ALUSIL® Cylinder Blocks Kolbenschmidt Pierburg Group

Total Page:16

File Type:pdf, Size:1020Kb

ALUSIL® Cylinder Blocks Kolbenschmidt Pierburg Group Kolbenschmidt Pierburg Group ALUSIL® cylinder blocks for the new AUDI V6 and V8 SI engines 1. Audi setting standards in lightweight design 2. Reasons in favor of ALUSIL® from the viewpoint of Audi: With its vehicle model series, Audi is setting new standards in lightweight design. So it is only logical for the carmaker again There are many technical reasons which induced the car- to count on aluminium in developing the cylinder blocks for maker Audi to adhere to the proven ALUSIL® concept: its new spark-ignition V-engines (Fig. 1). On account of the reduced wall thickness (cylinder land width of only 5.5 mm ALUSIL® makes a minimum weight at a high degree of in- (Fig. 2) between cylinder bores), Audi relies on the hypereu- tegration of engine functions like lubricant, coolant and tectic aluminium-silicon alloy AlSi17Cu4Mg registered for KS engine venting circuits. ATAG under the brand name of ALUSIL®. This concept allows the pistons to move directly along the honed cylinder bore ALUSIL® enables minimum overall cylinder block lengths surfaces of the aluminium casting – an ideal condition for to be implemented because the engines can be operated high-performing engines. without inserted cylinder liners. To achieve the shortest possible engine length at a specified swept volume and stroke, the cylinder bore diameter should be kept as large V6 cylinder block V8 cylinder block (fuel stratified injection [FSI]) V8 cylinder block cylinder block of the (multi-point injection) existing Audi V8 engine Fig. 1: ALUSIL® cylinder block of the new Audi V6 and V8 SI engine generation. 2 as possible, at minimum land width. In such cases, the land width of the jointly cast cylinders is determined in practice by the safe and reliable performance of the cylin- der head gasket, by the cutting pressure applied for ma- chining and the cylinder distortion in engine operation. ALUSIL® boasts excellent tribological characteristics. As the pistons and piston rings slide along the exposed sili- 5.5 mm con crystals, their susceptibility to seizing is minimized (Fig. 3). ALUSIL® displays optimum thermal conductivity; Audi is thus in a position to achieve a high specific engine per- formance. ALUSIL® does not imply any recycling problems because Fig. 2: Cylinder head flange surface with a land width of only the cylinder block does not contain extraneous materials 5.5 mm – such as cast-in cylinder liners made of grey cast iron. ALUSIL® allows cylinder blocks to be cast monolithically without cylinder liners or subsequent coating of the cyl- inder bores. This makes it possible to achieve: components of optimum structural rigidity through the benefit of a by 12 % higher Young’s modulus of the ALUSIL® alloy compared to a hypoeutectic standard alloy, as well as process reliability in machining without having to interrupt the process flow for costly addi- tional working steps specifically for the cylinder bore surfaces. A decisive milestone in this area was the mechanical exposure of the silicon crystals by means of a third honing step (Fig. 4) as a substitute for the chemical laying bare (etching) after the two-step hon- Fig. 3: Material structure of the alloy AlSi17Cu4Mg / ALUSIL® ing process which was a must before. Laying bare the with primarily precipitated silicon crystals (dark areas in the picture) silicon grains by mechanical means allows perfect on- line production. The above described assets of the ALUSIL® alloy are certain- ly significant arguments in favor of the use of this material. But also the low-pressure die casting method (Fig. 5) which has since then proven to be the best by far is an important prerequisite for process reliability in making mass-produced cylinder block castings of ALUSIL®. Fig. 4: Mechanically exposed ALUSIL® cylinder bore surface 3 3. Reasons in favor of low-pressure die casting from the viewpoint of Audi: Low-pressure die casting, LPDC (Figs. 5 – 6) allows to use sand cores where necessary, e.g. for water jackets (Fig. 7). Sleeve yoke with In this way, structurally rigid closed-deck cylinder blocks movable die half can be produced, a prerequisite for high specific engine Hydraulic cylinder outputs. sleeve lifters LPDC allows controlled, low-turbulence die filling, and what is even more important, controlled cooling of the die to ensure component-specific, virtually ideal directional solidification. The compilation of all casting-relevant data and the resulting control of the casting process are imple- mented today computer-assisted. Especially a purpose- Cylinder designed cylinder sleeve cooling system is an indispens- sleevers able prerequisite for uniform precipitation of the silicon Open die Casting crystals in the cylinder area (criteria: distribution, grain size range (Fig. 8) and number of crystals per cm²), low Stationary die half Hydraulic lateral shifters porosity and minimizing casting flaws like blowholes, pores, cold fusion, etc. This process control ensures con- Riser stant quality of the castings. LPDC permits unrestricted heat treatment of the casting. Holding furnace It is already possible to achieve a certain increase in hard- with melt ness and strength by applying controlled cooling of the cylinder blocks from the casting temperature by means of customary T5 heat treatment. The subsequent artificial aging not only serves to enhance hardness and strength, Lifting table, but primarily also to stabilize the volume, i.e. avoid an stroke about 2 m irreversible expansion in length and volume (distortion) referred to as “growth” when the casting is exposed to the operating temperature of the engine. Fig. 5: Low-pressure die casting, illustrated principle of a cast- For still higher thermal stresses in engine operation, a modi- ing cell with opened die (movable die half in lifted position) fied T5 heat treatment method is available by which the components of casting temperature are chilled locally, for example in the cylinder deck or bearing bulkhead areas by means of water showers, and their hardness and strength are raised through precipitation hardening. The heat treat- ment is additionally utilized for stabilizing the alloy. For absolute high-performance engines, Audi will in the fu- ture apply full heat treatment (T6) comprising homogenizing, chilling and artificial aging. This method contributes to a further distinct improvement in terms of static and dynamic strength. As “mere” T6 heat treatment without specific ar- tificial aging only leads to a low degree of volume stabili- zation and involves the risk of distortion at operating tem- perature of the engine, the artificial aging time is frequently even extended. This extension of the aging time improves the expansion characteristics. Fig. 6: Design of a low-pressure die for aluminium cylinder block 4 4. Audi’s new V-engine generation: 5. The Audi V6 and V8 engine concept: The new V-engine generation of Audi – both petrol and die- The new V6 in the large displacement version of 3.2 l and the sel engines – is setting standards with respect to compact- new V8 with a swept volume of 4.2 l originate from the new ness and overall length. Customers’ requests for more pow- Audi V-engine family with a stroke of 92.8 mm (Fig. 9), a V erful engines even in smaller vehicle model series implied angle of the cylinder banks of 90° and a central division of the need for shorter overall engine lengths and for reducing the cylinder block (bedplate concept). The distance between the vehicle front-part weight. As a result a new V-engine gen- cylinders is 90 mm, the cylinder bank offset being 18.5 mm. eration has been created. For the V6 of 3.2 l as well as the V8 of 4.2 l swept volume, the cylinder bore is 84.5 mm. For the smaller V6 engine of 2.4 l Audi is the market leader in lightweight design, specifically swept volume, it is 81 mm. The cylinders are cast jointly at in the premium segment. The lightweight strategy is impres- a land width of 5.5 mm and of 9 mm, respectively for the V6 sively implemented in the car body through the Audi space with the smaller swept volume. frame aluminium technology. It was a logical consequence therefore to rely on a weight-optimizing all-aluminium solu- The V6 of the large swept volume version operates with fuel tion for the petrol V engines – i.e. ALUSIL® cylinder blocks. stratified injection (FSI), and in the small version, with multi- Thanks to its high competence as the European market lead- point injection (MPI). The different cylinder bore diameters er KS ATAG was able to convince the market with ALUSIL® for do not require an adjustment on the water-jacket side. The cylinder blocks of passenger-car SI engines in the respective V8 SI engines are available in three versions. To the existing market segment. Attractive contracts from Audi are contrib- two engine versions with MPI, a new version with FSI was uting to the further strengthening of KS ATAG’s location in added which also distinguishes itself by its cylinder block Neckarsulm and its market leadership. design. Fig. 7: View of a water-jacket core box in the core shooter: water-jacket sand cores for Audi V6 cylinder block (left) and V8 cylinder block (right) 5 6. Description of the cylinder block top: front, above the V space but connected with it. Water supply to the jackets of the two cylinder banks is accomplished by As mentioned above, the Audi cylinder blocks (Fig. 10) are means of a manifold, flange-mounted in the V space. made of the hypereutectic alloy AlSi17Cu4Mg. The low-pres- sure die casting method is applied, with controlled cooling The oil circuit ducts are partly pre-cast, partly drilled. The from the casting temperature.
Recommended publications
  • Reconditioning of Aluminium Engines Reconditioning of Aluminium Engine Blocks Impressum
    Service Tips & Information Reconditioning of Aluminium Engines Reconditioning of Aluminium Engine Blocks Impressum MSI Motor Service International. Und was dahinter steckt. Die MSI Motor Service International GmbH ist die Vertriebsorganisation für die weltweiten Aftermarket-Aktivitäten der KOLBENSCHMIDT PIERBURG AG. Unter den Premium-Marken KOLBEN- SCHMIDT, PIERBURG und TRW liefern wir ein umfassendes, bedarfsgerech- tes Sortiment von Produkten im und am Motor. Den Werkstätten und Moto- reninstandsetzern stehen Motorkom- ponenten für über 2000 verschiedene Motoren zur Verfügung. Alle Produkte erfüllen den hohen Anspruch an Qualität, Wirtschaftlich- keit und Umweltschutz. Die KOLBENSCHMIDT PIERBURG AG als weltweit bedeutender Automobilzuliefe- rer entwickelt innovative Lösungen für Komponenten, Module und Systeme rund um den Motor für fast alle Hersteller. An 23 Fertigungsstandorten in Europa, Nord-und Südamerika sowie in China werden 11400 Mitarbeiter beschäftigt. Date 08.06 1. Edition Artikel-Nr. 50 003 804-02 ISBN 978-3-86522-197-1 Published by: © MSI Motor Service International GmbH Untere Neckarstraße 74172 Neckarsulm, Germany Editors: Alexander Schäfer Uwe Schilling Simon Schnaibel Technical Contributors: Reiner Holwein Johann Szopa Bernd Waldhauer Ullrich Zucker Dr. Eduard Köhler Willi Pröschle Graphical design: Uwe Schilling Simon Schnaibel Production: Margot Schneider Hela Werbung GmbH, Heilbronn Wir bedanken uns für die freundliche Unterstützung der KS Aluminium Technologie AG. This document must not be reprinted, duplicated or translated in full or in part without our prior written con- sent and without reference to the source of the material. All content including pictures and diagrams is subject to alteration. We accept no liability. 2 | Reconditioning of Aluminium Engine Blocks MSI Motor Service International Reconditioning of Aluminium Engine Blocks FOREWORD Aluminium engine blocks – the trend Since they were fi rst introduced, engines with aluminium engine blocks have continued to enjoy increasing popularity.
    [Show full text]
  • Alusil, Lokasil, Silitec, Diasil, Mercosil, ALBOND—These Sound
    Alusil, Lokasil, Silitec, DiASil, Mercosil, ALBOND—these sound like a foreign language, but they are all trade names or trademarks for what is generically known as hypereutectic aluminum, which is a new/old material for cylinder bore wear surfaces. Hypereutectic aluminum is both new and old. Its cousins, hypoeutectic and eutectic aluminum, have been used for pistons and connecting rods for a number of years. One of the earliest applications of hypereutectic aluminum was as the wear surface in an unlined cylinder in some Porsche engines in the 1960s. The 1971 Chevrolet Vega was the first true production automotive engine with a linerless hypereutectic aluminum cylinder bore as the wear surface. Despite the car’s reputation, the cylinder concept was ahead of its time. When properly finished, hypereutectic aluminum cylinder bores present a surface to the piston rings that is roughly equivalent to glass. The resulting engine has lower friction, excellent sealing, improved dimensional stability, improved heat dissipation, reduced weight, better recyclability, lower manufacturing cost and higher durability compared to the traditional aluminum block with cast iron cylinder liners. Aluminum Cylinder Evolution Since the first time gasoline burned and forced a piston down a cylinder, aluminum has been the metal of choice when light weight was the most critical requirement for an internal combustion engine. This is as true today as it was in 1902 when the Wright Brothers were unable to purchase a suitable commercial engine for their experimental airplane and instead built their own, casting the aluminum block. Automotive OEMs seized upon aluminum for the same reason and found manufacturing advantages, too, in that it is less costly to cast and easier to machine.
    [Show full text]
  • Metallurgical Abstracts (General and Non-Ferrous)
    METALLURGICAL ABSTRACTS (GENERAL AND NON-FERROUS) Volume 1 JUNE 1934 Part 6 I.—PROPERTIES OF METALS (Continued from pp. 225-230.) ♦Change in Properties of Deformed Polycrystalline [Aluminium] During Recovery [Erholung]. M. O. Kornfeld (Zhumal eksperimentalnoy i teoreti- cheskoy Fiziki (Journal of Experimental and Theoretical Physics), 1933, 3, (6), 563-566).—[In Russian.] Annealing of deformed polycrystalline aluminium in the region of “ pure recovery ” does not restore the original properties. The processes which take place during recovery lead to a highly stable con­ dition characterized by a yield-point higher than that of the original material due to the residual distortion of the lattice after recovery. Laue photo­ grams indicate that during recovery there is no noticeable shift in the boundaries between grains. It may therefore be concluded that any change in properties during recovery is determined mainly by processes taking place within the grain.—N. A. ♦On the Question of the Allotropic Transition of Bismuth at 75° C. Shin Tchi Aoyama and Gohei Monna (Sci. Rep. Tdhoku Imp. Univ., 1934, [i], 23, 52-61 [in English] ; and Kinzoku no Kenkyu, 1934, 11, 203-209 [in Japanese]). —Investigations by means of thermal analysis, thermal expansion, thermo- electromotive force, and oil dilatometry, indicate that the alleged allotropic transition of bismuth at 75° C. does not exist.—E. S. H. Preparation and Properties of Cadmium. Edmund T. Richards (Metall- borse, 1934, 24, 242-243).-—A review.—A. R. P. ♦The Electrolytic Valve Action of Columbium and Tantalum on A.C. Circuits. D. F. Calhane and A. J. Laliberte (Electrochem. Soc. Preprint, 1934, (April), 287-293).—Oscillograph records are given showing the film behaviour of tantalum and columbium in dilute sulphuric acid on a.c.
    [Show full text]
  • Research of Combined Rolling-Extrusion Process for Production of Long Deformed Semi-Finished Products from Aluminium Alloys of Various Alloying Systems
    RESEARCH OF COMBINED ROLLING-EXTRUSION PROCESS FOR PRODUCTION OF LONG DEFORMED SEMI-FINISHED PRODUCTS FROM ALUMINIUM ALLOYS OF VARIOUS ALLOYING SYSTEMS TABLE OF CONTENTS 1. CURRENT STATUS AND DEVELOPMENT TRENDS OF TECHNOLOGIES AND EQUIPMENT FOR COMBINED PROCESSING OF ALUMINIUM ALLOYS 1.1. METHODS AND TECHNOLOGIES FOR CONTINUOUS PROCESSING OF ALUMINIUM ALLOYS 1.2 ANALYSIS OF RESEARCH RESULTS FOR IDENTIFICATION OF DEFORMATION AND POWER PARAMETERS IN COMBINATION OF ROLLING AND EXTRUSION 1.3 SELECTION OF MATERIALS FOR RESEARCH 1.4. CONCLUSIONS AND SETTING OF OBJECTIVES 2. SIMULATION AND ANALYTICAL STUDIES OF COMBINED ROLLING- EXTRUSION OF ALLUMINIUM ALLOYS 2.1. SIMULATION OF COMBINED ROLLING-EXTRUSION PROCESS 2.2. RESEARCH OF GEOMETRICAL SHAPE OF DEFORMATION ZONE AND FEASIBILITY OF ROLLING-EXTRUSION PROCESS 2.3. CHARACTERIZATION OF RHEOLOGICAL PROPERTIES OF EXPERIMENTAL ALUMINIUM ALLOYS 2.4. CALCULATION OF POWER PARAMETERS OF ROLLING-EXTRUSION 3. EXPERIMENTAL RESEARCH OF COMBINED ROLLING-EXTRUSION PROCESS 3.1 DESCRIPTION OF EQUIPMENT AND METHODS OF EXPERIMENTAL RESEARCH 3.2. RESULTS OF EXPERIMENTAL RESEARCH AND THEIR ANALYSIS 3.3. RESEARCH OF STRUCTURE AND PROPERTIES OF PRODUCTS MADE BY CRE (COMBINED ROLLING-EXTRUSION) METHOD OF EXPERIMENTAL ALLOYS 3.4. PRACTICAL APPLICATION OF RESEARCH RESULTS CONCLUSION REFERENCE LIST 2 INTRODUCTION High production volumes of long-length deformed semi-finished products of relatively small cross-section made of aluminum and its alloys (wire rods, bars and wire) have conditioned the creation of new technologies of combined processing with the use of continuous methods of casting and basic metal-forming operations which for production of the above-mentioned products are advisable to be applied as rolling and extrusion [1-4].
    [Show full text]
  • Engine Blocks
    Applications – Power train – Engine blocks Table of Contents 2 Engine blocks ......................................................................................................................... 2 2.1 Introduction ...................................................................................................................... 2 2.2 Requirements for aluminium engine blocks..................................................................... 4 2.3 Design features................................................................................................................ 6 2.3.1 Basic engine concept ................................................................................................ 6 2.3.2 Bolting concept.......................................................................................................... 8 2.3.3 Open and closed deck concepts ............................................................................... 9 2.4 Pre-cast features and add-on parts ................................................................................. 9 2.5 Cast-in inserts ................................................................................................................ 11 2.6 Criteria for alloy selection............................................................................................... 13 2.7 Alloys: Composition and heat treatment ........................................................................ 14 2.8 Applicable casting processes........................................................................................
    [Show full text]
  • Determining Features of Application of Functional
    Materials Science UDC 621.793:621.357.7 Проаналізовано підходи щодо застосуван- DOI: 10.15587/1729-4061.2019.171787 ня електрохімічних покривів в технологіях поверхневої обробки. Показано, що спрямова- не модифікування поверхні дозволяє розшири- DETERMINING FEATURES ти функціональні властивості оброблюваного матеріалу, зокрема підвищити показники міц- OF APPLICATION ності, зносостійкості, корозійної тривкості, каталітичної активності. OF FUNCTIONAL Запропоновано спосіб поверхневої обробки нелегованих сталей та чавунів шляхом фор- ELECTROCHEMICAL мування тонкоплівкових покривів тернарни- ми сплавами заліза та кобальту з молібденом COATINGS IN і вольфрамом. Показано, що введення туго- плавких металів до 37 ат. % в поверхневий шар призводить до зміни фазової структури TECHNOLOGIES OF покриття. Виявлено, що це забезпечує підви- щення зносостійкості на 40 %, мікротвердості SURFACE TREATMENT у 2,5–3,5 рази, а також зменшення коефіцієн- ту тертя в 3–4 рази порівняно з матеріалом A. Karakurkchi підкладки. Сформовані матеріали можуть PhD, Senior Researcher бути використані для зміцнення і захисту Department of General and Inorganic Chemistry* поверхонь в різних галузях промисловості. E-mail: [email protected] Для модифікування поверхні поршневих M. Sakhnenko силумінів запропоновано використовувати ме- Doctor of Technical Sciences, тод плазмово-електролітичного оксидуван- Professor, Head of Department ня із формуванням керамікоподібних покривів. Department of Physical Chemistry* Показано, що в гальваностатичному режимі M. Ved із лужних розчинів електролітів, що містять Doctor of Technical Sciences, Professor солі мангану та кобальту, можливо одержу- Department of General and Inorganic Chemistry* вати рівномірні щільні з високою адгезією до основного металу оксидні покриви, допова- I. Yermolenko ні каталітичними компонентами, вміст яких Doctor of Technical Sciences, Senior Researcher варіюється в межах 25–35 ат. %. Показано, що Research Laboratory* морфологія та фазова структура поверхневих S.
    [Show full text]
  • Reconditioning of Aluminium Engines Contents
    Reconditioning of Aluminium Engines Contents Page Chapter 1: General 3 1.1 Reasons for using aluminium cylinder blocks 3 1.2 Known brands of aluminium alloys for cylinder blocks 3 1.3 Vehicles/engines with aluminium cylinder blocks 3 1.4 Design details 3 1.5 Composite materials for cylinder liners. Aluminium/ cast iron 4 1.6 Use of Cr-coated piston rings 4 1.7 KS cylinder liners for Alusil engines 4 Chapter 2: Reconditioning an Alusil®cylinder block 5 2.1 Preparatory machining of the cylinder block 5 2.2 Installation of the Alusil 6 cylinder liner 2.2.1 Installation with dry ice 6 2.2.2 Installation with liquid nitrogen 6 2.2.3 Preheating of the cylinder block 6 2.2.4 Fitting the cylinder liner 7 2.3 Planing of the cylinder block 7 2.4 Prehoning, finish honing, polishing 8 2.5 Silicon lapping 8 2.6 Tables 9 Chapter 3: Reconditioning a Lokasil cylinder block based on the example of the Porsche Boxster engine 14 Chapter 4: Reconditioning the threads for the cylinder head bolts 16 Chapter 1: General 1.1 Reasons for using alumin- 1.3 Vehicles/engines with alu- 1.4 Design details ium engine blocks minium cylinder blocks Alusil: It has always been a challenge • Alusil base material is expensi- for engine designers to make, GALNIKAL / NIKASIL ve and difficult to machine due besides cylinder heads and pis- to the high silicon content tons, the entire cylinder block BMW • Boring the cylinder block is from aluminium without addition- 2.0 Litre 6 cylinders possible al cylinder liners or surface rein- 2.5 Litre 6 cylinders M52 • Oversized pistons are availa- forcements.
    [Show full text]
  • Employment Equity Act (55/1998): Public Register Notice 40996
    STAATSKOERANT, 21 JULIE 2017 No. 40996 111 Labour, Department of/ Arbeid, Departement van DEPARTMENT OF LABOUR NO. 715 21 JULY 2017 715 Employment Equity Act (55/1998): Public register notice 40996 REGISTER REGISTER NOTICE PUBLIC PUBLIC 1998) 1998) NO. NO. OF EMPLOYMENT EMPLOYMENT EQUITY ACT, ACT, 1998 (ACT 55 55 Schedule Schedule the the attached in in of of Oliphant, Oliphant, Minister Labour, Labour, publish Nelisiwe Nelisiwe Mildred Mildred 1, 1, Equity Equity Employment Employment of of of of Section the the 41 41 terms terms register register maintained in in hereto, hereto, the the that that submitted submitted have have of of of of designated employers 1998) 1998) (Act (Act Act, Act, 1998 55 55 No. No. Equity Equity Act, Act, of of Employment Employment Section Section the 21, 21, of of employment employment equity terms terms reports reports in in amended. amended. Act Act of of 1998 1998 55 55 No. No. as as OLIPHANT OLIPHANT MN MN MINISTER MINISTER LABOUR LABOUR OF OF o o 7 7,10/7 7,10/7 SASEREJISTRI SASEREJISTRI SOLUNTU ISAZISO ISAZISO (UMTHETHO (UMTHETHO YINOMBOLO KULUNGELELANISA KULUNGELELANISA INGQESHO, INGQESHO, 8) 8) ndipapasha ndipapasha uMphathiswa uMphathiswa wezabasebenzi, kule Iisiwe Iisiwe Oliphant, yeCandelo yeCandelo ngokwemiqathango ngokwemiqathango 41 41 apha apha irejista egcina shelwe shelwe oyiNombolo oyiNombolo ka-1998 ka-1998 (urnThetho yama- yama- ungelelanisa ungelelanisa iNgqesho, zokuLungelelanisa zokuLungelelanisa iingxelo iingxelo 'khundla 'khundla zabaqeshi abangenise abangenise wokuLungelelanisa wokuLungelelanisa yeCandelo yeCandelo IomThetho IomThetho 21, 21, emigaqo emigaqo tho tho oyiNombolo yama-55 ka-1998. ka-1998. ti r m z N CM Z =o 7) D * m N m M r/) m CO , o o V J `wZ Ó This gazette is also available free online at www.gpwonline.co.za 112 No.
    [Show full text]
  • Government Gazette Staatskoerant REPUBLIC of SOUTH AFRICA REPUBLIEK VAN SUID AFRIKA
    Government Gazette Staatskoerant REPUBLIC OF SOUTH AFRICA REPUBLIEK VAN SUID AFRIKA Regulation Gazette No. 10177 Regulasiekoerant March Vol. 633 29 2018 No. 41534 Maart PART 1 OF 6 ISSN 1682-5843 N.B. The Government Printing Works will 41534 not be held responsible for the quality of “Hard Copies” or “Electronic Files” submitted for publication purposes 9 771682 584003 AIDS HELPLINE: 0800-0123-22 Prevention is the cure STAATSKOERANT, 29 MAART 2018 No. 41534 65 List of designated employers who reported for the 01 September 2017 reporting cycle Description of terms: No: This represents sequential numbering of designated employers and bears no relation to an employer. (The list consists of 6069 large employers and 21094 small employers). Business name: This is the name of the designated employer who reported Status code: 0 means no query. EE Reference Number: This is the reference number of all employers who reported successfully. No Business Name Status Code EE Ref No: 1 0307 FILMS (PTY) LTD 0 821489 2 08600PLUMBER 0 817804 3 08XCONNECT COM 0 822716 4 1 UP DESIGN (PTY) LTD 0 813173 5 1 WAY 0 790271 6 1000 HILLS SPAR 0 786733 7 10X INVESTMENTS (PTY) LTD 0 817048 8 123 CONSULTING (PTY)LTD 0 823025 9 15 ON ORANGE HOTEL 0 813019 10 180 DEGREE DIGITAL PRINT CC 0 815011 11 180 DEGREES DONE TO PERFECTION 0 824828 12 1KZNTV 0 820196 13 1ST CONTACT MONEY 0 819272 14 1ST CONTACT SERVICES CC 0 141174 15 2 CANA SOLUTIONS PTY LTD 0 523173 16 2 RIVER BOERDERY 0 820222 17 2016223694 SOUTH AFRICA (PTY) LTD 0 824533 18 21ST CENTURY PAY SOLUTIONS COMPANY
    [Show full text]
  • A Study on Material Properties of Intermetallic Phases in a Multicomponent Hypereutectic Al-Si Alloy with the Use of Nanoindentation Testing
    materials Article A Study on Material Properties of Intermetallic Phases in a Multicomponent Hypereutectic Al-Si Alloy with the Use of Nanoindentation Testing Mirosław Tupaj 1,* , Antoni Władysław Orłowicz 2, Marek Mróz 2 , Andrzej Trytek 1 , Anna Janina Dolata 3,* and Andrzej Dziedzic 4 1 Faculty of Mechanics and Technology, Rzeszow University of Technology, ul. Kwiatkowskiego, 37-450 Stalowa Wola, Poland; [email protected] 2 Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powsta´nców 8, 35-959 Rzeszów, Poland; [email protected] (A.W.O.); [email protected] (M.M.) 3 Faculty of Materials Engineering, Silesian University of Technology, ul. Krasi´nskiego 8, 40-019 Katowice, Poland 4 Institute of Physics, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; [email protected] * Correspondence: [email protected] (M.T.); [email protected] (A.J.D.) Received: 15 November 2020; Accepted: 7 December 2020; Published: 9 December 2020 Abstract: The paper concerns modeling the microstructure of a hypereutectic aluminum-silicon alloy developed by the authors with the purpose of application for automobile cylinder liners showing high resistance to abrasive wear at least equal to that of cast-iron liners. With the use of the nanoindentation method, material properties of intermetallic phases and matrix in a hypereutectic Al-Si alloy containing Mn, Cu, Cr, Ni, V, Fe, and Mg as additives were examined. The scanning electron microscope equipped with an adapter for chemical composition microanalysis was used to determine the chemical composition of intermetallics and of the alloy matrix. Intermetallic phases, such as Al(Fe,Mn,M)Si, Al(Cr,V,M)Si, AlFeSi, AlFeNiM, AlCuNi, Al2Cu, and Mg2Si, including those supersaturated with various alloying elements (M), were identified based on results of X-ray diffraction (XRD) tests and microanalysis of chemical composition carried out with the use of X-ray energy dispersive spectroscopy (EDS).
    [Show full text]
  • Understanding Bore Scoring in Al-Si Cylinder Systems
    UNDERSTANDING BORE SCORING IN AL-SI CYLINDER SYSTEMS Charles Navarro LN Engineering LLC Copyright ©2019 LN Engineering LLC. Abstract The basic requirements for a cylinder lining are as follows: wear resistance for the liner, rings, and pistons, as well as resistance to galling and minimal oil consumption. In the beginning, internal combustion engines favored heavy, dense, thermally stable cast iron engine blocks for their durability in meeting these criteria. Besides being heavier than a modern all-aluminum engine, those made from cast iron provide poor cooling, limited performance, and are nowhere near as efficient or powerful as today’s engines designed to meet tightening emissions and fuel economy requirements.1 As aluminum has four times the thermal conductivity of cast iron or steel, it’s the logical choice to overcome these thermal performance limitations.2 However, Al-Si cylinder systems require special surface preparation and piston coatings, not to mention specific lubrication needs. Balancing these requirements has always been a challenge for engineers, especially when cost is the driving motivator for OEMs when utilizing liner-less cylinder technologies. Innovations built upon an all-aluminum engine designed to maximize efficiency and reduce emissions, coupled with hybrid technologies, will extend the life of the internal combustion engine as we transition to an all-electric future. Keywords: Al-Si Alloys, Hypereutectic Aluminum Alloys, Internal Combustion Engine, Combustion Engine Cylinder Liners, MMC, Lokasil, Alusil, Bore Scoring, All-Aluminum Engine Block, Coatings, Piston, Piston Rings, Heat Transfer, Tribofilm, Boundary Lubrication, Wear Mechanisms, ZDDP, Friction Modifiers 1 Improving Heat Transfer and Reducing Mass In a Gasoline Piston Using Additive Manufacturing.
    [Show full text]
  • Nikasil® and Alusil a Primer on Some of the More Common Specialty Coatings and Cylinder Materials Found in Small Displacement Engines
    EP 10-2008 18-32 10/6/08 7:46 PM Page 18 FEATURE Nikasil® and Alusil A primer on some of the more common specialty coatings and cylinder materials found in small displacement engines BY JOHN GOODMAN This issue of Engine Professional is Background What Nikasil® and other similar dedicated to specialty engines and niche Any shop considering a cylinder repair coatings are not remains the center of marketing opportunities. Part of that that has been coated with Nikasil® confusion. Alusil’s like Lokasil®, market involves small displacement should be aware of a few material Mercasil® and other high silica substrates engines of all types and configurations. properties and some of the confusion are not coatings at all but rather Past experience with these small bore surrounding them. It will not be the aluminum metal alloys. These alloys have engines has demonstrated a need to purpose of this article to cover many also been referred to as hypereutectic understand materials and coating in a manufacturing details but developing aluminum due to the percent of silica particles contained in the alloy. It is a way quite different from the run-of-the- application and machining do’s and don’ts subtle distinction but Alusil alloys do not mill gasoline engine. Motorcycle, water will be fundamental. contain silica carbide like nickel plating sport, snow mobile, off-road, stationary Let’s begin by covering what Nikasil® does. Instead of silica carbide, Alusil power plant and other specialty engines is. Nikasil® or NiCom® (1967 Mahle employs glass-like silica particles similar offer a machine shop many high profit trademark) is electrodeposited oleophilic to sand.
    [Show full text]