Inorganic Ions Regulate Amorphous-To-Crystal Shape Preservation in Biomineralization COMMENTARY Jeffrey D

Total Page:16

File Type:pdf, Size:1020Kb

Inorganic Ions Regulate Amorphous-To-Crystal Shape Preservation in Biomineralization COMMENTARY Jeffrey D COMMENTARY Inorganic ions regulate amorphous-to-crystal shape preservation in biomineralization COMMENTARY Jeffrey D. Rimera,1 Calcified minerals in biogenic materials often play a utilitarian role, such as structural supports in bone, teeth, and shells, where the crystals are arranged in well-ordered arrays (1, 2). The ability of organisms to produce single crystalline scaffolds and hierarchical architectures with unique features, such as bent or spheroidal shapes, has long fascinated scientists. The mechanisms of biomineral nucleation and growth are complex and not fully understood, while the ability to mimic these processes in vitro has proven challenging. Much attention has been given to studying the skeletal sections of sea urchins and other organisms (e.g., mol- lusks, echinoderms, calcisponges, and corals) that con- tain curved surfaces and various convoluted shapes (3). From numerous studies of these materials, which are predominantly composed of calcium carbonate minerals, it has become evident that crystallization originates from the initial formation of amorphous cal- cium carbonate (ACC) (4, 5). The pathways by which Fig. 1. Illustration of the shape-preserving amorphous-to-crystalline ACC transforms into crystalline CaCO3 polymorphs transformation in magnesium-containing precursors of calcium carbonate, which has been a topic of ongoing investigation, although is one of the most abundant near-surface biominerals and a structural component many fundamental details remain elusive. In PNAS, Liu of sea urchin spicules and coccolith exoskeletons (both depicted in the blueprint et al. (6) report the time-resolved evolution of ACC to as bioinspired designs). This in vitro process involves two-step nucleation wherein the spheroidal morphology of amorphous calcium carbonate (ACC) is maintained + crystalline calcium carbonate using in situ transmission throughout crystallization of Mg-calcite. The role of Mg2 ions is generally electron microscopy to show that the presence of in- twofold: These additives inhibit nucleation in the solution phase, and they also organic ions leads to the direct transformation of the bring excess water into the precursors to facilitate solute rearrangement within amorphous phase to calcite, all the while preserving the solid phase, thus allowing calcite to retain the original shape of the amorphous particles. the morphology of the original precursor. ACC has become a recognized and frequently investigated form of calcium carbonate owing to its Navrotsky and coworkers (9) who showed that the importance in biomineralization. Six additional crystal- amorphous-to-crystalline transition occurs in the fol- line forms of calcium carbonate (1) include calcite, ara- lowing order (energetically downhill): ACC (more meta- gonite, vaterite, monohydrocalcite, calcium carbonate stable hydrated) → ACC (less metastable hydrated) → hexahydrate (ikaite), and the most recently discovered ACC (anhydrous) → vaterite → aragonite → calcite. · hemihydrate (CaCO3 1/2H2O) (7). ACC is structurally Chemical analysis of ACC phases extracted from complex (i.e., not a single mineral phase) with varying biominerals also reveals the presence of inorganic ions, + degrees of hydration. For example, in sea urchin larval such as Mg2 (4, 10, 11), and organic macromolecules spicules it has been shown that crystallization involves that can facilitate the stabilization of transient ACC three distinct stages: an initial (short-lived) hydrated phases (8, 12). ACC phase, an intermediate (transient) dehydrated In PNAS, Liu et al. (6) elegantly show that the pres- + form of ACC, and finally crystalline calcite (8). This ence of Mg2 ions alters the ACC-to-calcite transition sequence is consistent with thermodynamic data from pathway in a concentration-dependent manner. While aDepartment of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204 Author contributions: J.D.R. wrote the paper. The author declares no competing interest. Published under the PNAS license. See companion article 10.1073/pnas.1914813117. 1Email: [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.1922923117 PNAS Latest Articles | 1of3 Downloaded by guest on October 1, 2021 + it has been known that Mg2 incorporation in ACC leads to in- their disorder-to-order transition, resulting in faceted cubes, anal- creased water content (13), Liu et al. confirm this using molecu- ogous to the morphology of calcite in the absence of inorganic lar dynamics to show that the presence of hydrogen-bonded additives, as reported in PNAS. The unique observation by Liu 2− 2+ networks between H2OandCO3 allow for more rapid ion et al. may reflect the ability of Mg ions to act as inhibitors of rearrangements in ACC (14). Introduction of these unstable sites calcification, either on the surfaces of growing crystals (18) or by putatively enables the direct transformation of ACC into calcite their incorporation in calcite leading to defects that increase min- wherein nucleation occurs within the amorphous precursor. This eral solubility (19). process is in stark contrast to calcite nucleation in solution involving ACC has been observed as a precursor to aragonite [55,56], a the dissolution–reprecipitation of amorphous precursors. Liu et al. polymorph of calcite; however, the role of amorphous phases in + suggest that the presence of Mg2 ions in solution inhibit this path- natural systems extends beyond ACC to diverse materials such as way by decreasing the supersaturation with respect to calcite. This, silica in plants and animals (opal), the skeletons of single-celled in turn, allows more time for ACC phases to directly transform into organisms (diatoms), or multicellular tissues (sponges) (1, 20, 21). Mg-calcite by virtue of the incorporated structured water. This pro- Additional examples include magnetite formed from a disordered cess is illustrated in Fig. 1 where the spherical shape of ACC parti- ferrihydrite precursor (22) and the amorphous calcium phosphate + cles infused with Mg2 ions is preserved throughout calcite (ACP) phase detected in the fins of zebrafish (23). Indeed, there is nucleation and growth. During this process, water is expelled from increasing in vivo and in vitro evidence that ACP in collagen matri- the ACC phase during concomitant densification without any no- ces plays an important role in bone formation (24, 25). Analogous ticeable change in particle morphology. Given the presence of to ACC, it is hypothesized that ACP acts as a transient (precursor) + Mg2 ions in numerous biominerals, it is conceivable that this phase during the growth of hydroxyapatite. This further highlights pathway may offer an explanation for the mechanism by which the important role of direct amorphous-to-crystalline transfor- organisms produce exquisite structures where the ACC phases mations in many natural and biological processes. Studies such function as “molds” to preserve shape during mineralization. as those by Liu et al. provide insights into the mechanisms of The nucleation of calcite in (or on) the amorphous solid is biomineralization. Moreover, the discovery of controlled transfor- characteristic of a two-step process that was first observed for mation of amorphous phases to crystals has practical implications proteins (15) but has since become a ubiquitous mechanism in in the manufacturing of new materials. For instance, Tang and the field of crystallization. The physical state of amorphous pre- coworkers (26) previously demonstrated the ability to mold calcite cursors can be quite diverse, ranging from liquid-like droplets into shapes (e.g., stars) and patterned arrays from cross-linked and clusters to gels or nanoparticles. The impact of amorphous ionic oligomers using organic additives. The ability to accomplish species in crystallization is increasingly more evident given the similar processes in ACC using magnesium, an inexpensive earth- significant increase in literature citations emphasizing their roles abundant resource, holds considerable promise for designing facile, as precursors for nucleation as well as growth units during crystal- efficient methods to tailor single crystalline materials with unprec- lization by particle attachment, which both fall under the moniker edented morphologies that cannot be easily achieved through of nonclassical pathways (16). There are additional examples, such conventional routes. as zeolites (nanoporous aluminosilicates) (17), where amorphous Acknowledgments gel-like precursors undergo direct transformation to crystals; J.D.R. acknowledges funding from the Welch Foundation (Award E-1794). however, unlike the evolution of Mg-ACC precursors, the spher- Additional support has been provided by the National Science Foundation (Award ical morphology of zeolite amorphous gels is not preserved during DMR-1710354) and the National Institutes of Health (Award 1R21AI126215-01). 1 L. Addadi, S. Raz, S. Weiner, Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 15, 959–970 (2003). 2 K. Simkiss, K. Wilbur, Biomineralization, Cell Biology, and Mineral Deposition (Academic Press, New York, 1989). 3 Y. Politi, T. Arad, E. Klein, S. Weiner, L. Addadi, Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306, 1161–1164 (2004). 4 L. B. Gower, Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108, 4551–4627 (2008). 5 S. Weiner, Y. Levi-Kalisman, S. Raz, L. Addadi,
Recommended publications
  • Database of Global Glendonite and Ikaite Records Throughout The
    Discussions https://doi.org/10.5194/essd-2020-222 Earth System Preprint. Discussion started: 9 September 2020 Science c Author(s) 2020. CC BY 4.0 License. Open Access Open Data Database of global glendonite and ikaite records throughout the Phanerozoic Mikhail Rogov1, Victoria Ershova1,2, Oleg Vereshchagin2, Kseniia Vasileva2, Kseniia Mikhailova2, Aleksei Krylov2,3 5 1 Geological Institute of RAS, Moscow 119017, Russia 2 Institute of Earth Sciences, St. Petersburg State University, 199034 St. Petersburg, Russia 3 VNIIOkeangeologia, 190121, St. Petersburg, Russia Correspondence to: Mikhail Rogov ([email protected]) 10 Abstract. This database of Phanerozoic occurrences and isotopic characteristics of metastable cold-water calcium carbonate hexahydrate (ikaite; CaCO3·6H2O) and their associated carbonate pseudomorphs (glendonites) has been compiled from academic publications and open-access reports. Our database including 690 occurrences reveals that glendonites characterize cold-water environments, although their distribution is highly irregular in space and time. A significant body of evidence 15 suggests that glendonite occurrences are restricted mainly to cold-water settings, however they do not occur during every glaciation or cooling event of the Phanerozoic. While Quaternary glendonites and ikaites have been described from all major ocean basins, older occurrences have a patchy distribution, which may suggest poor preservation potential of both carbonate concretions and older sediments. The data file described in this paper is available on Zenodo at https://doi.org/10.5281/zenodo.3991964 (Rogov et al., 2020). 20 1 Introduction Metastable cold-water calcium carbonate hexahydrate (ikaite; CaCO3·6H2O) and their associated carbonate pseudomorphs (glendonites) have attracted considerable attention during the past few decades, mainly due to their utility for palaeoenvironmental (especially palaeoclimatic) reconstructions (Kemper and Schmitz, 1975, 1981; Kaplan, 1978, 1979, 1980; Suess et al., 1982, among others).
    [Show full text]
  • Ikaite Is One Mineral We Will Likely Never Have in Our Collections, Unless We Have Some Well-Connected Friends and a Super-Cooled Environment to Store It In
    Rdosdladq1//2Lhmdq`knesgdLnmsg9Hj`hsd Ikaite is one mineral we will likely never have in our collections, unless we have some well-connected friends and a super-cooled environment to store it in. Although this month’s mineral falls apart at temperatures above freezing, still we can see its crystal forms and habits, as they have been painstakingly and accurately preserved by the calcite crystals that replaced them. OGXRHB@K OQNODQSHDR (Because ikaite is unstable at ambient temperatures, some of the mineral’s physical properties have not been accurately determined.) Chemistry: CaCO3A6H20 Hydrous Calcium Carbonate or Calcium Carbonate Hexahydrate Class: Hydrous Carbonates Subclass: Hydrous Carbonates without foreign cations Crystal System: Monoclinic Crystal Habits: Usually tabular, thin in one dimension; stalactitic in pendant growths; stalagmitic as columns; also encrustations Color: Chalky white Luster: Earthy, dull Transparency: Translucent to opaque Streak: White Refractive Index: 1.45-1.54 Cleavage: None Figure 1 Monoclinic crystal. Fracture: Uncertain Hardness: Uncertain, believed to be softer than calcite (Mohs 3.0) Specific Gravity: 1.8 Luminescence: Uncertain Distinctive Features and Tests: Unstable at room temperature, quickly decomposes to water and calcite Dana Classification Number: 15.1.4.1 M @L D The name “ikaite” (correct pronunciation IKE-a-ite) derives from the mineral’s type locality at Ikka (formerly spelled “Ika”) Fjord, Invigtut, Greenland. Ikaite pseudomorphs in nodule or rosette forms are also known as “glendonite,” a name derived from their discovery locality off the southern coast of New South Wales, Australia. Other names for pseudomorphs of calcite after ikaite are derived from locality names and include “fundylite,” “jarrowite,” “gennoishi,” “gersternkörner,” and “White Sea hornlets.” BNL ONRHSHNM Before delving into ikaite’s composition, you may enjoy reading the information on pseudomorphs in the box on the next page.
    [Show full text]
  • Unleashing the Potential of Glendonite: a Mineral Archive for Biogeochemical Processes and Paleoenvironmental Conditions
    RESEARCH FOCUS: RESEARCH FOCUS Unleashing the potential of glendonite: A mineral archive for biogeochemical processes and paleoenvironmental conditions Jörn Peckmann Institut für Geologie, Universität Hamburg, 20146 Hamburg, Germany Ikaite (CaCO3 × 6H2O) is a calcium carbonate mineral that forms at low Temperature may not be the only trigger for the disintegration of temperatures close to the freezing point of water and is metastable under ikaite. Disintegration has been suggested to be favored by (1) a decrease surface conditions in natural environments. It occurs as an early diagenetic in alkalinity and concentration of dissolved phosphate (Bischoff et al., mineral in marine sediments, where it grows close to the sediment-water 1993), or (2) changing pore-water chemistries reflecting the transition interface, typically forming centimeter-sized single euhedral crystals to from an environment shaped by organoclastic sulfate reduction to an stellate crystal aggregates (Zabel and Schulz, 2001). Its precipitation is environment shaped by anaerobic oxidation of methane (Greinert and favored by elevated carbonate alkalinity, high pH, and high concentrations Derkachev, 2004). Upon destabilization, ikaite transforms into a mush of dissolved phosphate (Bischoff et al., 1993; Hu et al., 2015; Zhou et al., of water and small crystals of calcite and sometimes vaterite, another 2015). Ikaite readily transforms into calcite upon an increase of temperature polymorph of calcium carbonate (Suess et al., 1982; Selleck et al., 2007). or a change of pore-water chemistry (Pauly, 1963; Swainson and Ham- The secondary phase formed first is represented by carbonate bundles mond, 2001); the external shape of crystals and crystal aggregates is com- referred to as ‘replacive calcite’ (Teichert and Luppold, 2013).
    [Show full text]
  • Alphabetical List
    LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name acanthite sulfides asbolite oxides accessory minerals astrophyllite chain silicates actinolite clinoamphibole atacamite chlorides adamite arsenates augite clinopyroxene adularia alkali feldspar austinite arsenates aegirine clinopyroxene autunite phosphates aegirine-augite clinopyroxene awaruite alloys aenigmatite aenigmatite group axinite group sorosilicates aeschynite niobates azurite carbonates agate silica minerals babingtonite rhodonite group aikinite sulfides baddeleyite oxides akaganeite oxides barbosalite phosphates akermanite melilite group barite sulfates alabandite sulfides barium feldspar feldspar group alabaster barium silicates silicates albite plagioclase barylite sorosilicates alexandrite oxides bassanite sulfates allanite epidote group bastnaesite carbonates and fluorides alloclasite sulfides bavenite chain silicates allophane clay minerals bayerite oxides almandine garnet group beidellite clay minerals alpha quartz silica minerals beraunite phosphates alstonite carbonates berndtite sulfides altaite tellurides berryite sulfosalts alum sulfates berthierine serpentine group aluminum hydroxides oxides bertrandite sorosilicates aluminum oxides oxides beryl ring silicates alumohydrocalcite carbonates betafite niobates and tantalates alunite sulfates betekhtinite sulfides amazonite alkali feldspar beudantite arsenates and sulfates amber organic minerals bideauxite chlorides and fluorides amblygonite phosphates biotite mica group amethyst
    [Show full text]
  • The Crystallization Process of Vaterite Microdisc Mesocrystals Via Proto-Vaterite Amorphous Calcium Carbonate Characterized by Cryo-X-Ray Absorption Spectroscopy
    crystals Communication The Crystallization Process of Vaterite Microdisc Mesocrystals via Proto-Vaterite Amorphous Calcium Carbonate Characterized by Cryo-X-ray Absorption Spectroscopy Li Qiao 1, Ivo Zizak 2, Paul Zaslansky 3 and Yurong Ma 1,* 1 School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; [email protected] 2 Department Structure and Dynamics of Energy Materials, Helmholtz-Zentrum-Berlin, 14109 Berlin, Germany; [email protected] 3 Department for Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; [email protected] * Correspondence: [email protected] Received: 27 July 2020; Accepted: 23 August 2020; Published: 26 August 2020 Abstract: Investigation on the formation mechanism of crystals via amorphous precursors has attracted a lot of interests in the last years. The formation mechanism of thermodynamically meta-stable vaterite in pure alcohols in the absence of any additive is less known. Herein, the crystallization process of vaterite microdisc mesocrystals via proto-vaterite amorphous calcium carbonate (ACC) in isopropanol was tracked by using Ca K-edge X-ray absorption spectroscopy (XAS) characterization under cryo-condition. Ca K-edge X-ray absorption near edge structure (XANES) spectra show that the absorption edges of the Ca ions of the vaterite samples with different crystallization times shift to lower photoelectron energy while increasing the crystallization times from 0.5 to 20 d, indicating the increase of crystallinity degree of calcium carbonate. Ca K-edge extended X-ray absorption fine structure (EXAFS) spectra exhibit that the coordination number of the nearest neighbor atom O around Ca increases slowly with the increase of crystallization time and tends to be stable as 4.3 ( 1.4).
    [Show full text]
  • (1014) Calcite Twins Mimicking Crystallographic Ordering
    minerals Article Diffraction Features from (1014) Calcite Twins Mimicking Crystallographic Ordering Péter Németh 1,2 1 Research Centre for Astronomy and Earth Sciences, Institute for Geological and Geochemical Research, Eötvös Loránd Research Network, Budaörsi Street 45, 1112 Budapest, Hungary; [email protected] 2 Department of Earth and Environmental Sciences, University of Pannonia, Egyetem út 10, 8200 Veszprém, Hungary Abstract: During phase transitions the ordering of cations and/or anions along specific crystallo- graphic directions can take place. As a result, extra reflections may occur in diffraction patterns, which can indicate cell doubling and the reduction of the crystallographic symmetry. However, similar features may also arise from twinning. Here the nanostructures of a glendonite, a calcite (CaCO3) pseudomorph after ikaite (CaCO3·6H2O), from Victoria Cave (Russia) were studied using transmission electron microscopy (TEM). This paper demonstrates the occurrence of extra reflections at positions halfway between the Bragg reflections of calcite in 0kl electron diffraction patterns and the doubling of d104 spacings (corresponding to 2·3.03 Å) in high-resolution TEM images. Interestingly, these diffraction features match with the so-called carbonate c-type reflections, which are associated with Mg and Ca ordering, a phenomenon that cannot occur in pure calcite. TEM and crystallographic analysis suggests that, in fact, (1014) calcite twins and the orientation change of CO3 groups across the twin interface are responsible for the extra reflections. Citation: Németh, P. Diffraction Keywords: electron diffraction; c-type reflections; ordering; twinning; calcite; glendonite; TEM Features from (1014) Calcite Twins Mimicking Crystallographic Ordering. Minerals 2021, 11, 720. https://doi.org/10.3390/ 1.
    [Show full text]
  • Estimates of Ikaite Export from Sea Ice to the Underlying Seawater in a Sea Ice–Seawater Mesocosm
    The Cryosphere, 10, 2173–2189, 2016 www.the-cryosphere.net/10/2173/2016/ doi:10.5194/tc-10-2173-2016 © Author(s) 2016. CC Attribution 3.0 License. Estimates of ikaite export from sea ice to the underlying seawater in a sea ice–seawater mesocosm Nicolas-Xavier Geilfus1,2, Ryan J. Galley1, Brent G. T. Else3, Karley Campbell1, Tim Papakyriakou1, Odile Crabeck1, Marcos Lemes1, Bruno Delille4, and Søren Rysgaard1,2,5 1Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada 2Arctic Research Centre, Aarhus University, Aarhus, Denmark 3Department of Geography, University of Calgary, Calgary, Canada 4Unité d’Océanographie Chimique, Université de Liège, Liège, Belgium 5Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland Correspondence to: Nicolas-Xavier Geilfus ([email protected]) Received: 19 January 2016 – Published in The Cryosphere Discuss.: 11 February 2016 Revised: 12 August 2016 – Accepted: 15 August 2016 – Published: 21 September 2016 Abstract. The precipitation of ikaite and its fate within sea sea ice began to melt. Ikaite crystal dissolution in the water ice is still poorly understood. We quantify temporal inorganic column kept the seawater pCO2 undersaturated with respect carbon dynamics in sea ice from initial formation to its melt to the atmosphere in spite of increased salinity, TA and TCO2 in a sea ice–seawater mesocosm pool from 11 to 29 Jan- associated with sea ice growth. Results indicate that ikaite uary 2013. Based on measurements of total alkalinity (TA) export from sea ice and its dissolution in the underlying sea- and total dissolved inorganic carbon (TCO2), the main pro- water can potentially hamper the effect of oceanic acidifica- cesses affecting inorganic carbon dynamics within sea ice tion on the aragonite saturation state (aragonite) in fall and were ikaite precipitation and CO2 exchange with the atmo- in winter in ice-covered areas, at the time when aragonite is sphere.
    [Show full text]
  • Glendonites from the Arctic Wildlife Refugee, North Slope, Alaska
    _________ October 2014 Mineral N e w s -------------------- low. salinity high and current circulation low just prior to ikaite precipation. Such evidence is consistent with the previous Glendonites from the hypotheses of their formation. England (1976) summarized the theory that within a highly saline and cold water environment Arctic Wildlife Refugee, (such as the arctic would have had in the Early Tertiary) mirabilite and ikaite could have directly precipitated on the sea floor muds. The alteration of ikaite to calcite would have occurred soon North Slope, Alaska afterw ards, before lithification of the muds. Mark Ivan Jacobson Denver, CO The arctic coastal plain is a treeless, almost barren, rolling grassland. This is an environment where Musk Oxen and Caribou are the populous inhabitants. Within this environment, near the shores of the Beaufort Sea are found glendonites, calcite pseudomorphs after ikaite (CaC03 • 6H:0).The Danish mineralogist, Hans Pauly (Pauly 1963). first described the mineral from an occurrence in the inner Ika Fjord, south Greenland, close to Ivigtut. the first locality of cryolite. Thereafter, these pseudomorphs were reported from several localities in Australia. These cold-temperature formed ikaite pseudomorphs received their name from the locality at Glendonbrook, New South Wales, Australia. Figure 2. An elongated glendonite with smaller subsidiary crystals from the banks of Carter Creek, National Arctic Wildlife Refugee. Collected circa 1970. The occurrence of glendonite. which were considered oddities by early North Slope Alaska geologists, were discovered erica 1965 Since their work was aimed towards an understanding of the biostratigraphy and lithology of the Tertiary sediments, the occurrence of glendonites did not merit further attention.
    [Show full text]
  • Structural Change Induced by Dehydration in Ikaite (Caco3·6H2O)
    Journal of Mineralogical and Petrological Sciences, Volume 109, page 157–168, 2014 Structural change induced by dehydration in ikaite (CaCO3·6H2O) Natsuki TATENO and Atsushi KYONO Division of Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8572, Japan Dehydration–induced structural change in ikaite, CaCO3·6H2O, is investigated using a low–temperature single– crystal X–ray diffraction study. At −50 °C, the crystal structure of ikaite is monoclinic, of space group C2/c with the unit cell parameters a = 8.8134 (1), b = 8.3108 (1), c = 11.0183 (1) Å, and β = 110.418 (1)°. The measure- ments were performed in 10 °C steps, revealing a monotonous increase of unit cell volume from 756.3 to 758.0 Å3,upto−20 °C. The unit cell volume then jumps to 771.0 Å3 at −10 °C. The unit cell expands anisotropically along the a–axis followed by the c–axis. The ikaite structure is finally lost at 0 °C, which is a much lower temperature for decomposition than previously reported values. The low temperature decomposition is attrib- utable to the aridity of the sample. The elongation of the O1–O4 intermolecular distance parallel to the (101) plane engenders the substantial increase in the a–axis and c–axis. The two–dimensional molecular sheets com- posed of the CaCO3·6H2O molecules are stacked with hydrogen bondings along the c–axis. The expansion of the c–axis is affected by variations in the hydrogen bondings between the sheets. The intramolecular Ca–O2 and Ca–O5 bond lengths and the intermolecular O1–O5 distance are greatly elongated immediately before the decomposition of ikaite structure.
    [Show full text]
  • Carbon Mineral Storage in Seawater: Ikaite (Caco3·6H2O) Columns In
    Carbon mineral storage in seawater Ikaite (CaCO3·6H2O) columns in Greenland Stockmann, Gabrielle J.; Ranta, Eemu; Trampe, Erik; Sturkell, Erik; Seaman, Paul Published in: Energy Procedia DOI: 10.1016/j.egypro.2018.07.009 Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC-ND Citation for published version (APA): Stockmann, G. J., Ranta, E., Trampe, E., Sturkell, E., & Seaman, P. (2018). Carbon mineral storage in seawater: Ikaite (CaCO ·6H O) columns in Greenland. Energy Procedia, 146, 59-67. https://doi.org/10.1016/j.egypro.2018.07.0093 2 Download date: 29. sep.. 2021 Available online at www.sciencedirect.com Available online at www.sciencedirect.com ScienceDirect ScienceDirect AvailableAvailableEnergy online online Procedia at at www.sciencedirect.com www.sciencedirect.com 00 (2018) 000–000 Energy Procedia 00 (2018) 000–000 www.elsevier.com/locate/procedia www.elsevier.com/locate/procedia ScienceDirectScienceDirect EnergyEnergy ProcediaProcedia 00146 (20 (2018)17) 000 59–67–000 www.elsevier.com/locate/procedia International Carbon Conference 2018, ICC 2018, 10–14 September 2018, Reykjavik, Iceland International Carbon Conference 2018, ICC 2018, 10–14 September 2018, Reykjavik, Iceland Carbon mineral storage in seawater: Carbon mineral storage in seawater: TheIkaite 15th International(CaCO3ꞏ6H Symposium2O) columns on District in Heating Greenland and Cooling Ikaite (CaCO3ꞏ6H2O) columns in Greenland Gabrielle J. Stockmanna,b,*, Eemu Rantac, Erik Tramped, Erik Sturkelle,
    [Show full text]
  • X-Ray Diffraction Studies of Hydrous Carbonates
    X-ray diffraction studies of hydrous carbonates - Alistair Lennie ([email protected]), Chiu Tang ([email protected]) & Steve Thompson ([email protected]) Work supported by the EPSRC Changes in carbon dioxide in the atmosphere over In ikaite, hydrogen atoms belonging to water molecules geological time are interconnected with organic and link with nearby oxygens to form hydrogen bonds. These mineral carbon reservoirs. The predominant carbonate weak bonds join individual units together to form the mineral calcite (CaCO3) acts as a buffer for long-term crystal with similarities to the formation of ice which cycling of carbon dioxide between the atmosphere, consists of a network of hydrogen-bonded water oceans and solid Earth. However, calcite is not the only molecules. calcium carbonate mineral, and there are still discoveries to be made in this complex and fascinating mineral system. In 1963, a then little-known calcium carbonate phase was reported as a new mineral, ikaite, in unusual underwater formations at Ikka Fjord, Greenland. Although ikaite was first discovered as a mineral in 1963, it had been reported from laboratory studies made during the 19th century. Ikaite plays a role in the carbon cycle, sequestering carbon dioxide produced by bacterial oxidation of organic matter in cold marine sediments. We synthesised crystals of CaCO3.6H2O and examined How important this role is in the total carbon dioxide these at the SRS, Daresbury. The data collected has budget of the Earth's oceans has not yet been established. shown us how, as the crystal cools, weak hydrogen bonds in the structure undergo greatest change.
    [Show full text]
  • Stabilisation of Aragonite: the Role of Mg2+ and Other Impurity Ions
    Stabilisation of aragonite: the role of Mg2+ and other impurity ions Matthew Boon1, William D.A. Rickard2, Andrew L. Rohl3, and Franca Jones1* Affiliation; 1 Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University. 2John de Laeter Centre, Curtin University. 3 Curtin Institute for Computation, Curtin University. *Mail: Curtin University, GPO Box U1987, Perth, Australia 6845. Email: [email protected] Phone: 618 9266 7677 Abstract Aragonite formation and stabilisation in seawater is still an area of active investigation since the thermodynamically stable product at room temperature is calcite. In this manuscript, purely inorganic systems that were found to stabilise aragonite were analysed by various techniques. Dynamic Light Scattering was used to characterise the nucleation behaviour of the system and it was found that the presence of magnesium ions during crystal formation inhibits nucleation overall, not just calcite nucleation. In addition, it was found that sulfate is not necessary to stabilise aragonite. Microanalysis by energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) revealed that the aragonite that was formed had a disordered core with, sodium, magnesium and sulfate ions incorporated into the structure. To the best of the authors’ knowledge this is the first time an ACC core in aragonite has been visualised in a completely abiotic, synthetic system (in the absence of organic molecules). Inclusion of these impurities into the structure
    [Show full text]