Analysis of Influence of Natural Disaster on the Economy and Prediction of Recovery Time Based on Grey Forecasting–Difference
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2008 Wenchuan Earthquake: Risk Management Lessons and Implications Ic Acknowledgements
The 2008 Wenchuan Earthquake: Risk Management Lessons and Implications Ic ACKNOWLEDGEMENTS Authors Emily Paterson Domenico del Re Zifa Wang Editor Shelly Ericksen Graphic Designer Yaping Xie Contributors Joseph Sun, Pacific Gas and Electric Company Navin Peiris Robert Muir-Wood Image Sources Earthquake Engineering Field Investigation Team (EEFIT) Institute of Engineering Mechanics (IEM) Massachusetts Institute of Technology (MIT) National Aeronautics and Space Administration (NASA) National Space Organization (NSO) References Burchfiel, B.C., Chen, Z., Liu, Y. Royden, L.H., “Tectonics of the Longmen Shan and Adjacent Regoins, Central China,” International Geological Review, 37(8), edited by W.G. Ernst, B.J. Skinner, L.A. Taylor (1995). BusinessWeek,”China Quake Batters Energy Industry,” http://www.businessweek.com/globalbiz/content/may2008/ gb20080519_901796.htm, accessed September 2008. Densmore A.L., Ellis, M.A., Li, Y., Zhou, R., Hancock, G.S., and Richardson, N., “Active Tectonics of the Beichuan and Pengguan Faults at the Eastern Margin of the Tibetan Plateau,” Tectonics, 26, TC4005, doi:10.1029/2006TC001987 (2007). Embassy of the People’s Republic of China in the United States of America, “Quake Lakes Under Control, Situation Grim,” http://www.china-embassy.org/eng/gyzg/t458627.htm, accessed September 2008. Energy Bulletin, “China’s Renewable Energy Plans: Shaken, Not Stirred,” http://www.energybulletin.net/node/45778, accessed September 2008. Global Terrorism Analysis, “Energy Implications of the 2008 Sichuan Earthquake,” http://www.jamestown.org/terrorism/news/ article.php?articleid=2374284, accessed September 2008. World Energy Outlook: http://www.worldenergyoutlook.org/, accessed September 2008. World Health Organization, “China, Sichuan Earthquake.” http://www.wpro.who.int/sites/eha/disasters/emergency_reports/ chn_earthquake_latest.htm, accessed September 2008. -
Journal of Avian Biology JAV-01015 Liu, Y., Chen, G., Huang, Q., Jia, C., Carey, G., Leader, P., Li, Y., Zou, F., Yang, X., Olsson, U
Journal of Avian Biology JAV-01015 Liu, Y., Chen, G., Huang, Q., Jia, C., Carey, G., Leader, P., Li, Y., Zou, F., Yang, X., Olsson, U. and Alström, P. 2016. Species delimitation of the white- tailed rubythroat Calliope pectoralis complex (Aves, Turdidae) using an integrative taxonomic approach. – J. Avian Biol. doi: 10.1111/jav.01015 Supplementary material Appendix 1 Table A1. Samples with vouchers and sequences with GenBank accession numbers used in this article (AMNH=American Museum of Natural History, SYSb=Sun Yat-sen University, SCIEA=South China Institute of Endangered Animals). GenBank accession numbers in bold indicate sequences yielded in this study. No. of Taxon Locality Sample ID/Voucher samples COI Cytb ODC Myo Aksu, Xinjiang, China SYSb024 1 KU973742 KU973766 KU973805 KU973785 Nalati Grassland, Xinyuan, Xinjiang, China SYSb1087/IOZ64459 1 KU973743 KU973767 —— KU973786 Hogasangkhok Ravine,Varzob Region, Tajikistan SYSb1088/IOZ63178 1 KU973745 KU973769 KU973807 KU973788 C. pectoralis Hogasangkhok Ravine,Varzob Region, Tajikistan SYSb1089/IOZ63189 1 KU973746 KU973770 KU973808 KU973789 ballioni Hogasangkhok Ravine,Varzob Region, Tajikistan SYSb1090/IOZ63190 1 KU973747 KU973771 KU973809 KU973790 Hogasangkhok Ravine,Varzob Region, Tajikistan SYSb1091/IOZ63198 1 KU973748 KU973772 KU973810 KU973791 Kazakhstan Sangster et al. (2010) 1 —— HM633321 HM633739 HM633603 The Tian Shan Observatory, Kazakhstan SYSb462 1 KU973744 KU973768 KU973806 KU973787 Xiadawuxiang, Maqen, Qinghai, China SYSb540/IOZ54456 1 KU973732 KU973755 KU973797 KU973779 Baima Snow Mountain, Deqin, Yunnan, China SYSb770 1 KU973733 KU973756 KU973798 —— Fugong, Nujiang, Yunnan, China SYSb771/KIZ-GLGS0218 1 KU973734 KU973757 KU973799 KU973780 Lushui, Nujiang, Yunnan, China SYSb772/KIZ-GLGS5006 1 KU973735 KU973758 KU973800 KU973781 Yulong Snow Mountain, Lijiang, Yunnan, China SYSb773/KIZ-YL07191 1 KU973736 KU973759 KU973801 KU973782 C. -
Respective Influence of Vertical Mountain Differentiation on Debris Flow Occurrence in the Upper Min River, China
www.nature.com/scientificreports OPEN Respective infuence of vertical mountain diferentiation on debris fow occurrence in the Upper Min River, China Mingtao Ding*, Tao Huang , Hao Zheng & Guohui Yang The generation, formation, and development of debris fow are closely related to the vertical climate, vegetation, soil, lithology and topography of the mountain area. Taking in the upper reaches of Min River (the Upper Min River) as the study area, combined with GIS and RS technology, the Geo-detector (GEO) method was used to quantitatively analyze the respective infuence of 9 factors on debris fow occurrence. We identify from a list of 5 variables that explain 53.92%% of the total variance. Maximum daily rainfall and slope are recognized as the primary driver (39.56%) of the spatiotemporal variability of debris fow activity. Interaction detector indicates that the interaction between the vertical diferentiation factors of the mountainous areas in the study area is nonlinear enhancement. Risk detector shows that the debris fow accumulation area and propagation area in the Upper Min River are mainly distributed in the arid valleys of subtropical and warm temperate zones. The study results of this paper will enrich the scientifc basis of prevention and reduction of debris fow hazards. Debris fows are a common type of geological disaster in mountainous areas1,2, which ofen causes huge casual- ties and property losses3,4. To scientifcally deal with debris fow disasters, a lot of research has been carried out from the aspects of debris fow physics5–9, risk assessment10–12, social vulnerability/resilience13–15, etc. Jointly infuenced by unfavorable conditions and factors for social and economic development, the Upper Min River is a geographically uplifed but economically depressed region in Southwest Sichuan. -
Report on Domestic Animal Genetic Resources in China
Country Report for the Preparation of the First Report on the State of the World’s Animal Genetic Resources Report on Domestic Animal Genetic Resources in China June 2003 Beijing CONTENTS Executive Summary Biological diversity is the basis for the existence and development of human society and has aroused the increasing great attention of international society. In June 1992, more than 150 countries including China had jointly signed the "Pact of Biological Diversity". Domestic animal genetic resources are an important component of biological diversity, precious resources formed through long-term evolution, and also the closest and most direct part of relation with human beings. Therefore, in order to realize a sustainable, stable and high-efficient animal production, it is of great significance to meet even higher demand for animal and poultry product varieties and quality by human society, strengthen conservation, and effective, rational and sustainable utilization of animal and poultry genetic resources. The "Report on Domestic Animal Genetic Resources in China" (hereinafter referred to as the "Report") was compiled in accordance with the requirements of the "World Status of Animal Genetic Resource " compiled by the FAO. The Ministry of Agriculture" (MOA) has attached great importance to the compilation of the Report, organized nearly 20 experts from administrative, technical extension, research institutes and universities to participate in the compilation team. In 1999, the first meeting of the compilation staff members had been held in the National Animal Husbandry and Veterinary Service, discussed on the compilation outline and division of labor in the Report compilation, and smoothly fulfilled the tasks to each of the compilers. -
Sichuan Province
Directory of Important Bird Areas in China (Mainland): Key Sites for Conservation Editors SIMBA CHAN (Editor-in-chief) MIKE CROSBY , SAMSON SO, WANG DEZHI , FION CHEUNG and HUA FANGYUAN Principal compilers and data contributors Prof. Zhang Zhengwang (Beijing Normal University), Prof. Chang Jiachuan (Northeast Forestry University), the late Prof. Zhao Zhengjie (Forestry Institute of Jilin Province), Prof. Xing Lianlian (University of Nei Menggu), Prof. Ma Ming (Ecological and Geographical Institute, Chinese Academy of Sciences, Xinjiang), Prof. Lu Xin (Wuhan University), Prof. Liu Naifa (Lanzhou University), Prof. Yu Zhiwei (China West Normal University), Prof. Yang Lan (Kunming Institute for Zoology), Prof. Wang Qishan (Anhui University), Prof. Ding Changqing (Beijing Forestry University), Prof. Ding Ping (Zhejiang University), the late Prof. Gao Yuren (South China Institute for Endangered Animals), Prof. Zhou Fang (Guangxi University), Prof. Hu Hongxing (Wuhan University), Prof. Chen Shuihua (Zhejiang Natural History Museum), Tsering (Tibet University), Prof. Ma Zhijun (Fudan University), Prof. Guo Yumin (Capital Normal University), Dai Nianhua (Institute of Sciences, Jiangxi), Prof. Han Lianxian (Southwest Forestry University), Yang Xiaojun (Kunming Institute for Zoology), Prof. Wang Zijiang (Kunming Ornithological Association), Prof. Li Zhumei (Institute of Biology, Guizhou), Ma Chaohong (Management Office of Yellow River Wetland National Nature Reserve, Henan), Shen You (Chengdu Bird Watching Society), Wei Qian (Chengdu Bird Watching Society), Zhang Yu (Wild Bird Society of Jiangsu), Kang Hongli (Wild Bird Society of Shanghai). Information on Important Bird Areas in China was compiled with the support of the World Bank using consultant trust funds from the Government of Japan. Surveys of IBAs in western China were funded by Keidanren Nature Conservation Fund (Japan) and the Sekisui Chemical Co. -
Post-Disaster Assessment of 2017 Catastrophic Xinmo Landslide (China) by Spaceborne Sar Interferometry
This paper has to be cited as: Dai K, Xu Q, Li Z, Tomás R, Fan X, Dong X, Li W, Zhou Z, Gou J and Ran P (2019) Post-disaster assessment of 2017 catastrophic xinmo landslide (china) by spaceborne sar interferometry. Landslides. doi: 10.1007/s10346-019-01152-4. The final publication is available at Springer via: https://link.springer.com/article/10.1007/s10346-019-01152-4 1 Post-disaster assessment of 2017 catastrophic Xinmo landslide 2 (China) by spaceborne SAR interferometry 3 Keren Dai1,2,3, Qiang Xu1*, Zhenhong Li4, Roberto Tomás5, Xuanmei Fan1, 4 Xiujun Dong1, Weile Li1, Zhiwei Zhou2, Jisong Gou3, Peilian Ran3 5 1. State Key Laboratory of Geohazard Prevention and Geoenviroment Protection, Chengdu 6 University of Technology, Chengdu 610059, China; 7 2. State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and 8 Geophysics, Chinese Academy of Sciences, Wuhan 430077, China; 9 3. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China; 10 4. COMET, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; 11 5. Departamento de Ingeniería Civil, Escuela Politécnica Superior, Universidad de Alicante, 12 P.O. Box 99, E-03080 Alicante, Spain 13 * Corresponding author. [email protected] 14 Abstract: Timely and effective post-disaster assessment is of significance for the 15 design of rescue plan, taking disaster mitigation measures and disaster analysis. Field 16 investigation and remote sensing methods are the common way to perform post-disaster 17 assessment, which are usually limited by dense cloud coverage, potential risk and tough 18 transportation etc. -
Key Driving Factors of Selenium-Enriched Soil in the Low
Catena 196 (2021) 104926 Contents lists available at ScienceDirect Catena journal homepage: www.elsevier.com/locate/catena Key driving factors of selenium-enriched soil in the low-Se geological belt: A T case study in Red Beds of Sichuan Basin, China ⁎ Yonglin Liua,b, Xinglei Tianc,d,e, , Rui Liua,b, Shuling Liua,b, Andrew V. Zuzaf a The Key Laboratory of GIS Application Research, Chongqing Normal University, Chongqing 401331, China b Geography and Tourism College, Chongqing Normal University, Chongqing 401331, China c Shandong Institute of Geological Sciences, Jinan 250013, China d Key Laboratory of Gold Mineralization Processes and Resource Utilization Subordinated to the Ministry of Land and Resources, Jinan 250013, China e Key Laboratory of Metallogenic Geological Process and Resources Utilization in Shandong Province, Jinan 250013, China f Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV 89557, USA ARTICLE INFO ABSTRACT Keywords: Selenium (Se) is an essential micronutrient for humans given its varying health benefits. It is generally re- Red Beds region cognized that China has a wide belt of low-Se soil stretching from the northeast to southwest. Nevertheless, there Geodetector are Se-enriched areas distributed in the low-Se belt of China. However, the quantificational relationships among Selenium soil properties, topographic characteristics, parent materials, land use and soil Se content in those Se-enriched Soil organic matter soils remain to be elucidated. Similarly, the key driving factors of the Se-enriched soil in the low-Se geological Spatial variation belt need to be documented. These aims could be an useful basis for evaluating the health of the soil ecosystem (in terms of Se toxicity or deficiency) and the potential intake of Se by humans from soils to food crops and animal products. -
Risk Assessment of Highway in the Upper Reaches of Minjiang River Under the Stress of Debris Flow
Journal of Geoscience and Environment Protection, 2021, 9, 21-34 https://www.scirp.org/journal/gep ISSN Online: 2327-4344 ISSN Print: 2327-4336 Risk Assessment of Highway in the Upper Reaches of Minjiang River under the Stress of Debris Flow Mingyang Li1, Shujun Tian1, Chen Huang1, Wenqia Wu1, Shiwu Xin2 1School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, China 2Chang’an University, Xi’an, China How to cite this paper: Li, M. Y., Tian, S. Abstract J., Huang, C., Wu, W. Q., & Xin, S. W. (2021). Risk Assessment of Highway in the The southwest mountainous area is a frequent debris flow disaster area in Chi- Upper Reaches of Minjiang River under the na, which poses a serious threat to the regional roads and greatly affects the Stress of Debris Flow. Journal of Geoscience normal traffic operation and the safety of residents’ lives and property. The and Environment Protection, 9, 21-34. debris flow risk assessment of highway can quantify the threat degree of de- https://doi.org/10.4236/gep.2021.97002 bris flow to the roads. In this paper, from the perspective of villages and Received: June 18, 2021 towns, taking the upper reaches of Minjiang River as the research area, four Accepted: July 13, 2021 factors including road network density, highway disaster resistance capacity, Published: July 16, 2021 population density and highway cost are selected, and the weight is obtained by using entropy weight method, and the debris flow vulnerability evaluation Copyright © 2021 by author(s) and Scientific Research Publishing Inc. results of highway are obtained by weighted calculation. -
3 PRESENT CONDITION of ROADS and TRANSPORT 3.1 Condition of Road Facilities 3.1.1 Existing Road Network and Classification of R
3 PRESENT CONDITION OF ROADS AND TRANSPORT 3.1 Condition of Road Facilities 3.1.1 Existing Road Network and Classification of Roads (1) Primary Road Network in the Study Area As shown in Figure 3.1.1, the existing Primary Road network in the Study Area considers the Tianfu Square as its center and is made up of ring roads and radial roads. There are 5 ring roads at present including the existing roads and roads under construction. The existing roads include the Inner Ring Road with a radius of 2 km, the 1st Ring Road with a radius of 3 km, and the 2nd Ring Road with a radius of 4 km. There are two roads under construction, namely the 3rd Ring Road with a radius of 7 km, and the Outer Ring Road with a radius of 11 km. The construction of these two roads is underway, and most exits for expressways and main carriageway have been constructed already. It is expected that the 3rd Ring Road and the Outer Ring Road will be completed by 2001 and 2002, respectively. The Inner Ring Road has four lanes for both directions with a total road width of 25 m. The 1st Ring Road and 2nd Ring Road have not only four lanes for both directions but also a segregated bicycle lane on both sides with a total width of 40 m. Furthermore, the 3rd Ring Road and the Outer Ring Road under construction have 8 lanes and 6 lanes for both directions, respectively, with a total width of 80m. -
Bon the Everlasting Religion of Tibet
BON THE EVERLASTING RELIGION OF TIBET TIBETAN STUDIES IN HONOUR OF PROFESSOR DAVID L. SNELLGROVE Papers Presented at the International Conference on Bon 22-27 June 2008, Shenten Dargye Ling, Château de la Modetais, Blou, France New Horizons of Bon Studies, 2 Samten G. Karmay and Donatella Rossi, Editors Founded by Giuseppe Tucci A QUARTERLY PUBLISHED BY THE ISTITUTO ITALIANO PER L’AFRICA E L’ORIENTE I s I A O Vol. 59 - Nos. 1-4 (December 2009) EDITORIAL BOARD † Domenico Faccenna Gherardo Gnoli, Chairman Lionello Lanciotti Luciano Petech Art Director: Beniamino Melasecchi Editorial staff: Matteo De Chiara, Elisabetta Valento ISSN 0012-8376 Yearly subscription: € 200,00 (mail expenses not included) Subscription orders must be sent direct to: www.mediastore.isiao.it Manuscripts should be sent to the Editorial Board of East and West Administrative and Editorial Offices: Istituto Italiano per l’Africa e l’Oriente Direttore scientifico: Gherardo Gnoli; Direttore editoriale: Francesco D’Arelli Art director: Beniamino Melasecchi; Coord. redazionale: Elisabetta Valento Redazione: Paola Bacchetti, Matteo De Chiara Via Ulisse Aldrovandi 16, 00197 Rome C O N T E N T S Preface by Gherardo Gnoli................................................................................................ 11 Introduction by Samten G. Karmay................................................................................... 13 Part I. Myths and History Per Kværne, Bon and Shamanism..................................................................................... -
Mianyang Environmental Improvement Project
E1245 v 1 Sichuan Urban Development Project (SUDP) Financed by The World Bank Loan Public Disclosure Authorized Mianyang Environmental Improvement Project (Infrastructure and Access Improvement in Pioneer Park and Economic Development Zone) Public Disclosure Authorized Environmental Impact Assessment Report Public Disclosure Authorized (Draft for Review) Public Disclosure Authorized Sichuan Research Institute of Environmental Protection (SRIEP) September 2005 CONTENTS 1.0 INTRODUCTION …………………………………………… 1.1 Source and Necessity of the Proposed Project 1.2 Objectives, Principles and Methodology of the EIA 1.3 Policy, Legal and Administrative Framework 1.4 Standards for the EIA 1.5 Category of the EIA 1.6 Scope of the EIA 1.7 Factors of the EIA 1.8 Major Environmental Impacts and Protected Objects 1.9 Key Points of the EIA 1.10 Process and Procedure of the EIA 1.11 SRIEP and Staff of the EIA Core Team 2.0 PROJECT DESCRIPTION AND ANALYSeS …………………………………………………………….. 2.1 Project Description 2.2 Project Construction 2.3 Project Analysis 2.4 Conformity Analysis of Project and Local Development Plan 3.0 ENVIRONMENTAL SETTING ………………………….. (56) 3.1 Physical Environment 3.2 Socioeconomic Environment 3.3 Ecological Environment 3.4 Local Living Quality 3.5 Local Conditions of the Project Area 4.0 EXISTING ENVIRONMENTAL QUALITY ASSESSMENT ……………………………………………………………... (60) 4.1 Monitoring and Assessment of Existing Water Environment 4.2 Monitoring and Assessment of Existing Air Environment 4.3 Monitoring and Assessment of Existing Acoustic Environment 4.4 -
Pdf | 35.16 Kb
INTEGRATED SAFEGUARDS DATASHEET APPRAISAL STAGE I. Basic Information Date prepared/updated: 11/10/2008 Report No.: AC4016 Public Disclosure Authorized 1. Basic Project Data Country: China Project ID: P114107 Project Name: Wenchuan Earthquake Recovery Task Team Leader: Mara K. Warwick Estimated Appraisal Date: November 13, Estimated Board Date: December 16, 2008 2008 Managing Unit: EASCS Lending Instrument: Emergency Recovery Loan Sector: General water, sanitation and flood protection sector (44%);Roads and highways (39%);Health (13%);General education sector (4%) Theme: Natural disaster management (P);Pollution management and environmental health (S);Access to urban services and housing (S) Public Disclosure Authorized IBRD Amount (US$m.): 710.00 IDA Amount (US$m.): 0.00 GEF Amount (US$m.): 0.00 PCF Amount (US$m.): 0.00 Other financing amounts by source: Borrower 30.00 30.00 Environmental Category: A - Full Assessment Simplified Processing Simple [] Repeater [] Is this project processed under OP 8.50 (Emergency Recovery) Yes [X] No [ ] or OP 8.00 (Rapid Response to Crises and Emergencies) Public Disclosure Authorized 2. Project Objectives To restore essential infrastructure, health, and education services to at least levels existing prior to the Wenchuan Earthquake, and where appropriate, to provide for expansion of services while reducing the vulnerability to seismic and flood hazards. 3. Project Description The project is divided into two provincial parts: one for Sichuan and one for Gansu. The first part, the Sichuan Recovery Program, will finance reconstruction and appropriate expansion of infrastructure and health sub-projects in about 16 counties in the five municipalities of Mianyang, Guangyuan, Bazhong, Nanchong and Ya’an.