OIML D 2 DOCUMENT Consolidated Edition 2007 (E)

Total Page:16

File Type:pdf, Size:1020Kb

OIML D 2 DOCUMENT Consolidated Edition 2007 (E) INTERNATIONAL OIML D 2 DOCUMENT Consolidated Edition 2007 (E) Legal units of measurement Unités de mesure légales ORGANISATION INTERNATIONALE DE MÉTROLOGIE LÉGALE INTERNATIONAL ORGANIZATION OIML D 2 Consolidated Edition 2007 (E) OF LEGAL METROLOGY OIML D 2: 2007 (E) Contents Foreword .................................................................................................................................................................................... 3 Introduction ............................................................................................................................................................................... 4 1 General provisions ................................................................................................................................................................. 4 2 SI units ................................................................................................................................................................................... 5 3 Decimal multiples and sub-multiples of the coherent SI units ......................................................................................... 10 4 Other units ........................................................................................................................................................................... 11 Annex A Units of measurement and denominations which may be used temporarily up to a date which remains to be fixed by national regulations, but which shall not be introduced where they are not in use ............................................................................. 13 Annex B Units of measurement and denominations whose use must be discontinued as soon as possible where they are currently in use and which shall not be introduced where they are not in use ....................................................................................................................................... 14 Bibliography ............................................................................................................................................................................. 15 2 OIML D 2: 2007 (E) Foreword he International Organization of Legal Metrology International Recommendations, Documents, Guides and (OIML) is a worldwide, intergovernmental organiza- Basic Publications are published in English (E) and Ttion whose primary aim is to harmonize the translated into French (F) and are subject to periodic regulations and metrological controls applied by the national revision. metrological services, or related organizations, of its Member States. Additionally, the OIML publishes or participates in the publication of Vocabularies (OIML V) and periodically The main categories of OIML publications are: commissions legal metrology experts to write Expert • International Recommendations (OIML R), which are Reports (OIML E). Expert Reports are intended to provide model regulations that establish the metrological information and advice, and are written solely from the characteristics required of certain measuring instruments viewpoint of their author, without the involvement of a and which specify methods and equipment for checking Technical Committee or Subcommittee, nor that of the their conformity. OIML Member States shall implement CIML. Thus, they do not necessarily represent the views of these Recommendations to the greatest possible extent; the OIML. • International Documents (OIML D), which are This publication - reference OIML D 2, Consolidated Edition informative in nature and which are intended to 2007 (E) - was developed by the OIML Technical Committee harmonize and improve work in the field of legal TC 2 Units of measurement. The previous Edition (1999) was metrology; approved by the International Committee of Legal Metrology • International Guides (OIML G), which are also in 1996 and harmonized in line with the 7th edition of the informative in nature and which are intended to give International System of Units (1998, BIPM). This 2007 guidelines for the application of certain requirements to Edition consolidates the 1999 Edition (which was found to legal metrology; and contain a number of printing errors), Amendment 1 (2004) • International Basic Publications (OIML B), which and Amendment 2 (2007). As a result, this Edition is in line define the operating rules of the various OIML structures with the 8th edition of the International System of Units and systems. (2006, BIPM). OIML Draft Recommendations, Documents and Guides are OIML Publications may be downloaded from the OIML web developed by Technical Committees or Subcommittees site in the form of PDF files. Additional information on which comprise representatives from the Member States. OIML Publications may be obtained from the Organization’s Certain international and regional institutions also headquarters: participate on a consultation basis. Cooperative agreements have been established between the OIML and certain Bureau International de Métrologie Légale institutions, such as ISO and the IEC, with the objective of 11, rue Turgot - 75009 Paris - France avoiding contradictory requirements. Consequently, manu- Telephone: 33 (0)1 48 78 12 82 facturers and users of measuring instruments, test Fax: 33 (0)1 42 82 17 27 laboratories, etc. may simultaneously apply OIML publica- E-mail: [email protected] tions and those of other institutions. Internet: www.oiml.org 3 OIML D 2: 2007 (E) Legal units of measurement Introduction 4 Other units List of units which continue to be used for practical The purpose of this International Document is to reasons (although outside the scope of the Interna- facilitate the drafting of national regulations relating tional System of Units), but most of which are to legal units of measurement. recognized by the CIPM. This list is not standardized internationally, but it is desirable to consider it as This International Document is drawn up according to restrictive in order to facilitate the extension of the the following principles: International System of Units. 1 The International System of Units (SI), adopted by the General Conference of Weights and Measures (CGPM), is used as the basis for national regulations concerning legal units of measurement. Annex A Annex A lists those units of measurement and de- 2 As a general rule, units other than SI units should be nominations which may be used temporarily up to a eliminated; however, for practical reasons it is date which remains to be fixed by national regula- sometimes necessary to extensively use other units tions, but which shall not be introduced where they as legal units of measurement (e.g. the kilowatt hour are not in use. (kW · h)). 3 Those definitions in this International Document which have been provided or ratified by the CGPM have been reproduced exactly. (See subclauses 2.2.1, Annex B 2.2.6, 2.3.1, 2.3.5, 2.3.10, 2.3.11, 2.4.1, 2.5.1, 2.5.2, Annex B lists those units of measurement and de- 2.5.3, 2.5.5, 2.5.7, 2.5.8, 2.5.9, 2.6.1, 2.7.2 and 2.7.4). nominations whose use must be discontinued as soon as possible where they are currently in use and which For the requirements of legal metrology, other shall not be introduced where they are not in use. definitions are given here in their most usually accepted form. The lists in the Annexes must be completed in accord- ance with the needs or customs of each country. This International Document is divided into the fol- lowing clauses: 1 General provisions 1 General provisions Classification and fields of use of legal units of measurement. 1.1 The legal units of measurement are: 2 SI units 1.1.1 The SI units named and defined in clauses 2 and 3. Catalogue of the SI units. The list of derived units may be supplemented or reduced as required. 1.1.2 The other units named and defined in clause 4. 1.1.3 The compound units formed by combining the 3 Decimal multiples and sub-multiples of the units in subclauses 1.1.1 and 1.1.2. coherent SI units Catalogue of SI prefixes. Rules for the formation of 1.2 The units of measurement mentioned in the decimal multiples and sub-multiples of the coherent Annexes may be used up to dates which are to be fixed SI units by means of the SI prefixes. by national or regional regulations. 4 OIML D 2: 2007 (E) 1.3 The obligation to use the legal units of measure- 2.1.3 The names and symbols of the base units are ment refers to: respectively: • measuring instruments used; • results of measurements carried out; Defined in • indications of quantities which are expressed in subclause units of measurement, For length metre m 2.2.1 in the economic field, in the spheres of public health For mass kilogram kg 2.3.1 and safety, in education, in standardization as well as For time second s 2.2.6 in operations of an administrative character. For electric current ampere A 2.5.1 For thermodynamic 1.4 This Document shall not affect the use of units, temperature kelvin K 2.4.1 other than those it renders obligatory, which are laid down in international conventions or agreements For amount of between governments in the fields of navigation by substance mole mol 2.6.1 sea, air traffic and rail transport. For luminous intensity candela cd 2.7.2 1.5 A legal unit of measurement may be expressed 2.1.4 The derived units are expressed algebraically in only: terms of base units by means of the mathematical • either by its legal name or by its legal symbol speci- symbols of multiplication and division. Certain derived fied in this Document, units have been assigned
Recommended publications
  • M Motion Intervention Booklet.Pdf (810.7KB)
    Motion Intervention Booklet 1 Random uncertainties have no pattern. They can cause a reading to be higher or lower than the “true value”. Systematic uncertainties have a pattern. They cause readings to be consistently too high or consistently too low. 2 The uncertainty in repeat readings is found from “half the range” and is given to 1 significant figure. Time / s Trial 1 Trial 2 Trial 3 Mean 1.23 1.20 1.28 Mean time = 1.23 + 1.20 + 1.28 = 1.23666666 => 1.24 (original data is to 2dp, so 3 the mean is to 2 dp as well) Range = 1.20 1.28. Uncertainty is ½ × (1.28 – 1.20) = ½ × 0.08 = ± 0.04 s 3 The speed at which a person can walk, run or cycle depends on many factors including: age, terrain, fitness and distance travelled. The speed of a moving object usually changes while it’s moving. Typical values for speeds may be taken as: walking: 1.5 m/s running: 3 m/s cycling: 6 m/s sound in air: 330 m/s 4 Scalar quantities have magnitude only. Speed is a scaler, eg speed = 30 m/s. Vector quantities have magnitude and direction. Velocity is a vector, eg velocity = 30 m/s north. Distance is how far something moves, it doesn’t involve direction. The displacement at a point is how far something is from the start point, in a straight line, including the direction. It doesn’t make any difference how far the object has moved in order to get to that point.
    [Show full text]
  • Che 253M Experiment No. 2 COMPRESSIBLE GAS FLOW
    Rev. 8/15 AD/GW ChE 253M Experiment No. 2 COMPRESSIBLE GAS FLOW The objective of this experiment is to familiarize the student with methods for measurement of compressible gas flow and to study gas flow under subsonic and supersonic flow conditions. The experiment is divided into three distinct parts: (1) Calibration and determination of the critical pressure ratio for a critical flow nozzle under supersonic flow conditions (2) Calculation of the discharge coefficient and Reynolds number for an orifice under subsonic (non- choked) flow conditions and (3) Determination of the orifice constants and mass discharge from a pressurized tank in a dynamic bleed down experiment under (choked) flow conditions. The experimental set up consists of a 100 psig air source branched into two manifolds: the first used for parts (1) and (2) and the second for part (3). The first manifold contains a critical flow nozzle, a NIST-calibrated in-line digital mass flow meter, and an orifice meter, all connected in series with copper piping. The second manifold contains a strain-gauge pressure transducer and a stainless steel tank, which can be pressurized and subsequently bled via a number of attached orifices. A number of NIST-calibrated digital hand held manometers are also used for measuring pressure in all 3 parts of this experiment. Assorted pressure regulators, manual valves, and pressure gauges are present on both manifolds and you are expected to familiarize yourself with the process flow, and know how to operate them to carry out the experiment. A process flow diagram plus handouts outlining the theory of operation of these devices are attached.
    [Show full text]
  • Foot-Candles: Photometric Units
    UPDATED EXTRACT FROM CREG JOURNAL. FILE: FOOT3-UP.DOC REV. 8. LAST SAVED: 01/02/01 15:14 PHOTOMETRICS Foot-Candles: Photometric Units More footnotes on optical topics. David Gibson describes the confusing range of photometric units. A discussion of photometric units may the ratio of luminous efficiency to luminous The non-SI unit mean spherical candle- seem out of place in an electronic journal but efficiency at the wavelength where the eye is power is the intensity of a source if its light engineers frequently have to use light sources most sensitive. Unfortunately, however, this output were spread evenly in all directions. It and detectors. The units of photometry are term can be confused with the term efficacy, is therefore equivalent to the flux [lm] ¸ 4p. some of the most confusing and least which is used to describe the efficiency at standardised of units. converting electrical to luminous power. Luminance Photometric units are not difficult to The candela measures the intensity of a understand, but can be a minefield to the Illumination, Luminous Emittance. point source. We also need to define the uninitiated since many non-SI units are still The illumination of a surface is the properties of an extended source. Each small in use, and there are subtle differences incident power flux density measured in element DS of a diffuse reflective surface will between quantities with similar names, such lumens per square metre. A formal definition scatter the incident flux DF and behave as if as illumination and luminance. would be along the lines of: if a flux DF is it were an infinitesimal point source.
    [Show full text]
  • Aspects of Flow for Current, Flow Rate Is Directly Proportional to Potential
    Vacuum technology Aspects of flow For current, flow rate is directly proportional to potential difference and inversely proportional to resistance. I = V/R or I = V/R For a fluid flow, Q = (P1-P2)/R or P/R Using reciprocal of resistance, called conductance, we have, Q = C (P1-P2) There are two kinds of flow, volumetric flow and mass flow Volume flow rate, S = vA v – the average bulk velocity, A the cross sectional area S = V/t, V is the volume and t is the time. Mass flow rate is S x density. G = vA or V/t Mass flow rate is measured in units of throughput, such as torr.L/s Throughput = volume flow rate x pressure Throughput is equivalent to power. Torr.L/s (g/cm2)cm3/s g.cm/s J/s W It works out that, 1W = 7.5 torr.L/s Types of low 1. Laminar: Occurs when the ratio of mass flow to viscosity (Reynolds number) is low for a given diameter. This happens when Reynolds number is approximately below 2000. Q ~ P12-P22 2. Above 3000, flow becomes turbulent Q ~ (P12-P22)0.5 3. Choked flow occurs when there is a flow restriction between two pressure regions. Assume an orifice and the pressure difference between the two sections, such as 2:1. Assume that the pressure in the inlet chamber is constant. The flow relation is, Q ~ P1 4. Molecular flow: When pressure reduces, MFP becomes larger than the dimensions of the duct, collisions occur between the walls of the vessel.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Traffic and Road Sign Recognition
    Traffic and Road Sign Recognition Hasan Fleyeh This thesis is submitted in fulfilment of the requirements of Napier University for the degree of Doctor of Philosophy July 2008 Abstract This thesis presents a system to recognise and classify road and traffic signs for the purpose of developing an inventory of them which could assist the highway engineers’ tasks of updating and maintaining them. It uses images taken by a camera from a moving vehicle. The system is based on three major stages: colour segmentation, recognition, and classification. Four colour segmentation algorithms are developed and tested. They are a shadow and highlight invariant, a dynamic threshold, a modification of de la Escalera’s algorithm and a Fuzzy colour segmentation algorithm. All algorithms are tested using hundreds of images and the shadow-highlight invariant algorithm is eventually chosen as the best performer. This is because it is immune to shadows and highlights. It is also robust as it was tested in different lighting conditions, weather conditions, and times of the day. Approximately 97% successful segmentation rate was achieved using this algorithm. Recognition of traffic signs is carried out using a fuzzy shape recogniser. Based on four shape measures - the rectangularity, triangularity, ellipticity, and octagonality, fuzzy rules were developed to determine the shape of the sign. Among these shape measures octangonality has been introduced in this research. The final decision of the recogniser is based on the combination of both the colour and shape of the sign. The recogniser was tested in a variety of testing conditions giving an overall performance of approximately 88%.
    [Show full text]
  • Etir Code Lists
    eTIR Code Lists Code lists CL01 Equipment size and type description code (UN/EDIFACT 8155) Code specifying the size and type of equipment. 1 Dime coated tank A tank coated with dime. 2 Epoxy coated tank A tank coated with epoxy. 6 Pressurized tank A tank capable of holding pressurized goods. 7 Refrigerated tank A tank capable of keeping goods refrigerated. 9 Stainless steel tank A tank made of stainless steel. 10 Nonworking reefer container 40 ft A 40 foot refrigerated container that is not actively controlling temperature of the product. 12 Europallet 80 x 120 cm. 13 Scandinavian pallet 100 x 120 cm. 14 Trailer Non self-propelled vehicle designed for the carriage of cargo so that it can be towed by a motor vehicle. 15 Nonworking reefer container 20 ft A 20 foot refrigerated container that is not actively controlling temperature of the product. 16 Exchangeable pallet Standard pallet exchangeable following international convention. 17 Semi-trailer Non self propelled vehicle without front wheels designed for the carriage of cargo and provided with a kingpin. 18 Tank container 20 feet A tank container with a length of 20 feet. 19 Tank container 30 feet A tank container with a length of 30 feet. 20 Tank container 40 feet A tank container with a length of 40 feet. 21 Container IC 20 feet A container owned by InterContainer, a European railway subsidiary, with a length of 20 feet. 22 Container IC 30 feet A container owned by InterContainer, a European railway subsidiary, with a length of 30 feet. 23 Container IC 40 feet A container owned by InterContainer, a European railway subsidiary, with a length of 40 feet.
    [Show full text]
  • Mass Flow Rate and Isolation Characteristics of Injectors for Use with Self-Pressurizing Oxidizers in Hybrid Rockets
    49th AIAA/ASME/SAE/ASEE Joint PropulsionConference AIAA 2013-3636 July 14 - 17, 2013, San Jose, CA Mass Flow Rate and Isolation Characteristics of Injectors for Use with Self-Pressurizing Oxidizers in Hybrid Rockets Benjamin S. Waxman*, Jonah E. Zimmerman†, Brian J. Cantwell‡ Stanford University, Stanford, CA 94305 and Gregory G. Zilliac§ NASA Ames Research Center, Moffet Field, CA 94035 Self-pressurizing rocket propellants are currently gaining popularity in the propulsion community, partic- ularly in hybrid rocket applications. Due to their high vapor pressure, these propellants can be driven out of a storage tank without the need for complicated pressurization systems or turbopumps, greatly minimizing the overall system complexity and mass. Nitrous oxide (N2O) is the most commonly used self pressurizing oxidizer in hybrid rockets because it has a vapor pressure of approximately 730 psi (5.03 MPa) at room temperature and is highly storable. However, it can be difficult to model the feed system with these propellants due to the presence of two-phase flow, especially in the injector. An experimental test apparatus was developed in order to study the performance of nitrous oxide injectors over a wide range of operating conditions. Mass flow rate characterization has been performed to determine the effects of injector geometry and propellant sub-cooling (pressurization). It has been shown that rounded and chamfered inlets provide nearly identical mass flow rate improvement in comparison to square edged orifices. A particular emphasis has been placed on identifying the critical flow regime, where the flow rate is independent of backpressure (similar to choking). For a simple orifice style injector, it has been demonstrated that critical flow occurs when the downstream pressure falls sufficiently below the vapor pressure, ensuring bulk vapor formation within the injector element.
    [Show full text]
  • Light Measurement Handbook from an Oblique Angle, It Should Look As Bright As It Did When Held Perpendicular to Your Line of Vision
    Alex Ryer RED Boxes - LINKS to Current Info on Web Site Peabody, MA (USA) To receive International Light's latest Light Measurement Instruments Catalog, contact: InternationalInternational Light Technologies Light 10 Technology Drive Peabody,10 Te11 MA17 01960 Graf Road Tel:New (978) 818-6180 / buryport,Fax: (978) 818-8161 MA 01950 [email protected] / www.intl-lighttech.com Tel: (978) 465-5923 • Fax: (978) 462-0759 [email protected] • http://www.intl-light.com Copyright © 1997 by Alexander D. Ryer All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the copyright owner. Requests should be made through the publisher. Technical Publications Dept. International Light Technologies 10 Technology Drive Peabody, MA 01960 ISBN 0-9658356-9-3 Library of Congress Catalog Card Number: 97-93677 Second Printing Printed in the United States of America. 2 Contents 1 What is Light? ........................................................... 5 Electromagnetic Wave Theory........................................... 5 Ultraviolet Light ................................................................. 6 Visible Light ........................................................................ 7 Color Models ....................................................................... 7 Infrared Light .....................................................................
    [Show full text]
  • The International System of Units (SI)
    NAT'L INST. OF STAND & TECH NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 330 2001 Edition The International System of Units (SI) 4. Barry N. Taylor, Editor r A o o L57 330 2oOI rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.
    [Show full text]
  • CAR-ANS Part 5 Governing Units of Measurement to Be Used in Air and Ground Operations
    CIVIL AVIATION REGULATIONS AIR NAVIGATION SERVICES Part 5 Governing UNITS OF MEASUREMENT TO BE USED IN AIR AND GROUND OPERATIONS CIVIL AVIATION AUTHORITY OF THE PHILIPPINES Old MIA Road, Pasay City1301 Metro Manila UNCOTROLLED COPY INTENTIONALLY LEFT BLANK UNCOTROLLED COPY CAR-ANS PART 5 Republic of the Philippines CIVIL AVIATION REGULATIONS AIR NAVIGATION SERVICES (CAR-ANS) Part 5 UNITS OF MEASUREMENTS TO BE USED IN AIR AND GROUND OPERATIONS 22 APRIL 2016 EFFECTIVITY Part 5 of the Civil Aviation Regulations-Air Navigation Services are issued under the authority of Republic Act 9497 and shall take effect upon approval of the Board of Directors of the CAAP. APPROVED BY: LT GEN WILLIAM K HOTCHKISS III AFP (RET) DATE Director General Civil Aviation Authority of the Philippines Issue 2 15-i 16 May 2016 UNCOTROLLED COPY CAR-ANS PART 5 FOREWORD This Civil Aviation Regulations-Air Navigation Services (CAR-ANS) Part 5 was formulated and issued by the Civil Aviation Authority of the Philippines (CAAP), prescribing the standards and recommended practices for units of measurements to be used in air and ground operations within the territory of the Republic of the Philippines. This Civil Aviation Regulations-Air Navigation Services (CAR-ANS) Part 5 was developed based on the Standards and Recommended Practices prescribed by the International Civil Aviation Organization (ICAO) as contained in Annex 5 which was first adopted by the council on 16 April 1948 pursuant to the provisions of Article 37 of the Convention of International Civil Aviation (Chicago 1944), and consequently became applicable on 1 January 1949. The provisions contained herein are issued by authority of the Director General of the Civil Aviation Authority of the Philippines and will be complied with by all concerned.
    [Show full text]
  • Commission Services Working Document
    COMMISSION OF THE EUROPEAN COMMUNITIES Brussels, 22 December 2006 COMMISSION STAFF WORKING DOCUMENT on units of measurement (Directive 80/181/EEC) EN EN TABLE OF CONTENTS 1. Introduction.................................................................................................................. 3 2. Extension of the international SI-system ..................................................................... 3 3. Multiple indication of SI units ..................................................................................... 4 4. So-called Arbitrary units (U) ....................................................................................... 4 5. Ratios (not expressed in units) ..................................................................................... 5 6. Non-SI Units required by International Treaties in transport ...................................... 5 7. Non-SI Units used in Traditional industries and in new markets ................................ 5 8. Date of Supplementary indications in non-SI units ..................................................... 6 9. Scope of the directive................................................................................................... 7 10. Stakeholder Consultation ............................................................................................. 8 EN 2 EN 1. INTRODUCTION The use of units of measurement is prescribed in the European Union by means of COUNCIL DIRECTIVE 80/181/EEC of 20 December 1979 on the approximation of the laws of the Member States
    [Show full text]