The Cryosphere, 10, 2173–2189, 2016 www.the-cryosphere.net/10/2173/2016/ doi:10.5194/tc-10-2173-2016 © Author(s) 2016. CC Attribution 3.0 License. Estimates of ikaite export from sea ice to the underlying seawater in a sea ice–seawater mesocosm Nicolas-Xavier Geilfus1,2, Ryan J. Galley1, Brent G. T. Else3, Karley Campbell1, Tim Papakyriakou1, Odile Crabeck1, Marcos Lemes1, Bruno Delille4, and Søren Rysgaard1,2,5 1Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada 2Arctic Research Centre, Aarhus University, Aarhus, Denmark 3Department of Geography, University of Calgary, Calgary, Canada 4Unité d’Océanographie Chimique, Université de Liège, Liège, Belgium 5Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland Correspondence to: Nicolas-Xavier Geilfus (
[email protected]) Received: 19 January 2016 – Published in The Cryosphere Discuss.: 11 February 2016 Revised: 12 August 2016 – Accepted: 15 August 2016 – Published: 21 September 2016 Abstract. The precipitation of ikaite and its fate within sea sea ice began to melt. Ikaite crystal dissolution in the water ice is still poorly understood. We quantify temporal inorganic column kept the seawater pCO2 undersaturated with respect carbon dynamics in sea ice from initial formation to its melt to the atmosphere in spite of increased salinity, TA and TCO2 in a sea ice–seawater mesocosm pool from 11 to 29 Jan- associated with sea ice growth. Results indicate that ikaite uary 2013. Based on measurements of total alkalinity (TA) export from sea ice and its dissolution in the underlying sea- and total dissolved inorganic carbon (TCO2), the main pro- water can potentially hamper the effect of oceanic acidifica- cesses affecting inorganic carbon dynamics within sea ice tion on the aragonite saturation state (aragonite) in fall and were ikaite precipitation and CO2 exchange with the atmo- in winter in ice-covered areas, at the time when aragonite is sphere.