of the lateral pharyngeal wall. Complete knowledge of the anatomy and classification of different variants can guide us to choose the appropriate surgical procedures for the lateral wall collapse. Until now there is not a consensus about description of the trajectory or anatomical variants of the PFM into oropharynx, the distance between both muscles, and the muscle tone. Here we also present the relationship between the lateral wall surgeries currently available (lateral pharyngoplasty by Cahali, expansion sphincteroplasty by Pang, relocation pharyngoplasty by Li, Roman blinds pharyngoplasty by Mantovani, and barbed sutures pharyngoplasty by Vicini) with the proposed classification of the palatopharyngeal arch staging system (PASS). Keywords:
    [Show full text]
  • Diseases of the Tonsil
    DISEASES OF THE TONSIL Dr. Amer salih aljibori Acute Tonsillitis: acute inflammatory condition of the faucial tonsil which may involve the mucosa, crypts,follicles and /or tonsillor parenchyma. Causatve agents; -Viral:Initially starts with viral infection then followed by secondary bacterial infection.Common viruses are influenza,parainfluenza.adenovirus and rhinovirus. -Bacterial:Streptococcus hemolyticus,Hemophilus influenza,pneumococcus,M.catarrahalis. Pathology and pathogenesis: Usually it starts in the childhood when there is low immune status.Depending on the progress of the disease,this can be classified further into the following types. •Catarrhal tonsillitis:It occurs due to viral infection of the upper respiratory tract involving the mucosa of the tonsil •Cryptic tonsillitis: Following viral infection ,secondary bacterial infection supervenes and gets entrapped within the crypts leading to localized form of infection •Acute follicular tonsillitis. It is sever form of tonsillitis caused by virulent organisms like streptococcus hemolyticus and Hemophilus. It causes spread of inflammation from tonsillar crypts to the surrounding tosillar follicles. Acute parenchymal tonsillitis: The secondary bacterial infection will invade to the crypts and it is rapidly spreads into the tonsillar parenchyma.. Cryptic tonsillitis 1- Symptoms -Fever -Generalized malaise and bodyache. -Odynophagia. -Dry cough. -Sorethroat. 2- Signs -Congested and oedematous tonsils -Tonsils may be diffusely swollen in parenchymatous tonsillitis. -Crypts filled with pus in follicular tonsillitis. -Membrane cover the tonsil and termed as membranous tonsillitis. -Tender enlarged jugulodigastric lymph nodes. -Signs of upper respiratory tract infection and adenoiditis. Investigations. -Throat swab for culture and sensitivity. -Blood smear to rule out hemopoeitic disorders like leukemia,agranulocytosis. -Paul-Bunnel test may be required if membrane seen to rulr out infectious mononucleosis.
    [Show full text]
  • Organization of the Gastrointestinal Tract
    Organization of the gastrointestinal tract Development of the Foregut, Midgut, and Hindgut Development of the alimentary canal It constitutes during the 4th week from 3 separate embryonic anlages (organs): - The stomodeum (primitive mouth) – develops on the cephalic end of the embryo, is limited by 5 frominences (frontonasal, 2 maxillary, 2 mandibular) ectoderm oropharyngeal membrane. - The primitive gut arises by incorporation of the dorsal part of the yolk sac into embryo during cephalocaudal and lateral folding of the embryo gut is connected to the yolk sac by means of the vitelline (omphalomesenteric) duct endoderm cloacal membrane - The proctodeum (anal pit) - develops on the caudal end of the embryo between future bases of lower limbs - ectoderm - while the ectoderm of the stomodeum and proctodeum as well as the endoderm of the gut differentiate into the epithelium of the alimentary canal, - The muscular and fibrous elements + visceral peritoneum derive from the splanchnic mesenchyma that surrounds the lining of the primitive gut. Development of associated glands: - (salivary glands, liver and pancreas) develop from the endoderm (ectoderm) that gives rise to specific cells (hepatocytes, exo- and endocrine cells of the pancreas (the parenchyma) DERIVATIVES OF THE PRIMITIVE GUT The foregut: . the pharynx and branchiogenic organs . the lower respiratory tract . the esophagus . the stomach . the duodenum proximal to the opening of the bile duct . the liver and pancreas + the biliary apparatus The midgut: . the small intestines, including the part of the duodenum distal to the opening of the bile duct . the caecum and appendix . the ascending colon . the transverse colon The hindgut: . the descending colon . the sigmoid colon .
    [Show full text]
  • A Rare Tumor of Palatine Tonsils: Chondrolipoma
    Turkish Archives of Otorhinolaryngology Turk Arch Otorhinolaryngol 2018; 56(3): 180-2 180 Türk Otorinolarengoloji Arşivi A Rare Tumor of Palatine Tonsils: Chondrolipoma Gamze Öztürk1 , Umman Tunç1 , Kadir Balaban2 , Hülya Eyigör1 Case Report 1Department of Otorhinolaryngology, Antalya Training and Research Hospital, Antalya, Turkey 2Department of Pathology, Health Sciences University, Antalya Training and Research Hospital, Antalya, Turkey Abstract Chondrolipomas are benign mesenchymal tumors that 17-year-old male patient, who presented to our clinic have two mature tissues simultaneously and emerge as complaining of dysphagia and was diagnosed with ton- a result of cartilaginous metaplasia in lipomas. They sillar chondrolipoma, is described here, along with the rarely occur in the head and neck area (1%-4%), and radiological, clinical, and immunohistochemical find- occur more frequently in the 60-70 years age group. ings, as well as the review of the literature Although there are cases of the nasopharynx, tongue, lip, and neck reported in the literature, we have been Keywords: Chondrolipoma, palatine tonsil, tonsillar able to find only two cases on tonsils. The case of a neoplasm, dysphagia Introduction magnetic resonance imaging (MRI) of the neck re- Defined by Stout in 1948, chondrolipomas are vealed a well-circumscribed nodular lesion, approx- mesenchymal tumors resulting from cartilaginous imately 1 cm in diameter with a moderate enhance- metaplasia in lipomas and having two mature tissues ment on the anteromedial wall, and fat intensity in simultaneously (1). They may occur anywhere in the all sequences in post contrast series in the right pala- body and generally present as slowly growing, soli- tine tonsil (Figure 2).
    [Show full text]
  • Crohn's Disease of the Colon
    Gut, 1968, 9, 164-176 Gut: first published as 10.1136/gut.9.2.164 on 1 April 1968. Downloaded from Crohn's disease of the colon V. J. McGOVERN AND S. J. M. GOULSTON From the Royal Prince Alfred Hospital, Sydney, Australia The fact that Crohn's disease may involve the colon never affected unless there had been surgical inter- either initially or in association with small bowel ference. There was no overt manifestation of mal- disease is now firmly established due largely to the absorption in any of these patients. evidence presented by Lockhart-Mummery and In 18 cases the colon alone was involved. Five had Morson (1960, 1964) and Marshak, Lindner, and universal involvement, five total involvement with Janowitz (1966). This entity is clearly distinct from sparing of the rectum, two involvement of the ulcerative colitis and other forms of colonic disease. descending colon only, two the transverse colon only, Our own experience with this disorder reveals many and in the other four there was variable involvement similarities with that published from the U.K. and of areas of large bowel (Fig. 2). the U.S.A. Thirty patients with Crohn's disease involving the large bowel were seen at the Royal CLINICAL FEATURES Prince Alfred Hospital during the last decade, the majority during the past five years. The criteria for The age incidence varied from 6 to 69 years when the inclusion were based on histological examination of patient was first seen, the majority being between the operative specimens in 28 and on clinical and radio- ages of 11 and 50.
    [Show full text]
  • Abbreviations - Diagnosis
    Abbreviations - Diagnosis AB abrasion AT attrition CA caries CFL cleft lip CFP cleft palate CLL cervical line lesion - See TR CMO craniomandibular osteopathy DT deciduous (primary) tooth DTC dentigerous cyst E enamel E/D enamel defect E/H enamel hypocalcification or hypoplasia FB foreign body FORL feline odontoclastic resorptive lesion - See TR FX fracture (tooth or jaw) G granuloma G/B buccal granuloma (cheek chewing lesion) G/L sublingual granuloma (tongue chewing lesion) G/E/L eosinophilic granuloma - lip G/E/P eosinophilic granuloma - palate G/E/T eosinophilic granuloma - tongue GH gingival hyperplasia GR gingival recession LAC laceration LAC/B laceration buccal (cheek) LAC/L laceration lip LAC/T laceration tongue MAL malocclusion MAL/1 class 1 malocclusion (neutroclusion - normal jaw relationship, specific teeth are incorrectly positioned) MAL/2 class 2 malocclusion (mandibular distoclusion - mandible shorter than maxilla) MAL/3 class 3 malocclusion (mandibular mesioclusion - maxilla shorter than mandible) BV buccoversion (crown directed towards cheek) CXB caudal crossbite DV distoversion (crown directed away from midline of dental arch) LABV labioversion (crown directed towards lip) LV linguoversion (crown directed towards tongue) MV mesioversion (crown directed towards midline of dental arch) OB open bite RXB rostral crossbite MN mandible or mandibular MN/FX mandibular fracture MX maxilla or maxillary MX/FX maxillary fracture OM oral mass OM/AD adenocarcinoma OM/EPA acanthomatous ameloblastoma (epulis) OM/EPF fibromatous epulis
    [Show full text]
  • Angina Bullosa Haemorrhagica (Oral Blood Blister) (PDF)
    Patient Information Maxillo-facial Angina Bullosa Haemorrhagica (Oral Blood Blister) What is Angina Bullosa Haemorrhagica? Angina Bullosa Hemorrhagica (ABH) is a condition where an often painful, but benign blood-filled blister suddenly develops in the mouth. The blisters are generally not due to a blood clotting disorder or any other medical disorder. It is a fairly common, sudden onset and benign blood blistering oral (mouth) disorder. It mainly affects people over 45 years and both males and females are equally affected. Usually there is no family history of the condition. It may be associated with Type 2 Diabetes, a family history of diabetes or Hyperglycaemia. What are the signs and symptoms of ABH? The first indication is a stinging pain or burning sensation just before the appearance of a blood blister The blisters last only a few minutes and then spontaneously rupture (burst), leaving a shallow ulcer that heals without scarring, discomfort or pain They can reach an average size of one to three centimetres in diameter The Soft Palate (back of the mouth) is the most affected site If they occur on the palate and are relatively big, they may need to be de-roofed (cut and drained) to ease the sensation of choking Patient Information Occasionally blisters can occur in the buccal mucosa (cheek) and tongue Approximately one third of the patients have blood blisters in more than one location. What are the causes of ABH? More than 50% of cases are related to minor trauma caused by: hot foods, restorative dentistry (fillings, crowns etc) or Periodontal Therapy (treatment of gum disease).
    [Show full text]
  • Lecture 2 – Bone
    Oral Histology Summary Notes Enoch Ng Lecture 2 – Bone - Protection of brain, lungs, other internal organs - Structural support for heart, lungs, and marrow - Attachment sites for muscles - Mineral reservoir for calcium (99% of body’s) and phosphorous (85% of body’s) - Trap for dangerous minerals (ex:// lead) - Transduction of sound - Endocrine organ (osteocalcin regulates insulin signaling, glucose metabolism, and fat mass) Structure - Compact/Cortical o Diaphysis of long bone, “envelope” of cuboid bones (vertebrae) o 10% porosity, 70-80% calcified (4x mass of trabecular bone) o Protective, subject to bending/torsion/compressive forces o Has Haversian system structure - Trabecular/Cancellous o Metaphysis and epiphysis of long bone, cuboid bone o 3D branching lattice formed along areas of mechanical stress o 50-90% porosity, 15-25% calcified (1/4 mass of compact bone) o High surface area high cellular activity (has marrow) o Metabolic turnover 8x greater than cortical bone o Subject to compressive forces o Trabeculae lined with endosteum (contains osteoprogenitors, osteoblasts, osteoclasts) - Woven Bone o Immature/primitive, rapidly growing . Normally – embryos, newborns, fracture calluses, metaphyseal region of bone . Abnormally – tumors, osteogenesis imperfecta, Pagetic bone o Disorganized, no uniform orientation of collagen fibers, coarse fibers, cells randomly arranged, varying mineral content, isotropic mechanical behavior (behavior the same no matter direction of applied force) - Lamellar Bone o Mature bone, remodeling of woven
    [Show full text]
  • The Digestive System
    Connective tissue The Digestive System Part 1 Structure of digestive system Functions Basic Structure of the Alimentary Canal Wall Tube is made up of four layers: 1. Mucosa 2. Submucosa 3. Muscularis externa 4. Serosa (Peritoneum) or Adventitia Mucosa The innermost wall of the alimentary tube. Consists of: • Epithelium - usually simple columnar epithelium with goblet cells; may be stratified squamous if protection is needed (e.g. esophagus) • Lamina propria – loose connective tissue • Muscularis mucosae – takes part in the formation of folds Submucosa Made up of loose connective tissue. Contains submucosal (Meissner’s) nervous plexus and blood vessels, sometimes glands. Muscularis externa Usually two layers of smooth muscle: • inner circular layer • outer longitudinal layer. • Myenteric (Auerbach’s) nervous plexus in between • Responsible for peristalsis (controlled by the nerve plexus) Outer membrane • A serous membrane/peritoneum consisting of the mesothelium (simple squamous epithelium), and a small amount of underlying loose connective tissue. • Or adventitia consisting only of connective tissue is found where the wall of the tube is directly attached or fixed to adjoining structures (i.e., body wall and certain organs). Enteric nervous system The Alimentary Canal Pharynx Common respiratory and digestive pathway (both air and swallowed food and drinks pass through). • Stratified squamous non-keratinized epithelium • Lamina propria contains many elastic fibers • No muscularis mucosae • No submucosa • Striated muscle in the muscularis externa Esophagus Fixed muscular tube that delivers food and liquid from the pharynx to the stomach. Esophagus Epithelium - stratified squamous Mucosal and submucosal glands of the esophagus secrete mucus to lubricate and protect the luminal wall. Esophageal glands proper lie in the submucosa.
    [Show full text]
  • Head and Neck
    DEFINITION OF ANATOMIC SITES WITHIN THE HEAD AND NECK adapted from the Summary Staging Guide 1977 published by the SEER Program, and the AJCC Cancer Staging Manual Fifth Edition published by the American Joint Committee on Cancer Staging. Note: Not all sites in the lip, oral cavity, pharynx and salivary glands are listed below. All sites to which a Summary Stage scheme applies are listed at the begining of the scheme. ORAL CAVITY AND ORAL PHARYNX (in ICD-O-3 sequence) The oral cavity extends from the skin-vermilion junction of the lips to the junction of the hard and soft palate above and to the line of circumvallate papillae below. The oral pharynx (oropharynx) is that portion of the continuity of the pharynx extending from the plane of the inferior surface of the soft palate to the plane of the superior surface of the hyoid bone (or floor of the vallecula) and includes the base of tongue, inferior surface of the soft palate and the uvula, the anterior and posterior tonsillar pillars, the glossotonsillar sulci, the pharyngeal tonsils, and the lateral and posterior walls. The oral cavity and oral pharynx are divided into the following specific areas: LIPS (C00._; vermilion surface, mucosal lip, labial mucosa) upper and lower, form the upper and lower anterior wall of the oral cavity. They consist of an exposed surface of modified epider- mis beginning at the junction of the vermilion border with the skin and including only the vermilion surface or that portion of the lip that comes into contact with the opposing lip.
    [Show full text]