METEOROLOJİ Mühendisliği Terimleri

Total Page:16

File Type:pdf, Size:1020Kb

METEOROLOJİ Mühendisliği Terimleri a skobu (Alm. A-Bildanzeige, f; A-Bildschirm, m; Fr. a-scope, f; présentation type A, f; indicateur type A, m; İng. A-display; a-scope; A-type display) meteo. Radar hedeflerinin ekranda dikey sapma olarak gösterildiği radar gösterim aygıtı. ablasyon bölgesi (Alm. Ablationszone, f; Fr. zone d’ablation, f; aire d’ablation, m; İng. ablation zone; zone of ablation) meteo. Ergime, buharlaşma ve uçunum sonucu yıllık kar birikiminden daha fazlasının yitirildiği buzul bölgesi. acil sinyali (Alm. Dringlichkeitssignal, n; Fr. signal d'urgence, m; İng. emergency signal; urgency signal) meteo. Hava aracı veya diğer araçlar ile içlerindeki ya da civarındaki insanların güvenliği ile ilgili durum. açık bulut gözesi (Alm. offene Konvektionszelle, f; Fr. cellule de convéction ouverte, f; İng. open cellular convection) meteo. Orta kısmı bulutsuz ve aşağı yönde hareketli bir hava parçası olan, çevresi yoğun, halka biçiminde bulutlarla kaplı bulut hücreleri. açık hava (Alm. wolkenfreie Luft, f; Schönwetter, m; Fr. air clair, m; air limpide, m; beau temps, m; İng. clear air; fair weather) meteo. Sıcaklık, görüş netliği veya rüzgârda aşırılık görülmediği ve ışık geçirmez bulut örtüsünün 4/10’dan daha az olduğu, yağışsız ve sissiz hava. açık hava modu (Fr. mode d’air claire, m; İng. clear-air mode) meteo. Yağışsız ve fırtınasız havalarda, özellikle toz bulutları, kuş sürüleri, sıcaklık terselmesi gibi normalde belirlenmeyenleri saptamak amacıyla meteoroloji radarının yavaş dönme hareketi ile atmosferi hassas bir şekilde taraması. açık hücre (Alm. offene Zelle, f; Fr. cellule ouverte, f; İng. open cell) meteo. Bulutların halkamsı, altıgenimsi bir biçimde örgütlendiği, kenarları bulutlarla kaplı, ortaları bulutsuz, tipik olarak birkaç on kilometre çapındaki bölgelerden her biri. adveksiyon (Alm. Advektion, f; Fr. advection, f; İng. advection) 1. çevr. Hareket halindeki akışkanın içinde bulunan bir maddenin akışkan ile birlikte belirli bir yönde kütle hareketi sonucu taşınması. 2. meteo. Havanın atmosferdeki yatay hareketleri nedeniyle toz, ısı, burgaçlanma gibi fiziksel özelliklerin taşınması; eşanlam: öztaşınım. adveksiyon sisi (Alm. Advektionsnebel, m; Fr. brouillard d´advection, m; İng. advection fog) meteo. Muson sisi, deniz sisi ve tropikal hava sisi gibi nispeten ılık, nemli ve kararlı havanın soğuk bir yüzey veya tam tersine soğuk havanın sıcak ve nemli bir yüzey üzerinden geçmesi sonucu deniz ya da karada oluşan sis; eşanlam: akımla taşınım sisi. advektif boran (Alm. Advektionsgewitter, n; advektives Gewitter, n; Fr. orage d'advection, m; İng. advective thunderstorm) meteo. Yukarı seviyedeki nispeten soğuk havanın veya aşağı seviyedeki nispeten sıcak havanın yatay hareketi veya her ikisinin birlikte görülmesiyle oluşan kararsızlığın neden olduğu boran. advektif soğuma (Alm. advektive Abkühlung, f; Fr. refroidissement advectif, m; İng. advective cooling) meteo. Başka bir yerden gelen soğuk havanın yatay hareketi sonucu yüzey hava sıcaklığının düşmesi. adyabat meteo. 1. (Alm. Adiabate, f; Fr. adiabatique, f; courbe adiabatique, f; İng. adiabat; adiabatic; adiabatic curve) Basınç-hacim diyagramında sabit entropiye sahip olan bir eğri. 2. Termodinamik diyagramlar üzerinde, bir hava parçasının atmosferde yükselirken ya da alçalırken, dışarısıyla enerji alışverişi yapmadan sıcaklığının değişimini gösteren eğri. adyabatik (kim. adiyabatik) (Alm. adiabatisch; Fr. adiabatique; İng. adiabatic) 1. mak. Sistemin çevresiyle ısı türünde enerji alışverişinde bulunamayacak biçimde yalıtılmış olması; eşanlam: ısıgeçirmez. 2. meteo. Atmosferde sıcaklıkların sadece atmosferik basıncın artması ve azalmasına bağlı olarak genleşme ve büzülme sonucu gerçekleşmesi gibi sistemde çevreyle herhangi bir ısı alışverişi olmadan gerçekleşen termodinamik değişim. adyabatik atmosfer (Alm. adiabatische Atmosphäre, f; Fr. atmosphère adiabatique, f; İng. adiabatic atmosphere) meteo. Havanın ısı iletkenliğinin çok düşük olmasından dolayı herhangi bir hava paketinin çevresiyle ısı alışverişinde bulunmayacağı, hava paketinin yükselmesi ile basıncın azalması ve hacminin genişlemesi sonucu sıcaklığının düşeceğini öngören, birinci mertebeden bir atmosfer modeli yaklaşıklığı. adyabatik denge (Alm. adiabatisches Gleichgewicht, n; konvektives Gleichgewicht, n; Fr. équilibre adiabatique, m; équilibre convectif, m; İng. adiabatic equilibrium; convective equilibrium) 1. kim. Bir sistemin sınırlarından ısı akışının gerçekleşmediği ya da giren ısının çıkan ısıya eşit olduğu denge durumu. 2. meteo. Kuvvetli düşey karışmaya sahip bir hava katmanı içinde adyabatik olarak yükselen bir hava parçasının çevresi ile aynı sıcaklık ve basınca ulaştığında üzerine, düşey yönde hareket etmesine neden olacak herhangi bir kuvvet uygulanmayan hidrostatik denge durumu; eşanlam: konvektif denge. adyabatik ısınma (Alm. adiabatische Erwärmung, f; dynamische Erwärmung, f; Fr. réchauffement adiabatique, m; réchauffement dynamique, m; İng. adiabatic warming; dynamic warming) meteo. Adyabatik bir süreçte alçaldıkça atmosferik basıncın artması nedeniyle hava parçasının sıkışması ile hacminin azalması sonucu oluşan ısınma; eşanlam: dinamik ısınma. adyabatik sıcaklık gradyanı (Alm. adiabatischer Temperaturgradient, m; adiabatisches Temperaturgefälle, n; Fr. gradient thermique adiabatique sec, m; İng. adiabatic lapse rate) meteo. Yükselen ya da alçalan havanın ısı alışverişi olmaksızın yüksekliğe göre sıcaklığının kavramsal değişim hızı. adyabatik süreç (Alm. adiabatische Zustandsänderung, f; adiabater Prozess, m; adiabatischer Vorgang, m; Fr. processus adiabatique, m; İng. adiabatic process) 1. biyom. Çevresiyle ısı alışverişinin bulunmadığı kimyasal veya fiziksel işlem; eşanlam: adyabatik işlem. 2. meteo. Çevresiyle ısı alışverişinde bulunmadan bir gaz kütlesinin genleşme sonucu sıcaklığının düşmesi ya da sıkışma sonucu sıcaklığının artması. aerograf (Alm. Aerograph, m; Aerometeorograph, m; Fr. aérographe, m; aérométéorographe, m; İng. aerograph; aerometeorograph) meteo. Barometrik basınç, sıcaklık ve nem gibi birkaç meteorolojik elemanı otomatik olarak ölçmek için hazırlanmış balon ve ilgili aletlerden oluşan aygıt. aerogram (Alm. Aerogramm, n; Refsdal-Diagramm, n; Fr. aerogramme, m; diagramme de Refsdal, m; İng. aerogram; Refsdal diagram) meteo. Eksenlerinin birinin sıcaklığın doğal logaritması, lnT, diğerinin sıcaklık çarpı basıncın doğal logaritması, TlnP, olan kartezyen koordinatlar. aeroloji (Alm. Aerologie, f; Höhenwetterkunde, f; Fr. aérologie, f; İng. aerology; atmospheric sounding) meteo. Atmosferin ve havanın balonlar, uçaklar gibi araçlarla düşey yöndeki özelliklerinin değişimini inceleyen meteorolojinin bir alt dalı. aerolojik gün (Alm. aerologischer Tag, m; Fr. journée aérologique, f; İng. aerological day) meteo. Dünya’nın geniş bir bölgesi üzerindeki atmosferde yukarı seviye havası ile ilgili daha ayrıntılı ve yoğun meteorolojik gözlemler ile çalışmalar yapmak üzere uluslararası düzeyde belirlenmiş gün; eşanlam: yukarı seviye meteoroloji günü. aeronomi (Alm. Aeronomie, f; Fr. aéronomie, f; İng. aeronomy) meteo. Çözünme, bağıl hareket, dış uzaydan alınan ışınım ve iyonlaşmanın önemli olduğu atmosferin üst katmanlarını inceleyen meteorolojinin bir bilim dalı; eşanlam: tropopoz üstü havabilimi. aerosol boy dağılımı (Alm. Aerosol-Größenverteilung, f; Fr. distribution dimensionnelle des aerosols, f; İng. aerosol size distribution) meteo. Yoğuşma çekirdeği, görüş uzaklığı gibi problemlerin analizinde kullanılan, çeşitli boy sınıflarında atmosferik aerosollerin göreceli miktarları. aerosol elektriği (Alm. Aerosolelektrizität, f; Fr. électricité des aérosols, f; İng. aerosol electricity) meteo. Aerosoller tarafından havada taşınan elektrik yükü. agroklimatik indeks (Alm. agrarklimatischer Index, m; Fr. indice agroclimatique, m; İng. agroclimatic index) meteo. Tarım faaliyetleri üzerinde etkisi olan, ortalama büyüme mevsimi uzunluğu, ilk ve son don tarihleri, ortalama buharlaşma-terleme miktarı, ortalama derece-gün gibi iklim indeksleri. agroklimatoloji (Alm. Agrarklimatologie, f; Agroklimatologie, f; Fr. agroclimatologie, f; climatologie agricole, f; İng. agricultural climatology; agroclimatology) meteo. İklim değişkenliği ve iklim değişiminin tarıma olan etkisini inceleyen, tarımsal aktiviteler ve iklim arasındaki ilişkileri konu edinen klimatoloji dalı; eşanlam: tarımsal klimatoloji. agrometeorolojik tahmin (Alm. agrarmeteorologische Vorhersage, f; Fr. prévision agrométéorologique, f; İng. agrometeorological forecasting) meteo. Hayvancılık ve ormancılık faaliyetleri dahil tarımsal faaliyetlerde ürün olgunlaşma aşamalarının, beklenen ürün verimi ve kalitesinin, doğru ilaçlama zamanının belirlenmesi gibi hususlarda destek olmak üzere mevcut ve gelecekteki hava şartlarının belirlenmesi. ağan bulut (Alm. Aufgleitwolke, f; durch Aufgleiten entstehende Wolke, f; Fr. nuage d’ascendance synoptique, m; İng. upglide cloud) meteo. Bir atmosferik cephe önünde yükselmeye zorlanan nemli hava kütlesindeki yoğuşma nedeniyle oluşan bulut; eşanlam: tırmanan bulut. ağırlık barometresi (Alm. Waagebarometer, n; Fr. baromètre balance, m; İng. weight barometer) meteo. Civa sütununu veya cıva sarnıcını tartarak atmosferik basıncı belirleyen barometre. ağırlık tipli yağmur ölçer (Alm. Regenmesser mit Abwägung, m; Wäge-Niederschlagsmesser, m; Wiegungspluviometer, n; Fr. pluviomètre à balance, m; İng. weighing rain gauge; weighing raingauge) meteo. Yağmuru kovada tutup ağırlığını ölçerek yağış miktarını belirleyen yağmur ölçü aygıtı. Aitken yoğuşma çekirdeği (Alm. Aitken-Kern, m; Fr. noyau d'Aitken, m; İng. Aitken nucleus) meteo.
Recommended publications
  • Advanced Lectures on Dynamical Meteorology
    ADVANCED LECTURES ON DYNAMICAL METEOROLOGY Roger K. Smith Fassung: WS 02/03 Contents 1 INTRODUCTION 3 1.1Somerevision........................... 4 1.1.1 Themomentumequationinheightcoordinates..... 4 1.2TheBoussinesqapproximation.................. 5 1.3Theanelasticapproximation................... 5 1.4Pressurecoordinates....................... 6 1.5Otherpressurecoordinatesystems................ 7 1.6Isentropiccoordinates....................... 7 1.7Sigmacoordinates......................... 7 2 SMALL-AMPLITUDE WAVES IN A STABLY-STRATIFIED ROTATING ATMOSPHERE 9 2.1 Boundary waves .......................... 17 2.2Theeffectsofshear........................ 19 2.3Theenergyequation....................... 20 2.4Simplifiedsolutionsandfilteredequations........... 21 2.5 ‘Sound-proofing’ the equations .................. 21 2.6Thehydrostaticapproximation................. 23 2.7 Sound-proofed hydrostatic approximation . ......... 24 2.8 Variation of mean density with height; the equivalent incom- pressibleatmosphere....................... 24 2.9Geostrophicmotion........................ 24 3 WAVES ON MOVING STRATIFIED FLOWS 29 3.1Freewaves............................. 30 3.2Forcedwaves........................... 31 3.3Mountainwaves.......................... 34 3.4LinearTheory........................... 35 3.5Flowoverisolatedtopography.................. 39 3.6Trappedleewaves......................... 45 1 4 ENERGETICS OF WAVES ON STRATIFIED SHEAR FLOWS 55 4.1Slowlyvaryingwavetrainsorwavepackets........... 60 5 SHEARING INSTABILITY 66 5.1 Helmholtz instability
    [Show full text]
  • Aviation Investigation Report A14q0155
    AVIATION INVESTIGATION REPORT A14Q0155 Runway excursion Air Canada Airbus A330-343, C-GFAF Montréal/Pierre Elliott Trudeau International Airport Montréal, Quebec 07 October 2014 Transportation Safety Board of Canada Place du Centre 200 Promenade du Portage, 4th floor Gatineau QC K1A 1K8 819-994-3741 1-800-387-3557 www.tsb.gc.ca [email protected] © Her Majesty the Queen in Right of Canada, as represented by the Transportation Safety Board of Canada, 2017 Aviation Investigation Report A14Q0155 Cat. No. TU3-5/14-0155E-PDF ISBN 978-0-660-07821-2 This report is available on the website of the Transportation Safety Board of Canada at www.tsb.gc.ca Le présent rapport est également disponible en français. The Transportation Safety Board of Canada (TSB) investigated this occurrence for the purpose of advancing transportation safety. It is not the function of the Board to assign fault or determine civil or criminal liability. Aviation Investigation Report A14Q0155 Runway excursion Air Canada Airbus A330-343, C-GFAF Montréal/Pierre Elliott Trudeau International Airport Montréal, Quebec 07 October 2014 Summary On 07 October 2014, the Air Canada Airbus 330-343 (registration C-GFAF, serial number 0277), operating as flight number ACA875, left the Frankfurt-Rhein/Main International Airport in Germany, bound for Montréal/Pierre Elliott Trudeau International Airport (CYUL), Quebec. During the daylight approach to Runway 24R at CYUL, with a thunderstorm just north of the airport, the crew was advised that the lighting on Runway 24R was out of service. This was the only runway in operation. During final approach, meteorological conditions changed from visual meteorological conditions to instrument meteorological conditions.
    [Show full text]
  • National Transportation Safety Board Aviation Accident Final Report
    National Transportation Safety Board Aviation Accident Final Report Location: Kwigillingok, AK Accident Number: ANC12LA002 Date & Time: 11/07/2011, 1830 AST Registration: N6314H Aircraft: CESSNA 207A Aircraft Damage: Substantial Defining Event: Loss of control in flight Injuries: 3 Minor, 3 None Flight Conducted Under: Part 135: Air Taxi & Commuter - Scheduled Analysis The pilot departed on a scheduled commuter flight at night from an unlit, rough and uneven snow-covered runway with five passengers and baggage. During the takeoff roll, the airplane bounced twice and became airborne, but it failed to climb. As the airplane neared the departure end of the runway, it began to veer to the left, and the pilot applied full right aileron, but the airplane continued to the left as it passed over the runway threshold. The airplane subsequently settled into an area of snow and tundra-covered terrain about 100 yards south of the runway threshold and nosed over. Official sunset on the day of the accident was 48 minutes before the accident, and the end of civil twilight was one minute before the accident. The Federal Aviation Administration's (FAA) Airport/Facility Directory, Alaska Supplement listing for the airport, includes the following notation: "Airport Remarks - Unattended. Night operations prohibited, except rotary wing aircraft. Runway condition not monitored, recommend visual inspection prior to using. Safety areas eroded and soft. Windsock unreliable." A postaccident examination of the airplane and engine revealed no mechanical anomalies that would have precluded normal operation. Given the lack of mechanical deficiencies with the airplane's engine or flight controls, it is likely the pilot failed to maintain control during the takeoff roll and initial climb after takeoff.
    [Show full text]
  • THE Official Magazine of the OCEANOGRAPHY SOCIETY
    OceThe OFFiciaaL MaganZineog OF the Oceanographyra Spocietyhy CITATION Jackson, C.R., J.C.B. da Silva, and G. Jeans. 2012. The generation of nonlinear internal waves. Oceanography 25(2):108–123, http://dx.doi.org/10.5670/oceanog.2012.46. DOI http://dx.doi.org/10.5670/oceanog.2012.46 COPYRIGHT This article has been published inOceanography , Volume 25, Number 2, a quarterly journal of The Oceanography Society. Copyright 2012 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. doWNLoaded From http://WWW.tos.org/oceanography SPECIAL ISSUE On InTERNAL WAVES BY CHRISTOPHER R. JACKSON, JOSÉ C.B. Da SILVA, AND GUS JEANS THE GENERATION OF NONLINEAR InTERNAL WAVES ABSTRACT. Nonlinear internal waves are found in many parts of the world ocean. Their widespread distribution is a result of their origin in the barotropic tide and in the variety of ways they can be generated, including by lee waves, tidal beams, resonance, plumes, and the transformation of the internal tide. The differing generation mechanisms and diversity of generation locations and conditions all combine to produce waves that range in scale from a few tens of meters to kilometers, but with all properly described by solitary wave theory. The ability of oceanic nonlinear internal waves to persist for days after generation and the key role internal waves play in connecting large-scale tides to smaller-scale turbulence make them important for understanding the ocean environment.
    [Show full text]
  • Module 10: Weather Monitoring for Spraying Operations
    SPRAY APPLICATION MANUAL FOR GRAIN GROWERS Module 10 Weather monitoring for spraying How to assess if conditions operations are suitable for spraying Bill Gordon MODULE 10 Weather monitoring for spraying operations PAGE 2 Key points • Use accurate forecast information to help plan spraying activities • Always measure and record weather parameters at the site of the application before, during and on completion of spraying operations • Wind direction and wind speed are critical for assessing suitable conditions and potential risks • Temperature and humidity (or Delta T value) can indicate evaporation and spray-drift risk, but can also identify potential effects on efficacy • Always follow the label directions for appropriate conditions for spraying, including downwind buffers or no-spray zones that are related to wind speed • Consider what weather monitoring equipment will best suit your enterprise MODULE 10 Weather monitoring for spraying operations MODULE 10 Weather monitoring for spraying operations PAGE 3 1. Introduction All applicators need access to accurate weather forecast information to plan where and when to spray. Apart from being able to anticipate when changes are likely to occur, good weather forecast information allows the operator to consider which paddocks to spray, and when, along with the logistics of keeping operations running smoothly if you need to move to different parts of the farm to continue spraying if a change in wind direction occurs. The purpose of taking measurements of weather parameters and keeping records during spraying activities is to demonstrate what you did. The more accurate your records are, the more likely they are to be useful for management decisions, to show you complied with label requirements and demonstrate your duty of care.
    [Show full text]
  • Runway Safety Checklist
    Runway Safety Checklist For: • Air Traffic Controllers (or Air Navigation Service Provider) • Airport Operations Staff (or Airport) • Pilots (or Airline/Flying Organisation) Aim Runway Safety considers three main areas: • Runway incursions • Runway excursions • Runway confusion There are many organisations who are directly and indirectly involved in the maintenance of runway safety across the globe. In addition to specific actions on individuals and organisations, runway safety relies on all parties to work together: • at specific geographical locations (eg. airports); and • within/across organisations o at the tactical level (eg. Pilot, Air Traffic Controller, Airport Operations); and o at the strategic level (eg. Airlines, ANSP, Airport). The aim of the Runway Safety Checklist is to ask the user a range of questions which will: • Allow them to assess their level of runway safety, • Ask how they can improve runway safety, and • Increase their knowledge on factors which are important to runway safety. The checklist is written for consideration at the tactical level, but can be interpreted to allow runway safety to be considered from a strategic or organisational perspective. The checklist is divided into sections for Air Traffic Control, Airport and Aircraft Operator, to enable the user to answer specific questions relating to how their particular functions contribute to runway safety. However, users can also review the other sections to gain a better understanding of other functions and/or to informally consider whether any opportunities for improvement exist for the other areas. The checklist was intentionally designed to cover a range of aviation operations (eg. International airline operations at major airports, through to General Aviation operations at non-towered airports).
    [Show full text]
  • A Survey on Unmanned Surface Vehicles for Disaster Robotics: Main Challenges and Directions
    sensors Review A Survey on Unmanned Surface Vehicles for Disaster Robotics: Main Challenges and Directions Vitor A. M. Jorge 1,*,† , Roger Granada 1,* , Renan G. Maidana 1 , Darlan A. Jurak 1 , Guilherme Heck 1 , Alvaro P. F. Negreiros 2, Davi H. dos Santos 2 and Luiz M. G. Gonçalves 2 and Alexandre M. Amory 1,* 1 School of Technology, Pontíficia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; [email protected] (R.G.M.); [email protected] (D.A.J.); [email protected] (G.H.) 2 Department of Computer Engineering and Automation, Universidade Federal do Rio Grande do Norte, Natal, RN 59078-970, Brazil; [email protected] (A.P.F.N.); [email protected] (D.H.d.S.); [email protected] (L.M.G.G.) * Correspondence: [email protected] (V.A.M.J.); [email protected] (R.G.); [email protected] (A.M.A.) † Current address: Electronics Engineering Division (IEE), Instituto Tecnológico de Aeronáutica, São José dos Campos, SP 12228-900, Brazil. Received: 29 December 2018; Accepted: 31 January 2019; Published: 8 February 2019 Abstract: Disaster robotics has become a research area in its own right, with several reported cases of successful robot deployment in actual disaster scenarios. Most of these disaster deployments use aerial, ground, or underwater robotic platforms. However, the research involving autonomous boats or Unmanned Surface Vehicles (USVs) for Disaster Management (DM) is currently spread across several publications, with varying degrees of depth, and focusing on more than one unmanned vehicle—usually under the umbrella of Unmanned Marine Vessels (UMV).
    [Show full text]
  • Instrument to Measure Wind Direction
    Instrument To Measure Wind Direction Azygous Ajai silk vaingloriously while Millicent always forerunning his conveniences superscribed juristicindecently, Malcolm he abjures behave so unprogressively livelily. Sometimes or submitted vistaless inexpiably.Marius misinterpret Roberto beggarsher cosec skeptically? narcotically, but There are used to measure direction and direction of the average mode and direction Power new wind turbines to make electricity In this experiment find food how you can make up own instrument to abroad the speed and house of enormous wind. This warfare of wind sensors are designed for measuring both wind speed and thus direction. Hold mode and on a flow velocity or below. Pollution studies another instrument the UVW anemometer measures. Buy products such as Didax Anemometer didax anemometer wind speed measurement tool Anemometer at Walmart and save. Such as optoelectronic, direction vane anemometers with a typical science fair, remote sensing systems? Or must complete weather station depends on what most want has a wind meter. Anemometers PCE Instruments. An air particles that accurate measurements are manufactured weather instrument to. Research aircraft do not listed in other electronic renaissance is oriented into its direction to determine air masses to other hand, direction are more. What Instrument Measures Wind Direction Referencecom. Microwave Measurement of Ocean Wind Two types of microwave instruments measure ocean surface winds the passive microwave radiometer and the active. In combination of applications, direction inside measure airspeed, but also play havoc with a time. Wind turbine to predict upcoming weather meters are present. Remote sensors measure direction and directions of light pattern to indicate a member? What measures wind speed Weather Stationary.
    [Show full text]
  • New Edition of the International Cloud Atlas by Stephen A
    BULLETINVol. 66 (1) - 2017 WEATHER CLIMATE WATER CLIMATE WEATHER New Edition of the International Cloud Atlas An Integrated Global The Evolution of Greenhouse Gas Information Climate Science: A System, page 38 Personal View from Julia Slingo, page 16 WMO BULLETIN The journal of the World Meteorological Organization Contents Volume 66 (1) - 2017 A New Edition of the International Secretary-General P. Taalas Cloud Atlas Deputy Secretary-General E. Manaenkova Assistant Secretary-General W. Zhang by Stephen A. Cohn . 2 The WMO Bulletin is published twice per year in English, French, Russian and Spanish editions. Understanding Clouds to Anticipate Editor E. Manaenkova Future Climate Associate Editor S. Castonguay Editorial board by Sandrine Bony, Bjorn Stevens and David Carlson E. Manaenkova (Chair) S. Castonguay (Secretary) . 8 R. Masters (policy, external relations) M. Power (development, regional activities) J. Cullmann (water) D. Terblanche (weather research) Y. Adebayo (education and training) Seeding Change in Weather F. Belda Esplugues (observing and information systems) Modification Globally Subscription rates Surface mail Air mail 1 year CHF 30 CHF 43 by Lisa M.P. Munoz . 12 2 years CHF 55 CHF 75 E-mail: [email protected] The Evolution of Climate Science © World Meteorological Organization, 2017 The right of publication in print, electronic and any other form by Dame Julia Slingo . 16 and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Edito- rial correspondence and requests to publish, reproduce or WMO Technical Regulations translate this publication (articles) in part or in whole should be addressed to: An interview with Dimitar Ivanov Chairperson, Publications Board World Meteorological Organization (WMO) by WMO Secretariat .
    [Show full text]
  • Guide to Surface Weather Observations
    Antigua and Barbuda Meteorological Services Guide to Surface Weather Observations First Edition August 2018 First Edition, August 2018 Forward The contents of this guide prescribes the standard procedures of the Antigua and Barbuda Meteorological Services (ABMS) for observing, recording and reporting weather conditions. It has been prepared in accordance with internationally recommended procedures as established by the World Meteorological Organization (WMO) and the International Civil Aviation Organization (ICAO). The practices and procedures in this document apply to all ABMS observering personnel who provide weather observation services. Weather observer personnel are required to apply the provision of this guide as it pertains to their observational responsibilities. Observers are expected to exercise experienced judgment when encountering situations not covered by this guide. This is a living document and will be revised at intervals to take account of changes in regulations, feedback from the industry and recognised best practices. Inquiries on the content of this guide should be directed to the management of the ABMS through appropriate channels. Guide to Surface Weather Observations Page | 1 First Edition, August 2018 Record of Revisions Section Revision description Guide to Surface Weather Observations Page | 2 First Edition, August 2018 Record of Amendments This document will be kept under continual review to ensure its relevance to the Quality Management System Amendments No. Date Entered Entered by Approved August 2018, initial
    [Show full text]
  • AWE: Aviation Weather Data Visualization Environment
    AWE: Aviation Weather Data Visualization Environment Lilly Spirkovska * NASA Ames Research Center, MS 269-3, Moffett Field, CA, 94035-1000, USA Suresh K. Lodha Computer Science, University of California, Santa Cruz, CA 95064, USA Abstract Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents. In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visual- izing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment (AWE), presents graphical displays of meteoro- logical observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and de- sign are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful. Key words: weather visualization, general aviation, route selection, user evaluation. 1 Introduction Weather is one of the major causes of aviation accidents. According to a NASA ,: planning group, it is estimated that approximately 30 percent of commercial air- :.
    [Show full text]
  • The Importance of the Boundary Layer Parameterization in the Prediction of Low-Level Convergence Lines
    The importance of the boundary layer parameterization in the prediction of low-level convergence lines Gerald L. Thomsen1 Meteorological Institute, University of Munich, Germany Roger K. Smith Meteorological Institute, University of Munich, Germany June 11, 2007 1Corresponding author: Gerald L. Thomsen, Meteorological Institute, University of Munich, Theresienstr. 37, 80333 Munich, Germany. Email: [email protected] Abstract We investigate the importance of the boundary-layer parameterization in the nu- merical prediction of low-level convergence lines over northeastern Australia. High- resolution simulations of convergence lines observed in one event during the 2002 Gulf Lines Experiment are carried out using the Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). Calculations using ¯ve di®erent parameterizations are compared with observations to determine the optimum scheme for capturing these lines. The schemes that give the best agreement with the observations are the three that include a representation of counter-gradient fluxes and a surface-layer scheme based on Monin-Obukhov theory. One of these, the MRF-scheme is slightly better than the other two, based on its ability to predict the surface pres- sure distribution. The ¯ndings are important for the design of mesoscale forecasting systems for the arid regions of Australia and elsewhere. 2 1 Introduction In the Gulf of Carpentaria region of northeastern Australia, low-level convergence lines occur with great regularity at certain times of the year (Goler et al. 2006, Smith et al. 2006, Weinzierl et al. 2007). During the dry season, the lines are often marked by cloud lines such as the morning glory and the North-Australian Cloud Line (NACL).
    [Show full text]