Partition Coefficients in Mixed Surfactant Systems

Total Page:16

File Type:pdf, Size:1020Kb

Partition Coefficients in Mixed Surfactant Systems Partition coefficients in mixed surfactant systems Application of multicomponent surfactant solutions in separation processes Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation von Tanja Mehling aus Lohr am Main 2013 Gutachter 1. Gutachterin: Prof. Dr.-Ing. Irina Smirnova 2. Gutachterin: Prof. Dr. Gabriele Sadowski Prüfungsausschussvorsitzender Prof. Dr. Raimund Horn Tag der mündlichen Prüfung 20. Dezember 2013 ISBN 978-3-86247-433-2 URN urn:nbn:de:gbv:830-tubdok-12592 Danksagung Diese Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Institut für Thermische Verfahrenstechnik an der TU Hamburg-Harburg. Diese Zeit wird mir immer in guter Erinnerung bleiben. Deshalb möchte ich ganz besonders Frau Professor Dr. Irina Smirnova für die unermüdliche Unterstützung danken. Vielen Dank für das entgegengebrachte Vertrauen, die stets offene Tür, die gute Atmosphäre und die angenehme Zusammenarbeit in Erlangen und in Hamburg. Frau Professor Dr. Gabriele Sadowski danke ich für das Interesse an der Arbeit und die Begutachtung der Dissertation, Herrn Professor Horn für die freundliche Übernahme des Prüfungsvorsitzes. Weiterhin geht mein Dank an das Nestlé Research Center, Lausanne, im Besonderen an Herrn Dr. Ulrich Bobe für die ausgezeichnete Zusammenarbeit und der Bereitstellung von LPC. Den Studenten, die im Rahmen ihrer Abschlussarbeit einen wertvollen Beitrag zu dieser Arbeit geleistet haben, möchte ich herzlichst danken. Für den außergewöhnlichen Einsatz und die angenehme Zusammenarbeit bedanke ich mich besonders bei Linda Kloß, Annette Zewuhn, Dierk Claus, Pierre Bräuer, Heike Mushardt, Zaineb Doggaz und Vanya Omaynikova. Für die freundliche Arbeitsatmosphäre, erfrischenden Kaffeepausen und hilfreichen Gespräche am Institut danke ich meinen Kollegen Carlos, Carsten, Christian, Mohammad, Krishan, Pavel, Raman, René und Sucre. Bei Kai und Lilia bedanke ich mich für die außerordentlich nette Bürogemeinschaft. Sven, Sandra, Philipp, Thomas G. und Evgenia danke ich für die überragende Teamarbeit. Mein besonderer Dank gilt Thomas Ingram für die konstruktive und freundschaftliche Zusammenarbeit. Es hat Spaß gemacht mit euch allen. Bedanken möchte ich mich weiterhin bei Steffi, dafür, dass sie viel mehr tut als ihren Job. Außerdem geht mein Dank an das technische Team Marianne, Ralf und Thomas für die helfenden Hände. Vielen Dank auch an Herrn Carstens und Herrn Block vom Zentrallabor für die unfassbare Geduld, Hilfsbereitschaft und Experimentierfreude bei jedem noch so komplizierten analytischen Problem. Bei Lissi, Judith und Susa bedanke ich mich für die vielseitige Unterstützung, vom Verreisen bis zum Korrekturlesen, bei Eva und Benni für die graphische Unterstützung. Danke an die Volleyballer für die regelmäßige Ablenkung und Ausflüge ins Leben jenseits der Wissen- schaft. Vielen Dank den Kommilitonen, die mir zu unverzichtbaren Freunden geworden sind, danke den lieben Menschen, die mich in Hamburg begleitet haben. Ganz besonders danke ich meiner Familie, auf deren Vertrauen und Unterstützung ich mich immer verlassen kann. Abstract It is their unique surface activity and self-assembly properties that make surfactants suitable for a wide range of applications. Though, the relevant phase equilibria are not yet described sufficiently. Of particular interest are the surfactant/ water phase behavior and the partition coefficient of the target compound between the micelles and the surrounding aqueous phase. Therefore, in this work different methods for the determination of micelle/ water partition coefficients are evaluated. Based on the partition coefficients and considering the surfactant/ water phase behavior the optimization of the decisive process parameters is aimed. The main focus is on the description of the effect of surfactant mixtures, the pH value, and additives to provide the basis for an effective control of processes, utilizing surfactants. It is shown that with the chosen experimental methods, namely the micellar liquid chromatography (MLC), the micellar enhanced ultrafiltration, molar solubilization ratio measurements, and cloud point extraction, micelle/ water partition coefficients in various surfactant systems are determined reliably. Each of these methods is limited regarding the surfactant type and the magnitude of the partition coefficient. Yet, combining different methods, partition coefficients are measured with a high quality in a variety of mixed surfactant solutions. Thus, appropriate techniques for the evaluation of partition coefficients in mixed micellar systems are provided. Further, the thermodynamic model COSMO-RS is evaluated for the prediction of partition coefficients in multicomponent surfactant solutions. It is demonstrated, that the composition of the micelles is the essential parameter for the successful prediction of partition coefficients in mixed surfactant systems. Since these data are difficult to measure, COSMO-RS based methods are introduced, to evaluate the micellar composition. Based on the applied experimental methods and the a priori prediction surfactant based processes can now be designed and optimized, as demonstrated by the following potential implementations: Application of the introduced methods to unknown systems, which are challenging to handle: the partition coefficient of retinol (vitamin A) in a lipid derived surfactant is determined for possible food applications. Optimizing the operating conditions in MLC: based on predicted partition coefficients, the retention behavior of the solutes is determined for different mobile phase compositions. Reactive separation of sugars from an aqueous solution: phenylboronic acid was used as carrier to solubilize sugars in the micelles. Optimized parameters are defined to increase the separation efficiency. Table of Contents 1 Introduction ...................................................................................................................... 1 2 State of the Art ................................................................................................................ 4 2.1 Thermodynamic Fundamentals ................................................................................................ 4 2.2 The COSMO-RS Model ............................................................................................................ 7 2.3 Surfactants and Micelles .........................................................................................................10 2.4 Partition Coefficients in Surfactant Solutions ..........................................................................25 2.5 Applications of Surfactants in Separation Processes .............................................................31 3 Material and Methods .................................................................................................... 45 3.1 Chemicals ...............................................................................................................................45 3.2 Experimental Methods ............................................................................................................47 3.3 Prediction with COSMO-RS ....................................................................................................53 4 Results and Discussion ................................................................................................. 58 4.1 Determination of Partition Coefficients in Surfactant Solutions ..............................................58 4.2 Influence of Alcohols on the Partition Equilibrium ...................................................................66 4.3 Partition Coefficients of Dissociated Solutes ..........................................................................71 4.4 Partition Coefficients in Mixed Micellar Solutions ...................................................................74 4.5 Partition Coefficients in Food Applications..............................................................................83 4.6 Prediction of the Retention Behavior in MLC ..........................................................................88 4.7 Reactive Micellar Separation of Sugars ..................................................................................90 5 Conclusions ................................................................................................................... 99 References ......................................................................................................................... 102 Directories .......................................................................................................................... 124 Appendix ............................................................................................................................ 131 1 Introduction „It‘s more effective, it’s more efficient, it’s more elegant, it’s simply better chemistry.” That is how Paul Anastas describes the term ”green chemistry“, which he introduced in the early 1990th.1 Since then green chemistry became the buzzword for sustainability in chemical research and industry. Its relevance becomes obvious considering the increasing amount of publications related to green chemistry in recent years.2 Even the implementation in industry was realized, in particular the pharmaceutical industry reduced the environmental factor (E- factor) significantly and thus successfully met Anastas’ slogan. However, green chemistry
Recommended publications
  • Modelling and Numerical Simulation of Phase Separation in Polymer Modified Bitumen by Phase- Field Method
    http://www.diva-portal.org Postprint This is the accepted version of a paper published in Materials & design. This paper has been peer- reviewed but does not include the final publisher proof-corrections or journal pagination. Citation for the original published paper (version of record): Zhu, J., Lu, X., Balieu, R., Kringos, N. (2016) Modelling and numerical simulation of phase separation in polymer modified bitumen by phase- field method. Materials & design, 107: 322-332 http://dx.doi.org/10.1016/j.matdes.2016.06.041 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188830 ACCEPTED MANUSCRIPT Modelling and numerical simulation of phase separation in polymer modified bitumen by phase-field method Jiqing Zhu a,*, Xiaohu Lu b, Romain Balieu a, Niki Kringos a a Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Brinellvägen 23, SE-100 44 Stockholm, Sweden b Nynas AB, SE-149 82 Nynäshamn, Sweden * Corresponding author. Email: [email protected] (J. Zhu) Abstract In this paper, a phase-field model with viscoelastic effects is developed for polymer modified bitumen (PMB) with the aim to describe and predict the PMB storage stability and phase separation behaviour. The viscoelastic effects due to dynamic asymmetry between bitumen and polymer are represented in the model by introducing a composition-dependent mobility coefficient. A double-well potential for PMB system is proposed on the basis of the Flory-Huggins free energy of mixing, with some simplifying assumptions made to take into account the complex chemical composition of bitumen.
    [Show full text]
  • Understanding Variation in Partition Coefficient, Kd, Values: Volume II
    United States Office of Air and Radiation EPA 402-R-99-004B Environmental Protection August 1999 Agency UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, Kd, VALUES Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, Kd, VALUES Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium August 1999 A Cooperative Effort By: Office of Radiation and Indoor Air Office of Solid Waste and Emergency Response U.S. Environmental Protection Agency Washington, DC 20460 Office of Environmental Restoration U.S. Department of Energy Washington, DC 20585 NOTICE The following two-volume report is intended solely as guidance to EPA and other environmental professionals. This document does not constitute rulemaking by the Agency, and cannot be relied on to create a substantive or procedural right enforceable by any party in litigation with the United States. EPA may take action that is at variance with the information, policies, and procedures in this document and may change them at any time without public notice. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government. ii FOREWORD Understanding the long-term behavior of contaminants in the subsurface is becoming increasingly more important as the nation addresses groundwater contamination. Groundwater contamination is a national concern as about 50 percent of the United States population receives its drinking water from groundwater.
    [Show full text]
  • Phase Diagrams and Phase Separation
    Phase Diagrams and Phase Separation Books MF Ashby and DA Jones, Engineering Materials Vol 2, Pergamon P Haasen, Physical Metallurgy, G Strobl, The Physics of Polymers, Springer Introduction Mixing two (or more) components together can lead to new properties: Metal alloys e.g. steel, bronze, brass…. Polymers e.g. rubber toughened systems. Can either get complete mixing on the atomic/molecular level, or phase separation. Phase Diagrams allow us to map out what happens under different conditions (specifically of concentration and temperature). Free Energy of Mixing Entropy of Mixing nA atoms of A nB atoms of B AM Donald 1 Phase Diagrams Total atoms N = nA + nB Then Smix = k ln W N! = k ln nA!nb! This can be rewritten in terms of concentrations of the two types of atoms: nA/N = cA nB/N = cB and using Stirling's approximation Smix = -Nk (cAln cA + cBln cB) / kN mix S AB0.5 This is a parabolic curve. There is always a positive entropy gain on mixing (note the logarithms are negative) – so that entropic considerations alone will lead to a homogeneous mixture. The infinite slope at cA=0 and 1 means that it is very hard to remove final few impurities from a mixture. AM Donald 2 Phase Diagrams This is the situation if no molecular interactions to lead to enthalpic contribution to the free energy (this corresponds to the athermal or ideal mixing case). Enthalpic Contribution Assume a coordination number Z. Within a mean field approximation there are 2 nAA bonds of A-A type = 1/2 NcAZcA = 1/2 NZcA nBB bonds of B-B type = 1/2 NcBZcB = 1/2 NZ(1- 2 cA) and nAB bonds of A-B type = NZcA(1-cA) where the factor 1/2 comes in to avoid double counting and cB = (1-cA).
    [Show full text]
  • Phase Separation Phenomena in Solutions of Polysulfone in Mixtures of a Solvent and a Nonsolvent: Relationship with Membrane Formation*
    Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nonsolvent: relationship with membrane formation* J. G. Wijmans, J. Kant, M. H. V. Mulder and C. A. Smolders Department of Chemical Technology, Twente University of Technology, PO Box 277, 7500 AE Enschede, The Netherlands (Received 22 October 1984) The phase separation phenomena in ternary solutions of polysulfone (PSI) in mixtures of a solvent and a nonsolvent (N,N-dimethylacetamide (DMAc) and water, in most cases) are investigated. The liquid-liquid demixing gap is determined and it is shown that its location in the ternary phase diagram is mainly determined by the PSf-nonsolvent interaction parameter. The critical point in the PSf/DMAc/water system lies at a high polymer concentration of about 8~o by weight. Calorimetric measurements with very concentrated PSf/DMAc/water solutions (prepared through liquid-liquid demixing, polymer concentration of the polymer-rich phase up to 60%) showed no heat effects in the temperature range of -20°C to 50°C. It is suggested that gelation in PSf systems is completely amorphous. The results are incorporated into a discussion of the formation of polysulfone membranes. (Keywords: polysulfone; solutions; liquid-liquid demixing; crystallization; membrane structures; membrane formation) INTRODUCTION THEORY The field of membrane filtration covers a broad range of Membrane formation different separation techniques such as: hyperfiltration, In the phase inversion process a membrane is made by reverse osmosis, ultrafiltration, microfiltration, gas sepa- casting a polymer solution on a support and then bringing ration and pervaporation. Each process makes use of the solution to phase separation by means of solvent specific membranes which must be suited for the desired outflow and/or nonsolvent inflow.
    [Show full text]
  • Henry's Law Constants and Micellar Partitioning of Volatile Organic
    38 J. Chem. Eng. Data 2000, 45, 38-47 Henry’s Law Constants and Micellar Partitioning of Volatile Organic Compounds in Surfactant Solutions Leland M. Vane* and Eugene L. Giroux United States Environmental Protection Agency, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268 Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor- liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace experiments were performed to quantify the effect of four anionic surfactants and one nonionic surfactant on the Henry’s law constants of 1,1,1-trichloroethane, trichloroethylene, toluene, and tetrachloroethylene at temperatures ranging from 30 to 60 °C. Although the Henry’s law constant increased markedly with temperature for all solutions, the amount of VOC in micelles relative to that in the extramicellar region was comparatively insensitive to temperature. The effect of adding sodium chloride and isopropyl alcohol as cosolutes also was evaluated. Significant partitioning of VOCs into micelles was observed, with the micellar partitioning coefficient (tendency to partition from water into micelle) increasing according to the following series: trichloroethane < trichloroethylene < toluene < tetrachloroethylene. The addition of surfactant was capable of reversing the normal sequence observed in Henry’s law constants for these four VOCs. Introduction have long taken advantage of the high Hc values for these compounds. In the engineering field, the most common Vast quantities of organic solvents have been disposed method of dealing with chlorinated solvents dissolved in of in a manner which impacts human health and the groundwater is “pump & treat”swithdrawal of ground- environment.
    [Show full text]
  • Phase Transitions in Multicomponent Systems
    Physics 127b: Statistical Mechanics Phase Transitions in Multicomponent Systems The Gibbs Phase Rule Consider a system with n components (different types of molecules) with r phases in equilibrium. The state of each phase is defined by P,T and then (n − 1) concentration variables in each phase. The phase equilibrium at given P,T is defined by the equality of n chemical potentials between the r phases. Thus there are n(r − 1) constraints on (n − 1)r + 2 variables. This gives the Gibbs phase rule for the number of degrees of freedom f f = 2 + n − r A Simple Model of a Binary Mixture Consider a condensed phase (liquid or solid). As an estimate of the coordination number (number of nearest neighbors) think of a cubic arrangement in d dimensions giving a coordination number 2d. Suppose there are a total of N molecules, with fraction xB of type B and xA = 1 − xB of type A. In the mixture we assume a completely random arrangement of A and B. We just consider “bond” contributions to the internal energy U, given by εAA for A − A nearest neighbors, εBB for B − B nearest neighbors, and εAB for A − B nearest neighbors. We neglect other contributions to the internal energy (or suppose them unchanged between phases, etc.). Simple counting gives the internal energy of the mixture 2 2 U = Nd(xAεAA + 2xAxBεAB + xBεBB) = Nd{εAA(1 − xB) + εBBxB + [εAB − (εAA + εBB)/2]2xB(1 − xB)} The first two terms in the second expression are just the internal energy of the unmixed A and B, and so the second term, depending on εmix = εAB − (εAA + εBB)/2 can be though of as the energy of mixing.
    [Show full text]
  • Grade 6 Science Mechanical Mixtures Suspensions
    Grade 6 Science Week of November 16 – November 20 Heterogeneous Mixtures Mechanical Mixtures Mechanical mixtures have two or more particle types that are not mixed evenly and can be seen as different kinds of matter in the mixture. Obvious examples of mechanical mixtures are chocolate chip cookies, granola and pepperoni pizza. Less obvious examples might be beach sand (various minerals, shells, bacteria, plankton, seaweed and much more) or concrete (sand gravel, cement, water). Mechanical mixtures are all around you all the time. Can you identify any more right now? Suspensions Suspensions are mixtures that have solid or liquid particles scattered around in a liquid or gas. Common examples of suspensions are raw milk, salad dressing, fresh squeezed orange juice and muddy water. If left undisturbed the solids or liquids that are in the suspension may settle out and form layers. You may have seen this layering in salad dressing that you need to shake up before using them. After a rain fall the more dense particles in a mud puddle may settle to the bottom. Milk that is fresh from the cow will naturally separate with the cream rising to the top. Homogenization breaks up the fat molecules of the cream into particles small enough to stay suspended and this stable mixture is now a colloid. We will look at colloids next. Solution, Suspension, and Colloid: https://youtu.be/XEAiLm2zuvc Colloids Colloids: https://youtu.be/MPortFIqgbo Colloids are two phase mixtures. Having two phases means colloids have particles of a solid, liquid or gas dispersed in a continuous phase of another solid, liquid, or gas.
    [Show full text]
  • Introduction to Phase Diagrams*
    ASM Handbook, Volume 3, Alloy Phase Diagrams Copyright # 2016 ASM InternationalW H. Okamoto, M.E. Schlesinger and E.M. Mueller, editors All rights reserved asminternational.org Introduction to Phase Diagrams* IN MATERIALS SCIENCE, a phase is a a system with varying composition of two com- Nevertheless, phase diagrams are instrumental physically homogeneous state of matter with a ponents. While other extensive and intensive in predicting phase transformations and their given chemical composition and arrangement properties influence the phase structure, materi- resulting microstructures. True equilibrium is, of atoms. The simplest examples are the three als scientists typically hold these properties con- of course, rarely attained by metals and alloys states of matter (solid, liquid, or gas) of a pure stant for practical ease of use and interpretation. in the course of ordinary manufacture and appli- element. The solid, liquid, and gas states of a Phase diagrams are usually constructed with a cation. Rates of heating and cooling are usually pure element obviously have the same chemical constant pressure of one atmosphere. too fast, times of heat treatment too short, and composition, but each phase is obviously distinct Phase diagrams are useful graphical representa- phase changes too sluggish for the ultimate equi- physically due to differences in the bonding and tions that show the phases in equilibrium present librium state to be reached. However, any change arrangement of atoms. in the system at various specified compositions, that does occur must constitute an adjustment Some pure elements (such as iron and tita- temperatures, and pressures. It should be recog- toward equilibrium. Hence, the direction of nium) are also allotropic, which means that the nized that phase diagrams represent equilibrium change can be ascertained from the phase dia- crystal structure of the solid phase changes with conditions for an alloy, which means that very gram, and a wealth of experience is available to temperature and pressure.
    [Show full text]
  • Gp-Cpc-01 Units – Composition – Basic Ideas
    GP-CPC-01 UNITS – BASIC IDEAS – COMPOSITION 11-06-2020 Prof.G.Prabhakar Chem Engg, SVU GP-CPC-01 UNITS – CONVERSION (1) ➢ A two term system is followed. A base unit is chosen and the number of base units that represent the quantity is added ahead of the base unit. Number Base unit Eg : 2 kg, 4 meters , 60 seconds ➢ Manipulations Possible : • If the nature & base unit are the same, direct addition / subtraction is permitted 2 m + 4 m = 6m ; 5 kg – 2.5 kg = 2.5 kg • If the nature is the same but the base unit is different , say, 1 m + 10 c m both m and the cm are length units but do not represent identical quantity, Equivalence considered 2 options are available. 1 m is equivalent to 100 cm So, 100 cm + 10 cm = 110 cm 0.01 m is equivalent to 1 cm 1 m + 10 (0.01) m = 1. 1 m • If the nature of the quantity is different, addition / subtraction is NOT possible. Factors used to check equivalence are known as Conversion Factors. GP-CPC-01 UNITS – CONVERSION (2) • For multiplication / division, there are no such restrictions. They give rise to a set called derived units Even if there is divergence in the nature, multiplication / division can be carried out. Eg : Velocity ( length divided by time ) Mass flow rate (Mass divided by time) Mass Flux ( Mass divided by area (Length 2) – time). Force (Mass * Acceleration = Mass * Length / time 2) In derived units, each unit is to be individually converted to suit the requirement Density = 500 kg / m3 .
    [Show full text]
  • Estimation of Distribution Coefficients from the Partition Coefficient and Pka Douglas C
    Estimation of Distribution Coefficients from the Partition Coefficient and pKa Douglas C. Scott* and Jeffrey W. Clymer he use of partition coefficients has received much atten- tion in the assessment of relative lipophilicity and hy- drophilicity of a compound. Recent advances in com- putational chemistry have enabled scientists to estimate Tpartition coefficients for neutral species very easily. For ioniz- able species, the distribution coefficient is a more relevant pa- rameter; however, less effort has been applied to its assessment. Knowledge of the distribution coefficient and pKa is important The authors discuss for the basic characterization of a compound (1), particularly the relationship when assessing the compound’s potential to penetrate biolog- between the partition ical or lipid barriers (2). In addition, the majority of compounds coefficient and the are passively absorbed and a large number of new chemical en- distribution coefficient tities fail in the development stages because of related phar- and relate the two with the use of equations. macokinetic reasons (3). Assessing a compound’s relative lipophilicity dictates a formulation strategy that will ensure ab- To accurately explain this relationship, the sorption or tissue penetration, which ultimately will lead to de- authors consider the partitioning of both the livery of the drug to the site of action. In recognition of the ionized and un-ionized species.The presence value of knowing the extent of a drug’s gastrointestinal per- of both species in the oil phase necessitates a meation along with other necessary parameters, FDA has is- dissociative equilibrium among these species sued guidance for a waiver of in vivo bioavailability and bio- such as that in the water phase.
    [Show full text]
  • Chapter 9: Other Topics in Phase Equilibria
    Chapter 9: Other Topics in Phase Equilibria This chapter deals with relations that derive in cases of equilibrium between combinations of two co-existing phases other than vapour and liquid, i.e., liquid-liquid, solid-liquid, and solid- vapour. Each of these phase equilibria may be employed to overcome difficulties encountered in purification processes that exploit the difference in the volatilities of the components of a mixture, i.e., by vapour-liquid equilibria. As with the case of vapour-liquid equilibria, the objective is to derive relations that connect the compositions of the two co-existing phases as functions of temperature and pressure. 9.1 Liquid-liquid Equilibria (LLE) 9.1.1 LLE Phase Diagrams Unlike gases which are miscible in all proportions at low pressures, liquid solutions (binary or higher order) often display partial immiscibility at least over certain range of temperature, and composition. If one attempts to form a solution within that certain composition range the system splits spontaneously into two liquid phases each comprising a solution of different composition. Thus, in such situations the equilibrium state of the system is two phases of a fixed composition corresponding to a temperature. The compositions of two such phases, however, change with temperature. This typical phase behavior of such binary liquid-liquid systems is depicted in fig. 9.1a. The closed curve represents the region where the system exists Fig. 9.1 Phase diagrams for a binary liquid system showing partial immiscibility in two phases, while outside it the state is a homogenous single liquid phase. Take for example, the point P (or Q).
    [Show full text]
  • Simple, Self-Assembling, Single-Site Model Amphiphile for Water-Free Simulation of Lyotropic Phases
    Simple, self-assembling, single-site model amphiphile for water-free simulation of lyotropic phases Somajit Dey and Jayashree Saha Department of Physics, University of Calcutta, 92, A.P.C Road, Kolkata-700009, India, Email: [email protected] Computationally, low-resolution coarse-grained models provide the most viable means for simulating the large length and time scales associated with mesoscopic phenomena. Moreover, since lyotropic phases in solution may contain high solvent to amphiphile ratio, implicit solvent models are appropriate for many purposes. By modifying the well-known Gay-Berne potential with an imposed uni-directionality and a longer range, we have come to a simple single-site model amphiphile that can rapidly self-assemble to give diverse lyotropic phases without the explicit incorporation of solvent particles. The model represents a tuneable packing parameter that manifests in the spontaneous curvature of amphiphile aggregates. Apart from large scale simulations (e.g. the study of self-assembly, amphiphile mixing, domain formation etc.) this novel, non-specific model may be useful for suggestive pilot projects with modest computational resources. No such self-assembling, single-site amphiphile model has been reported previously in the literature to the best of our knowledge. 1 Introduction by allowing larger time steps [10]. It also reduces the number of Surfactants or “surface active agents” are so called because of their site-site interactions for a given number of macromolecules ability to reduce the surface tension of liquids. Macromolecules implying a larger length scale. However, the small size of CG water that act as surfactants in water generally consist of a hydrophilic molecules compared to the amphiphiles, combined with their (water-loving) head linked to one or more hydrophobic (water- number, limit the scales of a simulation.
    [Show full text]