A New Edition of the International Cloud Atlas by Stephen A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WMO, No. 407 International Cloud Atlas, Volume II
·..- INTERNATIONAL CLOUD ATLAS Volume 11 WORLD METEOROLOGICAL ORGANIZATION 11"]~ii[Ulilliiill~lllifiiilllll INTERNATIONAL CLOUD ATLAS Volume 11 11'-;> oz-; WORLD METEOROLOGICAL ORGANIZATION 1987 © 1987, World Meteorological Organization ISBN 92 - 63 - L2407 - 8 NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organization concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The photographs contained in this volume may not be reproduced without the authoriza tion of the copyright owner. All inquiries regarding reproduction rights should be addressed to the Secretary-General, World Meteorological Organization, Geneva (Switzerland). 03- 4365 v'Z, c ~~ FOREWORD With this new, thoroughly revised edition of Volume 11 of the Study of Clouds. A modified edition of the same work appeared in International Cloud Atlas a key publication is once again made 1939, under the title International Atlas 0/ Clouds and of Types 0./ available for professional meteorologists as well as for a wide circle of Skies, Volume I, General Atlas. The latter contained 174 plates: IQ I interested amateurs. For meteorologists this is a fundamental hand cloud photographs taken from the ground and 22 from aeroplanes, and book, for others a source of acquaintance with the spectacular world of 51 photographs of types of sky. From those photographs, 31 were clouds. printed in two colours (grey and blue) to distinguish between the blue The present internationally adopted system of cloud classification of the sky and the shadows of the clouds. -
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
Advanced Lectures on Dynamical Meteorology
ADVANCED LECTURES ON DYNAMICAL METEOROLOGY Roger K. Smith Fassung: WS 02/03 Contents 1 INTRODUCTION 3 1.1Somerevision........................... 4 1.1.1 Themomentumequationinheightcoordinates..... 4 1.2TheBoussinesqapproximation.................. 5 1.3Theanelasticapproximation................... 5 1.4Pressurecoordinates....................... 6 1.5Otherpressurecoordinatesystems................ 7 1.6Isentropiccoordinates....................... 7 1.7Sigmacoordinates......................... 7 2 SMALL-AMPLITUDE WAVES IN A STABLY-STRATIFIED ROTATING ATMOSPHERE 9 2.1 Boundary waves .......................... 17 2.2Theeffectsofshear........................ 19 2.3Theenergyequation....................... 20 2.4Simplifiedsolutionsandfilteredequations........... 21 2.5 ‘Sound-proofing’ the equations .................. 21 2.6Thehydrostaticapproximation................. 23 2.7 Sound-proofed hydrostatic approximation . ......... 24 2.8 Variation of mean density with height; the equivalent incom- pressibleatmosphere....................... 24 2.9Geostrophicmotion........................ 24 3 WAVES ON MOVING STRATIFIED FLOWS 29 3.1Freewaves............................. 30 3.2Forcedwaves........................... 31 3.3Mountainwaves.......................... 34 3.4LinearTheory........................... 35 3.5Flowoverisolatedtopography.................. 39 3.6Trappedleewaves......................... 45 1 4 ENERGETICS OF WAVES ON STRATIFIED SHEAR FLOWS 55 4.1Slowlyvaryingwavetrainsorwavepackets........... 60 5 SHEARING INSTABILITY 66 5.1 Helmholtz instability -
Cloud Atlas? 5
Episode 9 Teacher Resource 4th April 2017 Clouds 1. Briefly explain how clouds form. Students will develop an 2. Why are clouds an important part of the earth’s atmosphere? understanding of how clouds form and the different types of clouds. 3. What does a meteorologist study? 4. What is a Cloud Atlas? 5. When was it first published? 6. What does a cumulus cloud look like? 7. What is the name of the cloud that brings rain and lightning? 8. The Cloud Atlas has special clouds that are defined by the unusual Science – Year 4 ways they form. Give an example of one. Represent and communicate observations, ideas and findings 9. Describe the cloud that Gary helped get into the Cloud Atlas. using formal and informal 10. What do you understand more clearly since watching the BTN representations (ACSIS071) story? Science – Year 5 Solids, liquids and gases have different observable properties a nd behave in different ways (ACSSU077) Science – Year 7 Class Discussion Some of Earth’s resources are Watch the BTN Cloud Atlas story and discuss the information raised as a renewable, including water that cycles through the environment, class. What questions do students have (what are the gaps in their but others are non-renewable knowledge)? The following questions may help guide the discussion: (ACSSU116) What are clouds? Come up with a definition. What have you noticed about clouds? How do clouds form? What are the main types of clouds? What is the Cloud Atlas? The following KWLH organiser provides students with a framework to explore their knowledge on this topic and consider what they would like to know and learn. -
Aerosols, Their Direct and Indirect Effects
5 Aerosols, their Direct and Indirect Effects Co-ordinating Lead Author J.E. Penner Lead Authors M. Andreae, H. Annegarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy, J. Nganga, G. Pitari Contributing Authors A. Ackerman, P. Adams, P. Austin, R. Boers, O. Boucher, M. Chin, C. Chuang, B. Collins, W. Cooke, P. DeMott, Y. Feng, H. Fischer, I. Fung, S. Ghan, P. Ginoux, S.-L. Gong, A. Guenther, M. Herzog, A. Higurashi, Y. Kaufman, A. Kettle, J. Kiehl, D. Koch, G. Lammel, C. Land, U. Lohmann, S. Madronich, E. Mancini, M. Mishchenko, T. Nakajima, P. Quinn, P. Rasch, D.L. Roberts, D. Savoie, S. Schwartz, J. Seinfeld, B. Soden, D. Tanré, K. Taylor, I. Tegen, X. Tie, G. Vali, R. Van Dingenen, M. van Weele, Y. Zhang Review Editors B. Nyenzi, J. Prospero Contents Executive Summary 291 5.4.1 Summary of Current Model Capabilities 313 5.4.1.1 Comparison of large-scale sulphate 5.1 Introduction 293 models (COSAM) 313 5.1.1 Advances since the Second Assessment 5.4.1.2 The IPCC model comparison Report 293 workshop: sulphate, organic carbon, 5.1.2 Aerosol Properties Relevant to Radiative black carbon, dust, and sea salt 314 Forcing 293 5.4.1.3 Comparison of modelled and observed aerosol concentrations 314 5.2 Sources and Production Mechanisms of 5.4.1.4 Comparison of modelled and satellite- Atmospheric Aerosols 295 derived aerosol optical depth 318 5.2.1 Introduction 295 5.4.2 Overall Uncertainty in Direct Forcing 5.2.2 Primary and Secondary Sources of Aerosols 296 Estimates 322 5.2.2.1 Soil dust 296 5.4.3 Modelling the Indirect -
TWISTER TWISTER : Also Known As Tornado Or Cyclone
TWISTER TWISTER : Also known as Tornado or Cyclone. It is a violently rotating column of air that is in contact with both the surface of the earth and thunderstorm cloud. The term Tornado or Twister refers to the vortex of wind, not the condensation cloud. It comes in many shapes and sizes, but they are typically in the form of a visible condensation funnel, whose Wind of Twister narrow end touches the earth and is often encircled by debris and dust. Most tornadoes have wind speed less than 180km/h, are about 75m across, and travel several kilometers before dissipating. Twister Stretch The most extreme tornadoes can attain wind speed of more than 500km/h,stretch more than 3km across, and stay on the ground for more than 100km. HOW A TWISTER FORMS : Tornadoes are among the most violent storms on Earth, with the potential to cause very serious damage. Step 1 : Step 2 : Tornadoes needs certain When the warm, moist air meet Cold, Heat condition to form - particularly cold dry air, it explodes upwards, Dry Air very intense or unseasonable puncturing the layer above. A heat. Warm, thunder cloud may begin to build. Warm, Due to this heat, the ground Moist Air A storm quickly develops - there Moist Air temperature increases; the may be rain, thunder and moist air heats and starts to rise. Courtesy by - BBC News lightning. Courtesy by - BBC News Step 3 : Step 4 : Upward movement of air can The vortex of winds varies in become very rapid. Winds from size and shape, and can be different directions cause it to hundreds of meters wide. -
New Cloud Types 2019
UPSC MAIN & PRELIMS NEW CLOUD TYPES 2019 BY : NEETU SINGH This is updated material for New Cloud Types, targeting both upcoming Prelims and Main Exams. Video is attached to provide you with the gist of content. https://youtu.be/01Ciwd9b470 New Cloud Types PRINCIPLES OF CLOUD CLASSIFICATION Useful concepts Height, altitude, vertical extent Clouds continuously evolve and appear in an infinite variety of forms. However, there is a limited number · Height: Vertical distance from the point of of characteristic forms frequently observed all over observation on the Earth's surface to the point the world, into which clouds can be broadly grouped being measured. in a classification scheme. The scheme uses · Altitude: Vertical distance from mean sea level to genera(defined according to their appearance and the point being measured. position in the sky), species(describing shape and · Height/Altitude of cloud base: For surface structure) and varieties(describing transparency and observations, height of the cloud base above arrangement).This is similar to the systems used in ground level; for aircraft observations, altitude of the classification of plants or animals, and similarly the cloud base above mean sea level. uses Latin names. · Vertical extent: Vertical distance from a cloud's There are some intermediate or transitional forms of base to its top. clouds that, although observed fairly frequently, are Levels not described in the classification scheme. The transitional forms are of little interest; they are less Clouds are generally encountered over a range of stable and in appearance are not very different from altitudes varying from sea level to the top of the the definitions of the characteristic forms. -
Btn: Episode 09 Transcript 4/04/17
BtN: Episode 09 Transcript 4/04/17 Hi I'm Nathan Bazley and this is BTN! Coming up today A world without cash? We find out how it might happen sooner than you think. Jack takes on a 'BTN Investigates' question that's out of this world. And Kind Classrooms wraps up with a look at just some of the schools that helped make the world a better place. But first: Cyclone Debbie Reporter: Natasha Thiele INTRO: We're taking a look at the destruction caused by Cyclone Debbie last week. Soon, we'll hear all about the flooding that it caused through South East Queensland and Northern NSW. But first we'll find out what it's like to go through a cyclone from two kids that experienced it first-hand. This is the sound a powerful tropical cyclone makes when it hits your house. Those powerful winds, combined with incredibly heavy rain, destroyed homes, trees and crops along the north coast of Queensland on Tuesday. And afterwards tens of thousands of people were left without power just like Hunter and his family who live in Cannon Valley. Hunter was going to report on the cyclone for us as a Rookie Reporter, but without power it's been tough to charge up his camera or connect to the internet. REPORTER: Hey Hunter, how you going? I've heard power's been a pretty big issue over there at the moment, you've been filming some stuff for us but you can't get a lot of it through. Can you tell us what Cyclone Debbie was like? HUNTER: Well it was a devastating scene and it was really scary! REPORTER: And were you like hiding in the bathroom or what were you guys doing? HUNTER: Well at the start when it wasn't like, when the first time we were just outside in our, we were inside but then when it, after the second bit we went into our bathroom because it started getting really strong winds. -
20 WCM Words
Spring, 2017 - VOL. 22, NO. 2 Evan L. Heller, Editor/Publisher Steve DiRienzo, WCM/Contributor Ingrid Amberger, Webmistress FEATURES 2 Ten Neat Clouds By Evan L. Heller 10 Become a Weather-Ready Nation Ambassador! By Christina Speciale 12 Interested in CoCoRaHS? By Jennifer Vogt Miller DEPARTMENTS 14 Spring 2017 Spotter Training Sessions 16 ALBANY SEASONAL CLIMATE SUMMARY 18 Tom Wasula’s WEATHER WORD FIND 19 From the Editor’s Desk 20 WCM Words Northeastern StormBuster is a semiannual publication of the National Weather Service Forecast Office in Albany, New York, serving the weather spotter, emergency manager, cooperative observer, ham radio, scientific and academic communities, and weather enthusiasts, all of whom share a special interest or expertise in the fields of meteorology, hydrology and/or climatology. Non-Federal entities wishing to reproduce content contained herein must credit the National Weather Service Forecast Office at Albany and any applicable authorship as the source. 1 TEN NEAT CLOUDS Evan L. Heller Meteorologist, NWS Albany There exist a number of cloud types based on genera as classified in the International Cloud Atlas. Each of these can also be sub-classified into one of several possible species. These can further be broken down into one of several varieties, which, in turn, can be further classified with supplementary features. This results in hundreds of different possibilities for cloud types, which can be quite a thrill for cloud enthusiasts. We will take a look at 10 of the rarer and more interesting clouds you may or may not have come across. A. CLOUDS INDICATING TURBULENCE 1. Altocumulus castellanus – These are a species of mid-level clouds occurring from about 6,500 to 16,500 feet in altitude. -
THE Official Magazine of the OCEANOGRAPHY SOCIETY
OceThe OFFiciaaL MaganZineog OF the Oceanographyra Spocietyhy CITATION Jackson, C.R., J.C.B. da Silva, and G. Jeans. 2012. The generation of nonlinear internal waves. Oceanography 25(2):108–123, http://dx.doi.org/10.5670/oceanog.2012.46. DOI http://dx.doi.org/10.5670/oceanog.2012.46 COPYRIGHT This article has been published inOceanography , Volume 25, Number 2, a quarterly journal of The Oceanography Society. Copyright 2012 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. doWNLoaded From http://WWW.tos.org/oceanography SPECIAL ISSUE On InTERNAL WAVES BY CHRISTOPHER R. JACKSON, JOSÉ C.B. Da SILVA, AND GUS JEANS THE GENERATION OF NONLINEAR InTERNAL WAVES ABSTRACT. Nonlinear internal waves are found in many parts of the world ocean. Their widespread distribution is a result of their origin in the barotropic tide and in the variety of ways they can be generated, including by lee waves, tidal beams, resonance, plumes, and the transformation of the internal tide. The differing generation mechanisms and diversity of generation locations and conditions all combine to produce waves that range in scale from a few tens of meters to kilometers, but with all properly described by solitary wave theory. The ability of oceanic nonlinear internal waves to persist for days after generation and the key role internal waves play in connecting large-scale tides to smaller-scale turbulence make them important for understanding the ocean environment. -
ICA Vol. 1 (1956 Edition)
·wMo o '-" I q Sb 10 c. v. i. J c.. A INTERNATIONAL CLOUD ATLAS Volume I WORLD METEOROLOGICAL ORGANIZATION 1956 c....._/ O,-/ - 1~ L ) I TABLE OF CONTENTS Pages Preface to the 1939 edition . IX Preface to the present edition . xv PART I - CLOUDS CHAPTER I Introduction 1. Definition of a cloud . 3 2. Appearance of clouds . 3 (1) Luminance . 3 (2) Colour .... 4 3. Classification of clouds 5 (1) Genera . 5 (2) Species . 5 (3) Varieties . 5 ( 4) Supplementary features and accessory clouds 6 (5) Mother-clouds . 6 4. Table of classification of clouds . 7 5. Table of abbreviations and symbols of clouds . 8 CHAPTER II Definitions I. Some useful concepts . 9 (1) Height, altitude, vertical extent 9 (2) Etages .... .... 9 2. Observational conditions to which definitions of clouds apply. 10 3. Definitions of clouds 10 (1) Genera . 10 (2) Species . 11 (3) Varieties 14 (4) Supplementary features and accessory clouds 16 CHAPTER III Descriptions of clouds 1. Cirrus . .. 19 2. Cirrocumulus . 21 3. Cirrostratus 23 4. Altocumulus . 25 5. Altostratus . 28 6. Nimbostratus . 30 " IV TABLE OF CONTENTS Pages 7. Stratoculllulus 32 8. Stratus 35 9. Culllulus . 37 10. Culllulonimbus 40 CHAPTER IV Orographic influences 1. Occurrence, structure and shapes of orographic clouds . 43 2. Changes in the shape and structure of clouds due to orographic influences 44 CHAPTER V Clouds as seen from aircraft 1. Special problellls involved . 45 (1) Differences between the observation of clouds frolll aircraft and frolll the earth's surface . 45 (2) Field of vision . 45 (3) Appearance of clouds. 45 (4) Icing . -
Types for Observers Cloud
Cloud types for observers Reading the sky Cloud types for observers Reading the sky Introduction Clouds are continually changing and appear in an infinite The descriptions and photographs which follow are given variety of forms. It is possible, however, to define a limited in the same order as the code figures in the pictorial guide. number of characteristic forms observed all over the world To find the correct code figure from the pictorial guides, into which clouds can be broadly grouped. The World start at whichever circle is applicable at the top of the page Meteorological Organization (WMO) has drawn up a and follow the solid line from description to description as classification of these characteristic forms to enable an long as all the criteria are applicable. If a description is observer to report the types of cloud present. This reached which is not applicable, return to the previous publication illustrates and explains the classifications. description and take the pecked line to a picture square. The correct code figure will be found in the top right-hand Classification is based on 10 main groups of clouds. These corner of the picture square. are divided into three levels — low, medium and high — according to that part of the atmosphere in which they are Distinguishing features connected with the 10 main groups usually found. A code figure designated CL, CM or CH is of clouds are listed at the end of this publication. Observers used to describe the clouds of each level. The divisions are may find this a useful guide when considering which shown in the table below.