POPULATION STATUS of the ENDEMIC SAN FRANCISCO DAMSELFLY {Ischnura Gemina)

Total Page:16

File Type:pdf, Size:1020Kb

POPULATION STATUS of the ENDEMIC SAN FRANCISCO DAMSELFLY {Ischnura Gemina) POPULATION STATUS OF THE ENDEMIC SAN FRANCISCO DAMSELFLY {Ischnura gemina) A thesis submitted to the faculty of San Francisco State University AS In partial fulfillment of the requirements for 3 G the Degree 2 0 l b B f o L Masters of Science * P6s In Biology: Conservation Biology by Tania Nurith Poliak San Francisco, California January, 2016 Copyright by Tania Nurith Poliak 2016 CERTIFICATION OF APPROVAL I certify that I have read POPULATION STATUS OF THE ENDEMIC SAN FRANCISCO DAMSELFLY(Ischnura gemina) by Tania Nurith Poliak and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirement for the degree Master of Science in Biology. Conservation Biology at San Francisco State University. C. ----- John E. Hafemik Jr., Ph.D. Professor Emeritus of Biology Professor of Biology Curator Emeritus Department of Entomology California Academy of Sciences POPULATION STATUS OF THE ENDEMIC SAN FRANCISCO DAMSELFLY {Ischnura gemina) Tania Nurith Poliak San Francisco, California 2016 Ischnura gemina, the San Francisco forktail damselfly (Family Coenagriortidae) is endemic to the San Francisco Bay area, and is identified by the International Union for Conservation of Nature as a vulnerable species. Research from the late 1970s through the 1990s indicates a decline in the species’ populations. This study completes a comprehensive survey for I. gemina, and the closely related species I. denticollis, to determine the status of both species in areas previously surveyed. The study also seeks to determine the extent that various habitat variables, such as water chemistry and vegetation structure, predict the presence of I. gemina. Data from this study show a dramatic decline in populations of I. gemina since the 1980s and 1990s. In addition, results from this study indicate that I. gemina persists in sites with cooler temperatures and lower salinity than do other ischnuran or coenagrionid species. Finally, this study considers past research related to species conservation in light of climate change, and assesses the long-term viability of I. gemina under climate change. Of key interest is the tolerance for I. gemina under increasing temperatures and sea level rise. The goal for this research is to provide information on the current status of I. gemina and recommendations for its long-term conservation. I certify that the Abstract is a correct representation of the content of this thesis. Chair, Thesis Committee Date ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. John Hafernik, for opening the door to graduate school, introducing me to the world of the “little creatures”, and his support and patience throughout the years of my study. I also thank my other committee members, Dr. Edward Connor, who was instrumental in helping me with the statistics to analyze and understand my data, and Dr. Dave Kavanaugh for his review and guidance. A special thank you to Dr. Misha Leong for her help with R and my understanding of statistics. My field research would not have been possible without the permission of the following landowners for access to their properties; Wendy Eliot, Conservation Director and Shanti Wright, Stewardship Project Manager, Sonoma Land Trust - Estero Americana Preserve; Ben Becker, Director and Marine Ecologist, Pacific Coast Science and Learning Center, National Park Service - Point Reyes National Seashore; Darren Fong, Aquatic Ecologist and Kristen Ward, Ecologist, National Park Service - Golden Gate National Recreation Area; Gary Ingram, Superintendent, Oakland Metropolitan Golf Course; George Gross, Chanslor Ranch; Jackie Sones, Research Coordinator, Bodega Marine Reserve; Janet Klein, Natural Resources Program Manager and Laurie Offenbach. Administrative Assistant, Marin Municipal Watershed District; Nixon Lam, Environmental Affairs, San Francisco Airport and Karen Swain, Swain Biology; Mike Blondino, Parks and Landscape Manager, City of San Mateo; Lisa Wayne, San Francisco Natural Areas Program; J. Rogers, Alameda County Flood Control District; Keenan Foster, Sonoma County Water District; Kathy Biggs. Purchase of field equipment was supported by funds from a San Francisco State University IRA Student Research Grant. My gratitude and thanks to friends who helped me with field work and kept me company on long fields days, and occasionally rescuing me from the mud: Martha Berthelsen, Casey Hubble, Chris Quock, Tamara Williams, Barbara Janis, and Chad Moore. TABLE OF CONTENTS List of Tables........................................................................................................................................... vii List of Figures....................................................................................................................................... viii List of Appendices................................................................................................................................... ix Introduction..................................... 1 Distribution of Ischnura gemina........................................................................................................2 Habitat Characteristics........................................................................................................................6 Methods...................... 7 Population Surveys............................................................................................................................. 7 Habitat Characteristics......................................................................................................................11 Results.....................................................................................................................................................15 Population Surveys........................................................................................................................... 15 Habitat Characteristics......................................................................................................................16 Habitat Modeling..............................................................................................................................24 Discussion.................. 26 Population Status and Trends...........................................................................................................26 Potential Causes of Species Decline............................................................................................... 27 Species Persistence under Future Climate Conditions...................................................................36 Conclusions and Recommendations.................................................................................................... 40 References............................... 45 LIST OF TABLES Table Page 1. Water Flow and Site Substrate Characteristics...................................................................... 17 2. Water Chemistry Values ....................................................................................................... 17 3. Significance for means of site chemistry...............................................................................18 4. F-test values for site chemistry values................................................................................... 19 vii LIST OF FIGURES Figures Page 1. Historic distribution of Ischnura gemina from museum records.......................................... 3 2. Distribution of Ischnura gemina 1979 -- 1997)......................................................................3 3. Survey locations for Ischnura gemina (1980s- 1990s surveys and 2011)......................... 5 4. Additional survey locations for Ischnura gemina 2012....................................................... 13 5. Schematic of Vegetation Transects....................................................................................... 14 6. PCA test results.......................................................................................................................15 7. Ischnura gemina locations 2011/2012...................................................................................16 8. Percent cover of aquatic transects for I. gemina sites.......................................................... 20 9. Percent cover of upland transects for I. gemina sites.......................................................... 21 10. Percent cover of aquatic transects for/, denticollis sites...................................................22 11. Percent cover of upland transects for I. denticollis sites....................................................23 12. Comparison of aquatic transects for sites with I. gemina and I. denticollis.................. 24 13. Comparison of upland transects for sites with 1. gemina and I. denticollis.................. 25 14. Percentage of sites with I. gemina 1985 --2012............................................. 27 15. Mean county maximum temperature 1970 -- 2012 ........................................................... 38 viii LIST OF APPENDICES Appendices Page 1. Prescence/Absence of Ischnura gemina........................................................................................51 2. Water Chemistry Values................................................................................................................57 3. Representative Photos of sites with I. gemina and I. denticollis..................................................61 1 INTRODUCTION Species of the order Odonata (dragonflies
Recommended publications
  • The Impacts of Urbanisation on the Ecology and Evolution of Dragonflies and Damselflies (Insecta: Odonata)
    The impacts of urbanisation on the ecology and evolution of dragonflies and damselflies (Insecta: Odonata) Giovanna de Jesús Villalobos Jiménez Submitted in accordance with the requirements for the degree of Doctor of Philosophy (Ph.D.) The University of Leeds School of Biology September 2017 The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The work in Chapter 1 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G., Dunn, A.M. & Hassall, C., 2016. Dragonflies and damselflies (Odonata) in urban ecosystems: a review. Eur J Entomol, 113(1): 217–232. I was responsible for the collection and analysis of the data with advice from co- authors, and was solely responsible for the literature review, interpretation of the results, and for writing the manuscript. All co-authors provided comments on draft manuscripts. The work in Chapter 2 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G. & Hassall, C., 2017. Effects of the urban heat island on the phenology of Odonata in London, UK. International Journal of Biometeorology, 61(7): 1337–1346. I was responsible for the data analysis, interpretation of results, and for writing and structuring the manuscript. Data was provided by the British Dragonfly Society (BDS). The co-author provided advice on the data analysis, and also provided comments on draft manuscripts.
    [Show full text]
  • Dragonf Lies and Damself Lies of Europe
    Dragonf lies and Damself lies of Europe A scientific approach to the identification of European Odonata without capture A simple yet detailed guide suitable both for beginners and more expert readers who wish to improve their knowledge of the order Odonata. This book contains images and photographs of all the European species having a stable population, with chapters about their anatomy, biology, behaviour, distribution range and period of flight, plus basic information about the vagrants with only a few sightings reported. On the whole, 143 reported species and over lies of Europe lies and Damself Dragonf 600 photographs are included. Published by WBA Project Srl CARLO GALLIANI, ROBERTO SCHERINI, ALIDA PIGLIA © 2017 Verona - Italy WBA Books ISSN 1973-7815 ISBN 97888903323-6-4 Supporting Institutions CONTENTS Preface 5 © WBA Project - Verona (Italy) Odonates: an introduction to the order 6 WBA HANDBOOKS 7 Dragonflies and Damselflies of Europe Systematics 7 ISSN 1973-7815 Anatomy of Odonates 9 ISBN 97888903323-6-4 Biology 14 Editorial Board: Ludivina Barrientos-Lozano, Ciudad Victoria (Mexico), Achille Casale, Sassari Mating and oviposition 23 (Italy), Mauro Daccordi, Verona (Italy), Pier Mauro Giachino, Torino (Italy), Laura Guidolin, Oviposition 34 Padova (Italy), Roy Kleukers, Leiden (Holland), Bruno Massa, Palermo (Italy), Giovanni Onore, Quito (Ecuador), Giuseppe Bartolomeo Osella, l’Aquila (Italy), Stewart B. Peck, Ottawa (Cana- Predators and preys 41 da), Fidel Alejandro Roig, Mendoza (Argentina), Jose Maria Salgado Costas, Leon (Spain), Fabio Pathogens and parasites 45 Stoch, Roma (Italy), Mauro Tretiach, Trieste (Italy), Dante Vailati, Brescia (Italy). Dichromism, androchromy and secondary homochromy 47 Editor-in-chief: Pier Mauro Giachino Particular situations in the daily life of a dragonfly 48 Managing Editor: Gianfranco Caoduro Warming up the wings 50 Translation: Alida Piglia Text revision: Michael L.
    [Show full text]
  • East Gippsland, Victoria
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Appendix A: Common and Scientific Names for Fish and Wildlife Species Found in Idaho
    APPENDIX A: COMMON AND SCIENTIFIC NAMES FOR FISH AND WILDLIFE SPECIES FOUND IN IDAHO. How to Read the Lists. Within these lists, species are listed phylogenetically by class. In cases where phylogeny is incompletely understood, taxonomic units are arranged alphabetically. Listed below are definitions for interpreting NatureServe conservation status ranks (GRanks and SRanks). These ranks reflect an assessment of the condition of the species rangewide (GRank) and statewide (SRank). Rangewide ranks are assigned by NatureServe and statewide ranks are assigned by the Idaho Conservation Data Center. GX or SX Presumed extinct or extirpated: not located despite intensive searches and virtually no likelihood of rediscovery. GH or SH Possibly extinct or extirpated (historical): historically occurred, but may be rediscovered. Its presence may not have been verified in the past 20–40 years. A species could become SH without such a 20–40 year delay if the only known occurrences in the state were destroyed or if it had been extensively and unsuccessfully looked for. The SH rank is reserved for species for which some effort has been made to relocate occurrences, rather than simply using this status for all elements not known from verified extant occurrences. G1 or S1 Critically imperiled: at high risk because of extreme rarity (often 5 or fewer occurrences), rapidly declining numbers, or other factors that make it particularly vulnerable to rangewide extinction or extirpation. G2 or S2 Imperiled: at risk because of restricted range, few populations (often 20 or fewer), rapidly declining numbers, or other factors that make it vulnerable to rangewide extinction or extirpation. G3 or S3 Vulnerable: at moderate risk because of restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors that make it vulnerable to rangewide extinction or extirpation.
    [Show full text]
  • Comprehensive Conservation Plan Benton Lake National Wildlife
    Glossary accessible—Pertaining to physical access to areas breeding habitat—Environment used by migratory and activities for people of different abilities, es- birds or other animals during the breeding sea- pecially those with physical impairments. son. A.D.—Anno Domini, “in the year of the Lord.” canopy—Layer of foliage, generally the uppermost adaptive resource management (ARM)—The rigorous layer, in a vegetative stand; mid-level or under- application of management, research, and moni- story vegetation in multilayered stands. Canopy toring to gain information and experience neces- closure (also canopy cover) is an estimate of the sary to assess and change management activities. amount of overhead vegetative cover. It is a process that uses feedback from research, CCP—See comprehensive conservation plan. monitoring, and evaluation of management ac- CFR—See Code of Federal Regulations. tions to support or change objectives and strate- CO2—Carbon dioxide. gies at all planning levels. It is also a process in Code of Federal Regulations (CFR)—Codification of which the Service carries out policy decisions the general and permanent rules published in the within a framework of scientifically driven ex- Federal Register by the Executive departments periments to test predictions and assumptions and agencies of the Federal Government. Each inherent in management plans. Analysis of re- volume of the CFR is updated once each calendar sults helps managers decide whether current year. management should continue as is or whether it compact—Montana House bill 717–Bill to Ratify should be modified to achieve desired conditions. Water Rights Compact. alternative—Reasonable way to solve an identi- compatibility determination—See compatible use.
    [Show full text]
  • Odonatological Abstract Service
    Odonatological Abstract Service published by the INTERNATIONAL DRAGONFLY FUND (IDF) in cooperation with the WORLDWIDE DRAGONFLY ASSOCIATION (WDA) Editors: Dr. Klaus Reinhardt, Dept Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK. Tel. ++44 114 222 0105; E-mail: [email protected] Martin Schorr, Schulstr. 7B, D-54314 Zerf, Germany. Tel. ++49 (0)6587 1025; E-mail: [email protected] Dr. Milen Marinov, 7/160 Rossall Str., Merivale 8014, Christchurch, New Zealand. E-mail: [email protected] Published in Rheinfelden, Germany and printed in Trier, Germany. ISSN 1438-0269 years old) than old beaver ponds. These studies have 1997 concluded, based on waterfowl use only, that new bea- ver ponds are more productive for waterfowl than old 11030. Prejs, A.; Koperski, P.; Prejs, K. (1997): Food- beaver ponds. I tested the hypothesis that productivity web manipulation in a small, eutrophic Lake Wirbel, Po- in beaver ponds, in terms of macroinvertebrates and land: the effect of replacement of key predators on epi- water quality, declined with beaver pond succession. In phytic fauna. Hydrobiologia 342: 377-381. (in English) 1993 and 1994, fifteen and nine beaver ponds, respec- ["The effect of fish removal on the invertebrate fauna tively, of three different age groups (new, mid-aged, old) associated with Stratiotes aloides was studied in a shal- were sampled for invertebrates and water quality to low, eutrophic lake. The biomass of invertebrate preda- quantify differences among age groups. No significant tors was approximately 2.5 times higher in the inverte- differences (p < 0.05) were found in invertebrates or brate dominated year (1992) than in the fish-dominated water quality among different age classes.
    [Show full text]
  • The Value of Urban Ponds for Odonata and Plant Biodiversity
    The Value of Urban Ponds for Odonata and Plant Biodiversity Mary Ann Perron Thesis submitted to the School of Graduate Studies and Research University of Ottawa In partial fulfillment of the requirements for the Doctor of Philosophy (Ph.D.) degree in the Department of Biology, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5 Thèse soumise à l’École des Études Supérieures et de la Recherche Université d’Ottawa En vue de l’obtention du diplôme de doctorat (Ph.D.) au Département de Biologie, Université d’Ottawa, Ottawa, Ontario, Canada, K1N 6N5 Mary Ann Perron, Ottawa, Canada, 2020 I dedicate this thesis to my father, Jules Perron, who is my biggest inspiration. I love you dad. ii Abstract Urbanization involves the conversion of natural areas to impervious surfaces, which can lead to an increase in the frequency and severity of flood events in cities. To mitigate flood risk, stormwater ponds are constructed to manage urban runoff. Stormwater ponds can also be colonized by wildlife, but their suitability as habitat is disputed due to potential toxicological risks. This study assessed the suitability of stormwater ponds as habitat for the bioindicators Odonata (dragonflies and damselflies) and determined environmental factors that impact their community structure. Odonata (adults, nymphs and exuviae) were sampled at 41 stormwater ponds and 10 natural reference ponds across the National Capital Region of Canada, with a subset of ponds sampled over four years (2015-2018). Plant communities, water quality and surrounding land cover were analyzed at each pond to determine their impacts on Odonata community structure. Overall, stormwater ponds had lower Odonata abundance and a greater variation in species richness and community structure compared to natural ponds but had comparable dragonfly reproduction rates.
    [Show full text]
  • Download Download
    The Distribution and Relative Seasonal Abundance of the Indiana Species of Agrionidae (Odonata: Zygoptera) B. Elwood Montgomery, Purdue University In a previous paper (Montgomery, 1942) the relative seasonal abundance of the adults of the 16 species of Enallagma known from Indiana, based upon the frequency of collection during 41 years (1900- 1940 inclusive) was indicated. That study is extended here to include the remaining 16 species of the family Agrionidae recorded from the state. <I3jXEEEKE> Fig. 1. The range of the flight season (or period of adult life) and the relative seasonal abundance of 16 species of Agrionidae (genera Argia, Nehalen- nia, Amphiagrion, Chromagrion, Ischnura and Anonialagrion ) in Indiana. Col- lections made from 1900 to 1940 inclusive were tabulated by thirds of months and the graphs constructed from the resulting frequency distributions. Numbers near each bar indicate the number of collections of each species in each third of a month ; where no number is given the number of collections is one. 179 180 Indiana Academy of Science Records of almost all Odonata collected or observed in Indiana since 1900 have been preserved in the note books of the late E. B. Williamson and of the author. The records for the species of the genera Argia, Nehalennia, Amphiagrion, Chromagrion, Ischnura, and Anomalagrion have been tabulated and the accompanying chart (Figure 1) indicates the relative abundance of the different species throughout the season of adult flight. As this study applies only to adults, all references to seasonal range and abundance in this paper refer to the period of adult flight. The records of captures (or observations) were tabulated by thirds of months and the time-frequency graph for each species was con- structed by plotting the frequency for each third at the midpoint (5th, 15th and 25th of the month, respectively) of the third of the time axis.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • A Checklist of North American Odonata, 2021 1 Each Species Entry in the Checklist Is a Paragraph In- Table 2
    A Checklist of North American Odonata Including English Name, Etymology, Type Locality, and Distribution Dennis R. Paulson and Sidney W. Dunkle 2021 Edition (updated 12 February 2021) A Checklist of North American Odonata Including English Name, Etymology, Type Locality, and Distribution 2021 Edition (updated 12 February 2021) Dennis R. Paulson1 and Sidney W. Dunkle2 Originally published as Occasional Paper No. 56, Slater Museum of Natural History, University of Puget Sound, June 1999; completely revised March 2009; updated February 2011, February 2012, October 2016, November 2018, and February 2021. Copyright © 2021 Dennis R. Paulson and Sidney W. Dunkle 2009, 2011, 2012, 2016, 2018, and 2021 editions published by Jim Johnson Cover photo: Male Calopteryx aequabilis, River Jewelwing, from Crab Creek, Grant County, Washington, 27 May 2020. Photo by Netta Smith. 1 1724 NE 98th Street, Seattle, WA 98115 2 8030 Lakeside Parkway, Apt. 8208, Tucson, AZ 85730 ABSTRACT The checklist includes all 471 species of North American Odonata (Canada and the continental United States) considered valid at this time. For each species the original citation, English name, type locality, etymology of both scientific and English names, and approximate distribution are given. Literature citations for original descriptions of all species are given in the appended list of references. INTRODUCTION We publish this as the most comprehensive checklist Table 1. The families of North American Odonata, of all of the North American Odonata. Muttkowski with number of species. (1910) and Needham and Heywood (1929) are long out of date. The Anisoptera and Zygoptera were cov- Family Genera Species ered by Needham, Westfall, and May (2014) and West- fall and May (2006), respectively.
    [Show full text]
  • To Download the Full Pdf of the Jun/Jul Issue
    47 Years of Environmental News Arcata, California Vol. 48, No. 3 Jun/Jul 2018 ECEC NEWSNEWS Published by the Northcoast Environmental Center Since 1971 Celebrate Wild & Scenic Rivers 50th Anniversary of the Wild & Scenic Rivers Act G-O Road 30th Anniversary | Global Plastic Problem | Controversial Water Tax Bill Jordan Cove LNG Back Again | Carbon Neutral Biomass? | Kin to the Earth: Rob DiPerna National Parks Centennial Celebration News From the Center Larry Glass, Executive Director, special use permit. T is signifi cant with smoking. and Bella Waters, Admin & loophole could allow Mercer-Fraser to • SB 836 - State Development Director get a conditional use permit and begin Beaches Smoking Ban. An important issue we’ve been its hash lab activities on the Glendale Banning smoking on working on is making sure that the site without changing the zoning. Be state beaches will public is fully informed about the sure and let your supervisor know if reduce the massive planned cannabis chemical extraction you fi nd this to be an unacceptable amount of cigarette facilities (hash labs) by Mercer-Fraser threat to our drinking water! butt litter. In addition at Glendale, on the Mad River near With so many critical decisions to the fi nes imposed Blue Lake, and at Big Rock on the being made by the Board of by Senate Bill 836, Trinity River near Willow Creek. Supervisors, the June election has the NEC encouraged Despite the seemingly good news become a focus of concern. In light adequate funding of that Mercer-Fraser has withdrawn of that, the NEC participated in a personnel to be able to its plans for the Glendale operation community forum with the Humboldt enforce this and SB 835 and rezoning, we can’t stress enough supervisorial candidates.
    [Show full text]
  • A Bug's Life in the Columbia Slough
    A Bug’s Life in the Columbia Slough: Handbook of Invertebrates and Macroinvertebrate Monitoring in the Columbia Slough June 2005 Jeff Adams WWW.COLUMBIASLOUGH.ORG Contacts: The Xerces Society for Invertebrate The Columbia Slough Watershed Conservation Council Jeff Adams Ethan Chessin [email protected] [email protected] Director of Aquatic Programs Volunteer Coodinator 4828 SE Hawtorhne Blvd. 7040 NE 47th Avenue Portland, OR 97215-3252 Portland, OR 97218-1212 503-232-6639 503-281-1132 http://www.xerces.org http://www.columbiaslough.org Funding for this handbook and the education and monitoring activities associated with this project has been provided by: ! Metropolitan Greenspaces Program – a partnership between Metro and the U.S. Fish & Wildlife Service ! The Xerces Society for Invertebrate Conservation member contributions ! Northwest Service Academy ! Oregon Watershed Enhancement Board ! City of Portland Bureau of Environmental Services' Community Watershed Stewardship Program All image credits belong to Jeff Adams with the following exceptions: the Joseph D. Meyers map of Portland vicinity was downloaded from the Center for Columbia River History website; the image with line drawings of a water strider and a back swimmer is used with permission from the University of Illinois Department of Entomology; and the images of the creeping water bug, left-handed snail, and sponge are used with permission from Daniel Pickard of the California Department of Fish and Game. (Cover photo: restoration site on Columbia Slough near Interstate 205. The benches had recently been created, but had not yet been planted with native vegetation.) Handbook of Macroinvertebrate Monitoring in the Columbia Slough TABLE OF CONTENTS INTRODUCTION........................................................................................................................
    [Show full text]