An Outline of the Vegetation of Dubai (UAE) 77-95 an Outline of the Vegetation of Dubai (UAE)

Total Page:16

File Type:pdf, Size:1020Kb

An Outline of the Vegetation of Dubai (UAE) 77-95 an Outline of the Vegetation of Dubai (UAE) ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Verhandlungen der Gesellschaft für Ökologie Jahr/Year: 1996 Band/Volume: 25_1996 Autor(en)/Author(s): Deil Ulrich, Müller-Hohenstein Klaus Artikel/Article: An outline of the vegetation of Dubai (UAE) 77-95 An outline of the vegetation of Dubai (UAE) Ulrich Deil & Klaus Müller-Hohenstein* Synopsis ignorant of the vegetation in the Arabian Peninsula«. After an introduction to the physical environment of The recently published Atlas of the United Arab Emi­ Dubai, the vegetation is described by transects and rates (= UAE) (UAE UNIVERSITY 1993) offers no tables. Plant communities are characterized by their useful information about the vegetation. The survey floristic composition. They are interpreted in the con­ by SATCHELL (1978) about the ecology of the Emi­ text of the saharo-arabian vegetation. Some general rates is in its geobotanical part based on the brief pa­ problems in the application of the phytosociological per of VESEY-FITZGERALD (1957). approach to desert vegetation are discussed. The first aim of this contribution is to give a com­ The Emirates have a hot desert climate. The com­ prehensive information about the most important ve­ bination of a tropical temperature regime and winter getation types and land units of Dubai. We concentrate rain results in a mixture of holarctic and paleotropic on the coastal region and the foreland of the Musandam elements. The endemic species belong to the omano- Mountains. These data are based on field trips by MÜL­ makranian chorotype. LER-HOHENSTEIN in 1986 and by DEIL in 1987. The pattern of the plant communities is ruled by Secondly, the vegetation of Dubai will be com­ the relief. The coastal vegetation complex is characte­ pared with other regions of the Old Wold desert belt rized by Limonium stocksii and Zygophyllum qata- and interpreted in a wider geographical context. This rense. On the dunes grows the Cornulaco monacan- comparison is based on a personel knowledge of the thae-Sphaerocometum aucheri, in silty depressions desert vegetation in the Maghreb countries and in the Halopeplidetum perfoliatae. The inland dune ve­ North Yemen and on the available literature. getation is dominated by Rhanterium epapposum. The third topic are chorological aspects. Southern The original Prosopis cineraria- woodlands there have Arabia is the transition zone from the Holarctic to the been nearly everywhere destroyed and are replaced Paleotropical Kingdom, from extratropical to tropical by the Leptadenio-Rhynchosietum schimperi. In the climate. How is this situation reflected by the plant dune valleys we find the Helianthemum lippii-Fago- communities in Dubai and do the different life forms nia ovalifolia- community. The ephemeral Chrozo- react in a different way? FREITAG (1991) demon­ phora sabulosa-c ommunity develops on the inland strated, that even the halophytes, growing quite inde­ dunes, the Frankenio-Zygophylletum simplicis on sal­ pendently from the precipitation regime and there­ ty sand. In the stony desert, the Pseudogaillonio hy- fore often regarded as »azonak, show a clear geo­ menostephanae-Euphorbietum laricae colonizes rock graphical pattern around the Arabian peninsula, outcrops. The Saccharo griffithii-Nerietum masca- mostly ruled by temperatures. tense is the wadi vegetation type of deep incised canyons. Finally a syntaxonomic survey is given. 2 Methodological and synsystematic problems Saharo-Arabian vegetation, chorology, phytosociology, desert ecology Under arid conditions and in extreme habitats like saline depressions, plant communities are often com­ posed of very few species and there exist also mono- 1 Introduction specific vegetation units like the Halopeplidetum per­ foliatae. Nevertheless, they can be associations in the There has been a good progress in the floristic know­ sense of the phytosociological approach of BRAUN- ledge of the Southeastern parts of the Arabian penin­ BLANQUET (1964). In other cases, they are named sula by the flora of MANDAVILLE (1990), the Emi­ and classified according to the dominant species and rate flora of WESTERN (1989) and the more popular are fazies of associations sensu strictu. If we have a introduction to the nature of Dubai by JONGBLOED look at the geobotanical literature of the Middle East, (1987). But detailed studies about the vegetation of there are some authors, which refer to the Braun- this part of Arabia are still missing. The statement of Blanquet approach. But indeed, they use only the ZOHARY (1973) is still up-to-date: »We are especially values proposed by BRAUN-BLANQUET to estimate the cover-abundance of the species. Their vegetation * Dedicated to Prof. Dr. Reinhard Bornkamm on the units are based on dominant species, not on the fide­ occasion of his 65th birthday. lity of the taxa in a big data set. The result is an infla- Fig. 1 Climatic Diagram of Dubai T| = mean monthly maximum temperatures T 2 = mean monthly minimum temperatures P = mean monthly precipitation H| = mean monthly maximum of the air humidity H-> = mean monthly minimum of the air humidity 27.1°C = mean annual temperature (81°F) 83.2mm = mean annual sum-total of precipitation (3.27”) 47.3°C = absolute maximum temperature (117°F) 7.7° C = absolute minimum temperature (46°F) 231.2mm= highest amount of precipitation per year (9.1") 22.8mm = lowest amount of precipitation per year(0.89") Period of observation 1973 - 1984 Fig. 2 The natural landscapes of Dubai tion of »communities«, often documented only by a are two major problems in such studies: First, the cri­ single relevé or by a constancy column, in some cases teria of botanists for environmental homogeneity are even without any tables. These communities are not different. Secondly, we have to deal with taxonomic arranged in an hierarchical system, which would be and nomenclatural problems. Older studies often use the expression of the gradual ecological value of the collective taxa, for example in the genera Calligo- species. num , Fagonia, Stipagrostis, Helianthemum, Limo- The decision, whether the communities are a typus nium, Cyperus (Section Arenarii ) or Zygophyllum. or not, could be taken by comparative tables, like it For Zygophyllum , EL-HADIDI (1977) has clearly has been done by BORNKAMM & KEHL (1990) in shown, that a finer taxonomic treatment of an euryoe- their survey of the Western desert of Egypt. But there cious and widely distributed taxon ends up with ste- Fig-3 Phytogeographical and climatical frontiers in Arabia1 (adopted from MÜLLER-HOHENSTEIN 1988, see further references there) 1 On the left: Borderlines between the Holarctic and the Paleotropical Kingdom after DIELS 1908 (dotted line), AL HUBAISHI & MÜLLER-HOHENSTEIN 1984 (continuous) and KÜRSCHNER 1986a (intermittent) On the right: Borderlines between subtropical and tropical climatic zones after TROLL & PAFFEN 1965 (dotted line), VON WISSMANN 1962 (continuous) and CREUTZBURG & HABBE 1964 (intermittent) noecious, regional vicariants: Zygophyllum qataren- wing concept: If the classification and syntaxonomic se, one of the most common species in the coastal re­ value of a unit is clear, the association is named ac­ gions of Dubai, Qatar and Northern Oman is replaced cording to the rules of the plant sociological system further to the north by Z. migahidii , to the southwest (BARKMAN et al. 1986). In other cases, the term by Z hamiense and to the west by Z. mandavillii. In »plant community« is used for a rankless vegetation other cases, different names are synonymous. unit. We use the cover-abundance values of BRAUN- Another problem is, that there exist three synta- BLANQUET (1964), sociability notes are not given. xonomical systems of quite different origin: The sy­ In the tables, the abbreviation CS stands for character stem of QUEZEL (1965) gives a survey of the vegeta­ species, DS for differential species. The nomenclature tion of the Western and Central Sahara. His system is here follows MANDAVILLE (1990), BATANOUNY inductive. He started from the association level to the (1981) and COPE (1985). The herbarium specimen higher syntaxa. In the Near and Middle East, the sy­ are stored at Bayreuth. stem of ZOHARY (1973) is widely accepted. His sys­ Another problem is, that the vegetation cover tem is deductive, he started from the classes. Both can be classified at different spatial scales and several books do not offer comparative tables and do not pay levels of homogeneity: Three common levels are the much attention to the syntaxa of medium rank (or­ synusium, the community and the vegetation com­ ders and alliances). LEONARD (1993) has shown the plex. Here we use the community and the vegetation unsharp definition of the »communities« by ZOHARY complex level. A still unsolved problem is the stra­ (1963): Within 24 units, Artemisia herba-alba is used tum built by ephemeral species: Should we handle as the naming dominant species, but Artemisia her- them as a synusium in a pluristratified community, as ba-alba s.str. does not occur at all in Southern Iran. a chronocoenose or as an independent unit? We will The third proposal is the classification of the vege­ discuss this by some examples in chapter 5 (see also tation of Eastern Africa by KNAPP (1968). It is very the discussions in BAIERLE 1993 to the wadi com­ useful for the tropical parts of Arabia, but this con­ munities in Southwest Jordan). tribution was published in a quite unknown series and therefore not taken into account by ZOHARY (1973). 3 Physical conditions of the study area The aim of this contribution is not a syntaxono- mical one. We want to characterize the vegetation of A detailed description of the environmental condition a small territory. But we also want to interpret our of the UAE is given by SATCHELL (1978) and some data in a wider context. Therefore we use the follo­ information can also be drawn from the recently Fig. 4 Climatic conditions of coastal areas in southern Arabia published Atlas (UAE UNIVERSITY 1993).
Recommended publications
  • Taxonomic Status of Halophytes in Coastal Kachchh District, Gujarat Shah JP* Research Fellow, Earth and Eco-Science Research Institute, India
    Open Access Journal of Advancements in Plant Science RESEARCH ARTICLE ISSN: 2639-1368 Taxonomic Status of Halophytes in Coastal Kachchh District, Gujarat Shah JP* Research Fellow, Earth and Eco-science Research Institute, India *Corresponding author: Shah JP, Research Fellow, Earth and Eco-science Research Institute, 119, Lions nagar, Mundra Road, Bhuj- Kachchh, India, Tel: 09429401571, E-mail: [email protected] Citation: Shah JP (2018) Taxonomic Status of Halophytes in Coastal Kachchh District, Gujarat. J Adv Plant Sci 1: 201 Article history: Received: 26 May 2018, Accepted: 30 July 2018, Published: 02 August 2018 Abstract District Kachchh, despite having arid climate and long coastline, can be considered as biologically rich region. For the present study the floristic surveys of both inland and coastal plants were carried out during July 2011 to October 2012, which resulted in record of total of 203 angiosperm taxa. They fall under 145 genera and 57 families. Out of that 102 halophytic species were recorded during rapid survey that belongs to 53 genera and 37 families. The dominant families were Poaceae (16 taxa), Asteraceae, Cyperaceae, and Chenopodiaceae present with seven taxa. Kachchh represents mainly one worst invasive exotic species namely Prosopis jullflora, which may pose survival threat to the indigenous flora. Out of these, 74 species distributed predominantly among xerohalophytic communities naturally and 28 hydrohalophytic have been listed by present survey with special reference to their life form and main localities of their distribution. Keywords: Vegetation; Flora; Halophyte; Kachchh; Coastal Introduction Halophytes are defined as plants that naturally inhabit saline environments and benefit from having substantial amounts of salt in the growth media.
    [Show full text]
  • Seed Germination of the Halophyte Anabasis Setifera (Amaranthaceae) from Saudi Arabia
    Botany Seed germination of the halophyte Anabasis setifera (Amaranthaceae) from Saudi Arabia. Journal: Botany Manuscript ID cjb-2018-0053.R1 Manuscript Type: Article Date Submitted by the Author: 19-May-2018 Complete List of Authors: Basahi, Mohammed; Shaqra University College of Science and Arts Sajir, biology; Anabasis setifera,Draft halophyte, Temperature, Germination, seed germination Keyword: recovery Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/botany-pubs Page 1 of 27 Botany Seed germination of the halophyte Anabasis setifera (Amaranthaceae) from Saudi Arabia. Mohammed A Basahi College of Science and Arts Sajir Shaqra University P.O. Box 33, Shaqra 11961 Saudi Arabia [email protected] Draft00966582223689 1 https://mc06.manuscriptcentral.com/botany-pubs Botany Page 2 of 27 Abstract The main objective of this study was to determine the effects of temperature, light/darkness, and salinity (NaCl) on seed germination of Anabasis setifera Moq. and the effects of alleviating salinity stress using distilled water. One-hundred percent of seeds completed germination at 15/5, 20/10, and 20°C, and a higher percentage of seeds completed germinationin light than in the dark at 20/10 and 25/15°C. The percentage of seeds that completed the germination decreased as salinity increased from 0 to 700 mM NaCl. Seeds that did not complete germination in the 800 or 700 mM NaCl solutions completed its germinationDraft after being transferred to distilled water, with a recovery rate of 94.5% and 75.5%, respectively, at 25/15°C. The inhibitory effect of NaCl on the completion of germination in this species probably occurs via an osmotic effect.
    [Show full text]
  • Restoration and Conservation of Deteriorated Arid Land by a Native Thorny Shrub Lycium Shawii
    Journal of Agricultural Science and Technology A 7 (2017) 100-106 doi: 10.17265/2161-6256/2017.02.004 D DAVID PUBLISHING Restoration and Conservation of Deteriorated Arid Land by a Native Thorny Shrub Lycium shawii Modi Mohammed Ahmed and Ali Mohammed Al-Dousari Crisis Decision Program, Environment and Life Science Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait Abstract: Land degradation is of great concern in the desert environment of Kuwait, as it has a negative impact on the natural resources. In response to this situation, Kuwait conserves their natural environment by setting aside areas of significant natural ecosystem, such as wild life center at the Liyah area. The area suffered during the past four decades from severe environmental pressures due to the excessive exploitation of natural resources of sand and gravel as well as overgrazing and military activities. Re-vegetation and restoration programs were applied in the degraded areas in Liyah in December 2003. A large variety of native plants were used for the restoration, however, in this research, only one native perennial drought resistant plant Lycium shawii (Awsaj) was highlighted. Tissue cultured thorny shrub planted at experimental site showed high adaptation on gravel hill side with harsh field condition. Their survival rate was 100% under drip irrigation only 10% was the mortality rate due to improper fixation of irrigation system. The average length of the main stem and the number of branches gradually increased by year from 42 cm with three branches in 2011 to 170 cm with seven branches in 2014.
    [Show full text]
  • Conducting Baseline Studies for Thane Creek
    Conducting baseline studies for Thane Creek Project report submitted to Mangrove Cell, Maharashtra & GIZ, Mumbai Office. by Sálim Ali Centre for Ornithology and Natural History (SACON) Anaikatty (PO), Coimbatore - 641108, Tamil Nadu In collaboration with B.N. Bandodkar College of Science, Thane Conducting baseline studies for Thane Creek Project report submitted to Mangrove Cell, Maharashtra & GIZ, Mumbai Office. Project Investigator Dr. Goldin Quadros Co-Investigators Dr. P.A. Azeez, Dr. Mahendiran Mylswamy, Dr. Manchi Shirish S. In Collaboration With Prof. Dr. R.P. Athalye B.N. Bandodkar College of Science, Thane Research Team Mr. Siddhesh Bhave, Ms. Sonia Benjamin, Ms. Janice Vaz, Mr. Amol Tripathi, Mr. Prathamesh Gujarpadhaye Sálim Ali Centre for Ornithology and Natural History (SACON) Anaikatty (PO), Coimbatore - 641108, Tamil Nadu 2016 Acknowledgement Thane creek has been an ecosystem that has held our attention since the time we have known about its flamingos. When we were given the opportunity to conduct The baseline study for Thane creek” we felt blessed to learn more about this unique ecosystem the largest creek from asia. This study was possible due to Mr. N Vasudevan, IFS, CCF, Mangrove cell, Maharashtra whose vision for the mangrove habitats in Maharashtra has furthered the cause of conservation. Hence, we thank him for giving us this opportunity to be a part of his larger goal. The present study involved interactions with a number of research institutions, educational institutions, NGO’s and community, all of whom were cooperative in sharing information and helped us. Most important was the cooperation of librarians from all the institutions who went out of their way in our literature survey.
    [Show full text]
  • Distribution Agreement in Presenting This Thesis Or Dissertation As A
    Distribution Agreement In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. Signature: _____________________________ ____3/31/16__________ Shelley Burian Date Flowers of Re: The floral origins and solar significance of rosettes in Egyptian art By Shelley Burian Master of Arts Art History _________________________________________ Rebecca Bailey, Ph.D., Advisor _________________________________________ Gay Robin, Ph.D., Committee Member _________________________________________ Walter Melion, Ph.D., Committee Member Accepted: _________________________________________ Lisa A. Tedesco, Ph.D. Dean of the James T. Laney School of Graduate Studies ___________________ Date Flowers of Re: The floral origins and solar significance of rosettes in Egyptian art By Shelley Burian B.A., First Honors, McGill University, 2011 An abstract of A thesis submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Master of Arts In Art History 2016 Abstract Flowers of Re: The floral origins and solar significance of rosettes in Egyptian art By Shelley Burian Throughout the Pharaonic period in Egypt an image resembling a flower, called a rosette, was depicted on every type of art form from architecture to jewelry.
    [Show full text]
  • Distribution and Diversity of Grass Species in Banni Grassland, Kachchh District, Gujarat, India
    Patel Yatin et al. IJSRR 2012, 1(1), 43-56 Research article Available online www.ijsrr.org ISSN: 2279-0543 International Journal of Scientific Research and Reviews Distribution and Diversity of Grass Species in Banni Grassland, Kachchh District, Gujarat, India 1* 2 3 Patel Yatin , Dabgar YB , and Joshi PN 1Shri Jagdish Prasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan 2R.R. Mehta Colg. of Sci. and C.L. Parikh College of Commerce, Palanpur, Banaskantha, Gujarat. 3Sahjeevan, 175-Jalaram Society, Vijay Nagar, Bhuj- Kachchh, Gujarat ABSTRACT: Banni, an internationally recognized unique grassland stretch of Western India. It is a predominantly flat land with several shallow depressions, which act as seasonal wetlands after monsoon and during winter its converts into sedge mixed grassland, an ideal dual ecosystem. An attempt was made to document ecology, biomass and community based assessment of grasses in Banni, we surveyed systematically and recorded a total of 49 herbaceous plant species, being used as fodder by livestock. In which, the maximum numbers of species (21 Nos.) were recorded in Echinocloa and Cressa habitat; followed by Sporobolus and Elussine habitat (20 species); and Desmostechia-Aeluropus and Cressa habiat (19 species). A total of 21 highest palatable species were recorded in Echinocloa-Cressa communities followed by Sporobolus-Elussine–Desmostechia (20 species and 18 palatable species) and Aeluropus–Cressa (19 species and 17 palatable species). For long-term conservation of Banni grassland, we also suggest a participatory co-management plan. KEY WORDS: Banni, Grassland, Palatability, Communities, Conservation. *Corresponding Author: Yatin Patel Research Scholar, Shri Jagdish Prasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan E-mail: [email protected] IJSRR 1(1) APRIL-JUNE 2012 Page 43 Patel Yatin et al.
    [Show full text]
  • Guidelines for Using the Checklist
    Guidelines for using the checklist Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy N 9900720 Synonyms: Andropogon excavatus Hochst. 47 Common names: Breëblaarterpentyngras A; Broad-leaved turpentine grass E; Breitblättriges Pfeffergras G; dukwa, heng’ge, kamakama (-si) J Life form: perennial Abundance: uncommon to locally common Habitat: various Distribution: southern Africa Notes: said to smell of turpentine hence common name E2 Uses: used as a thatching grass E3 Cited specimen: Giess 3152 Reference: 37; 47 Botanical Name: The grasses are arranged in alphabetical or- Rukwangali R der according to the currently accepted botanical names. This Shishambyu Sh publication updates the list in Craven (1999). Silozi L Thimbukushu T Status: The following icons indicate the present known status of the grass in Namibia: Life form: This indicates if the plant is generally an annual or G Endemic—occurs only within the political boundaries of perennial and in certain cases whether the plant occurs in water Namibia. as a hydrophyte. = Near endemic—occurs in Namibia and immediate sur- rounding areas in neighbouring countries. Abundance: The frequency of occurrence according to her- N Endemic to southern Africa—occurs more widely within barium holdings of specimens at WIND and PRE is indicated political boundaries of southern Africa. here. 7 Naturalised—not indigenous, but growing naturally. < Cultivated. Habitat: The general environment in which the grasses are % Escapee—a grass that is not indigenous to Namibia and found, is indicated here according to Namibian records. This grows naturally under favourable conditions, but there are should be considered preliminary information because much usually only a few isolated individuals.
    [Show full text]
  • A Molecular Phylogeny and Classification of the Eleusininae with a New Genus, Micrachne (Poaceae: Chloridoideae: Cynodonteae)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/271851457 A molecular phylogeny and classification of the Eleusininae with a new genus, Micrachne (Poaceae: Chloridoideae: Cynodonteae) Article in Taxon · June 2015 DOI: 10.12705/643.5 CITATIONS READS 17 379 3 authors, including: Paul M. Peterson Konstantin Romaschenko Smithsonian Institution M.G. Kholodny Institute of Botany 446 PUBLICATIONS 2,908 CITATIONS 94 PUBLICATIONS 1,057 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: TRINIUS: Trinius, Carl Bernhard (1778-1844) Literature & Herbarium View project Revisions of Leptochloa (Poaceae) sensu lato View project All content following this page was uploaded by Konstantin Romaschenko on 16 July 2015. The user has requested enhancement of the downloaded file. TAXON 64 (3) • June 2015: 445–467 Peterson & al. • Phylogeny and classification of the Eleusininae A molecular phylogeny and classification of the Eleusininae with a new genus, Micrachne (Poaceae: Chloridoideae: Cynodonteae) Paul M. Peterson,1 Konstantin Romaschenko1,2 & Yolanda Herrera Arrieta3 1 Smithsonian Institution, Department of Botany, National Museum of Natural History, Washington D.C. 20013-7012, U.S.A. 2 M.G. Kholodny Institute of Botany, National Academy of Sciences, Kiev 01601, Ukraine 3 Instituto Politécnico Nacional, CIIDIR Unidad Durango-COFAA, Durango, C.P. 34220, Mexico Author for correspondence: Paul M. Peterson, [email protected] ORCID: PMP, http://orcid.org/0000­0001­9405­5528; KR, http://orcid.org/0000­0002­7248­4193 DOI http://dx.doi.org/10.12705/643.5 Abstract The subtribe Eleusininae (Poaceae: Chloridoideae: Cynodonteae) is a diverse group containing about 212 species in 31 genera found primarily in low latitudes in Africa, Asia, Australia, and the Americas, and the classification among these genera and species is poorly understood.
    [Show full text]
  • Plant Species Associated with Some Asteraceae Plant and Edaphic Factor Effect Yasser A
    DOI: 10.21276/sajb.2017.5.3.2 Scholars Academic Journal of Biosciences (SAJB) ISSN 2321-6883 (Online) Sch. Acad. J. Biosci., 2017; 5(3):125-147 ISSN 2347-9515 (Print) ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com Original Research Article Plant Species Associated with Some Asteraceae Plant and Edaphic Factor Effect Yasser A. El-Amier1,*, Sulaiman M. Alghanem2, Abd El-Nasser S. Al Borki3 1Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 2Biology Department, Faculty of Science, Tabuk University, Tabuk, KSA 3Botany Department, Faculty of Science and Arts, Benghazi University, Agdabia, Libya. *Corresponding author Yasser A. El-Amier Email: [email protected] Abstract: The family Asteraceae is the largest and the most cosmopolitan of the world particularly in semiarid region of the tropics and subtropics. In this present study investigate the ecology and edaphic factor effect of five species namely: Nauplius graveolens (Forssk.) Wiklund, Picris asplenioides L., Reichardia tingitana (L) Roth, Sonchus oleraceus L. ‎and Urospermum picroides (L.) F.W. Schmidt. The study area is located in some selected governorates in the northern part of Nile Delta and Eastern Desert regions of Egypt. The total number of the recorded plant species in the present study was 182 species belonging to 144 genera and related to 37 families. Asteraceae contributing 18.13%, of all recorded species in the study area, followed by Poaceae, Chenopodiaceae, Fabaceae and Brassicaceae. The vegetation structure was classified by TWINSPAN classification into four groups. Group I was dominated by Retama raetam, group II was codominated by Diplotaxis harra and Bassia muricata, these groups represent the vegetation type of the inland desert.
    [Show full text]
  • The Flora of the State of Qatar: Its History and Present-Day Status
    Qatar Univ. Sci. J. (2005), 25: 113 -118 The Flora of The State of Qatar: Its History and Present-Day Status Ekhlas M.M. Abdel Bari Department of Biological Sciences, College of Arts and Sciences, University of Qatar, Doha ~_,;431¥- ~ ~~! ~ ~4 -r#lJ ylJ':/1 ~ - ~)~lr#l ~ ~k. ~ ~~II.J.foll uc l)I.JI~j .we~~~ ~)w ~j ~ 4..1 Jj ~ wtll:illl ~I.Jj ~ y J~ ~ ~b w~I.Jj WAiJ ,w~ILJ-4 ~.All~ ti ~.J\.:ill ~j ~J ,1983 J 1981 ~ ~IJ wlb~ ~li ~ .4S)jJ ~ l)i ~~~I I.J.foll ~ wl_# ~Ji lA..a ~;J 2 ll ~j 4.3\.....Q)I~ I~ .~·J 2 bH w~l LJ-4 ~.All oj~j ~j uji l).l.o.l.l ~\.:i..JI ~JI~I J.b\..iJI wtl~l. J wt!':ll (.)A· jjc .)~-·~~.we ~... Lj jji4..1J.. Y·-'1 wtll.w. Jbjl.J ~I.. .)y··'I w~ .)~~. I..F ~ ~~_-:q ~ ~ l)i ~~~I I.J_,lill ~.b. )~j ojk. j ~ ~~1 J:! La~ .~~~ I.J_,lill ~jWI ~.Jtl ~ ~ ~~.J~I o~ .ti~)U 4.!Jl_;.Jl ~k.• };l ~ l)i ~ ~~ll.J.foll wl:ill J.o~ .4J ~l:JI ~yJIJ ~~II.J.foll ~ w~I.J~I Keywords: Flora, State of Qatar. ABSTRACT The history of botanical exploration in the State of Qatar is of recent origin. Various collections culminated in 2 major Floras for the State of Qatar in 1981 and 1983. Since then, further collections and focus on several aspects of the ecology of the State of Qatar had shown gaps that need to be covered.
    [Show full text]
  • Algerian Inuleae Tribe Species Distribution Modeling Under­ Influence of Current and Future Climate Conditions
    Biodiv. Res. Conserv. 57: 23-31, 2020 BRC www.brc.amu.edu.pl DOI 10.2478/biorc-2020-0002 Submitted 28.02.2020, Accepted 31.03.2020 Algerian Inuleae tribe species distribution modeling under influence of current and future climate conditions Djilali Tahri*, Fatiha Elhouiti, Mohamed Ouinten & Mohamed Yousfi Laboratoire des Sciences Fondamentales à l’Université Amar Telidji de Laghouat, Route de Ghardaïa BP37G (03000), Laghouat, Algérie; ORCID: DT https://orcid.org/0000-0002-9408-6188, FE https://orcid.org/0000-0001-8191-1428 *corresponding author ([email protected]) Abstract. This study aims to predict the impact of bioclimatic variables in current and future climatic scenarios on the distribution of Inuleae tribe species. Modeling the distribution of 30 species of the Inuleae tribe in Algeria was carried out with a maximum entropy model. Two models with 99 occurrence points were obtained with mean values of Area Under a Curve (AUC) of 0.987±0.01 and 0.971±0.02, reflecting excellent predictive power. Three bioclimatic variables contributed mainly to the first model and four - to the second one with cumulative contributions of 83.8% and 79%, respectively elucidating differences between species of the two major climatic zones in Algeria: the Tell and the Sahara. Two-dimensional niches of Algerian Inuleae species allowed to distinguish these two groups with the distribution of 18 Tell species, characterized by high rainfall (14-18°C, 400-1000 mm) and the other 12 species – distributed in hot and dry environments (17-24°C, 20-200 mm). Modeling the distribution under future conditions showed that habitats of the Saharan region would be much less suitable for these species with a variation in the annual mean temperature increase up to 20% and a decrease in annual precipitation, which could raise to 11 and 15%.
    [Show full text]
  • Shrubland Ecotones; 1998 August 12–14; Ephraim, UT
    Seed Bank Strategies of Coastal Populations at the Arabian Sea Coast M. Ajmal Khan Bilquees Gul Abstract—Pure populations of halophytic shrubs (Suaeda fruticosa, Karachi, Pakistan, have demonstrated that dominant Cressa cretica, Arthrocnemum macrostachyum, Atriplex griffithii, perennial halophytic shrubs and grasses maintain a persis- etc.) and perennial grasses (Halopyrum mucronatum, Aeluropus tent seed bank (Gulzar and Khan 1994; Aziz and Khan lagopoides, etc.) dominate the vegetation of the Arabian Sea coast 1996). Six different coastal dune communities showed a –2 at Karachi, Pakistan. The coastal populations maintained a per- very small seed bank (30-260 seed m , Gulzar and Khan sistent seed bank. There is a close relationship between seed bank 1994), while coastal swamp communities had a larger seed –2 flora and existing vegetation. The size of the seed bank varies with bank (11,000 seed m ). The Cressa cretica seed bank at the species dominating the population. Arthrocnemum macro- Karachi showed a persistent seed bank (Aziz and Khan stachyum, which dominated the coastal swamps, had the highest 1996), with the number of seeds reaching its maximum –2 seed density, 940,000 seed m–2, followed by Halopyrum mucronatum, (2,500 seed m ) after dispersal and dropping down to 500 –2 which showed 75,000 seed m–2. For all other species (Suaeda fruti- seed m a few months later. Gul and Khan (1998) reported cosa, Cressa cretica, Atriplex griffithii, and Aeluropus lagopoides), that coastal swamps dominated by Arthrocnemum seed bank varies from 20,000 to 35,000 seed m–2. Seed bank of all macrostachyum showed a great deal of variation from upper species substantially reduced a few months after dispersal.
    [Show full text]