A Bug's Life in the Columbia Slough

Total Page:16

File Type:pdf, Size:1020Kb

A Bug's Life in the Columbia Slough A Bug’s Life in the Columbia Slough: Handbook of Invertebrates and Macroinvertebrate Monitoring in the Columbia Slough June 2005 Jeff Adams WWW.COLUMBIASLOUGH.ORG Contacts: The Xerces Society for Invertebrate The Columbia Slough Watershed Conservation Council Jeff Adams Ethan Chessin [email protected] [email protected] Director of Aquatic Programs Volunteer Coodinator 4828 SE Hawtorhne Blvd. 7040 NE 47th Avenue Portland, OR 97215-3252 Portland, OR 97218-1212 503-232-6639 503-281-1132 http://www.xerces.org http://www.columbiaslough.org Funding for this handbook and the education and monitoring activities associated with this project has been provided by: ! Metropolitan Greenspaces Program – a partnership between Metro and the U.S. Fish & Wildlife Service ! The Xerces Society for Invertebrate Conservation member contributions ! Northwest Service Academy ! Oregon Watershed Enhancement Board ! City of Portland Bureau of Environmental Services' Community Watershed Stewardship Program All image credits belong to Jeff Adams with the following exceptions: the Joseph D. Meyers map of Portland vicinity was downloaded from the Center for Columbia River History website; the image with line drawings of a water strider and a back swimmer is used with permission from the University of Illinois Department of Entomology; and the images of the creeping water bug, left-handed snail, and sponge are used with permission from Daniel Pickard of the California Department of Fish and Game. (Cover photo: restoration site on Columbia Slough near Interstate 205. The benches had recently been created, but had not yet been planted with native vegetation.) Handbook of Macroinvertebrate Monitoring in the Columbia Slough TABLE OF CONTENTS INTRODUCTION......................................................................................................................... 4 THE COLUMBIA SLOUGH....................................................................................................... 5 HISTORY ..............................................................................................................................................................5 HUMAN INFLUENCE.............................................................................................................................................6 VALUE AND OPPORTUNITIES ..............................................................................................................................6 BIOLOGICAL MONITORING.................................................................................................. 7 WHY ARE MACROINVERTEBRATES COMMONLY USED IN BIOMONITORING?....................................................7 MACROINVERTEBRATE MONITORING IN THE COLUMBIA SLOUGH ...................................................................8 YOU CAN HELP MONITOR THE SLOUGH!...........................................................................................................8 COLLECTING MACROINVERTEBRATE SAMPLES ......................................................... 9 COLLECTING MACROINVERTEBRATES FROM SLOW OR STILL WATER HABITATS .........................................9 EQUIPMENT .........................................................................................................................................................9 COLLECTING MACROINVERTEBRATES IN FAST-FLOWING WATERS.................................................................9 PROPOSED SAMPLE SITES..................................................................................................................................11 DATA INTERPRETATION....................................................................................................................................11 AQUATIC INVERTEBRATES OF THE COLUMBIA SLOUGH ....................................... 13 MAYFLIES (EPHEMEROPTERA).........................................................................................................................13 STONEFLIES (PLECOPTERA) .............................................................................................................................14 CADDISFLIES (TRICHOPTERA)..........................................................................................................................14 DRAGON AND DAMSELFLIES (ODONATA).........................................................................................................15 WATER BOATMEN, WATER STRIDERS, TOE BITERS, AND KIN (HEMIPTERA)...................................................16 BEETLES (COLEOPTERA)..................................................................................................................................17 TRUE FLIES (DIPTERA)......................................................................................................................................17 ALDERFLIES (MEGALOPTERA).........................................................................................................................18 SPRINGTAILS (COLLEMBOLA) ..........................................................................................................................19 CRUSTACEANS (CRUSTACEA) ...........................................................................................................................19 WATER MITES (ACARI).....................................................................................................................................20 SNAILS AND LIMPETS (GASTROPODA)..............................................................................................................21 MUSSELS/CLAMS (BIVALVIA)...........................................................................................................................22 WORMS, LEECHES, AND CRAYFISH WORMS (ANNELIDA) ...............................................................................22 FLATWORMS OR PLANARIANS (TURBELLARIA)...............................................................................................23 HYDRAS (CNIDARIA) .........................................................................................................................................23 ROUNDWORMS (NEMATODA) ...........................................................................................................................23 HORSEHAIR WORMS (NEMATOMORPHA).........................................................................................................24 MOSS ANIMALS (ECTOPROCTA).......................................................................................................................24 SPONGES (PORIFERA)........................................................................................................................................25 INTRODUCED SPECIES .......................................................................................................................................26 IN CLOSING............................................................................................................................... 26 ACKNOWLEDGMENTS .......................................................................................................... 27 SELECTED REFERENCES ..................................................................................................... 27 Appendix A: Volunteer macroinvertebrate monitoring protocols, forms and labels for slow and still waters of the Columbia Slough. ...................................................................................... 28 Appendix B: List of known slow or still water invertebrates in the Columbia Slough watershed with an image page of selected taxa. ........................................................................... 34 Appendix C: List of known stream or spring invertebrates in the Columbia Slough watershed with an image page of selected taxa.............................................................................................. 37 Appendix D: List of “microinvertebrates” of Smith and Bybee Lakes and the lower Columbia Slough. .......................................................................................................................................... 39 June 2005 The Xerces Society and The Columbia Slough Watershed Council 3 Handbook of Macroinvertebrate Monitoring in the Columbia Slough INTRODUCTION The Columbia Slough watershed supports a surprisingly diverse array of fish, birds, mammals, reptiles, amphibians, plants and invertebrates (animals without spines). The Slough provides a rare and valuable biological, recreational, and community resource in a highly urbanized environment, despite many decades of intense human land use. This diversity includes plants and animals that have been transplanted to the Northwest from other parts of the world, but many others are native and require specific conditions for survival. This handbook focuses on the invertebrates that spend part or all of their life in waters of the Columbia Slough watershed. Smaller aquatic invertebrates will receive mention, but the emphasis is on macroinvertebrates – invertebrates which are larger than half the thickness of a dime (0.5 mm; Colorful male Pacific forktail damselfly (Ischnura cervula). 500µm; or 1/50th inch). Aquatic macroinvertebrates have cultural, monitoring, aesthetic, and conservation significance. The colorful, acrobatic and ravenously predatory dragonflies and damselflies like the Pacific forktail above are certainly among the more charismatic aquatic predators in the Slough. Though not exactly tasty, freshwater
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Coleoptera: Haliplidae: Haliplus) with Descriptions of Three New Species
    Bernhard J. van VONDEL1, Mogens HOLMEN2 & Pyotr N. PETROV3 1Natuurmuseum Rotterdam, The Netherlands 2Hillerød, Denmark 3Moscow South–West Gymnasium, Russia REVIEW OF THE PALAEARCTIC AND ORIENTAL SPECIES OF THE SUBGENUS HALIPLUS S.STR. (COLEOPTERA: HALIPLIDAE: HALIPLUS) WITH DESCRIPTIONS OF THREE NEW SPECIES Vondel, B.J. van, M. Holmen & P. N. Petrov, 2006. Review�������������������������������������� of the Palaearctic and Oriental species of the subgenus Haliplus s.str. (Coleoptera: Haliplidae: Haliplus) with descriptions of three new species. – Tijdschrift voor Entomologie 149: 227-273, figs. 1-231. [issn 0040-7496]. Published 1 December 2006. The species considered to belong to the subgenus Haliplus Latreille, 1802 and known to occur in the Palaearctic region are reviewed. Latreille’s selection of Dytiscus impressus Fabricius, 1787 as [misidentified] type species, is amended in the sense of the nominal species and not the misidentified identity, following iczn article 70.3.1. Dytiscus impressus is here formally selected as type species for Cnemidotus Illiger, 1802 and Hoplitus Clairville, 1806. Three new species are described: Haliplus (Haliplus) fuscicornis Holmen, Van Vondel & Petrov sp.n., H. kirgisiensis Holmen & Van Vondel sp.n. and H. turkmenicus Van Vondel sp.n.. Lectotypes are designated for H. ruficollis var. pedemontanus Fiori, H. lineolatus Mannerheim, H. brevis Wehncke, H. fluviatilis var. maculatus Seidlitz and H. minutus Takizawa. Three new synonymies are estab- lished: H. brevior Nakane, junior synonym of H. japonicus Sharp, H. fluviatilis var. maculatus Seidlitz, junior synonym of H. ruficollis (De Geer) and H. minutus Takizawa, junior synonym of H. simplex Clark. All species are described and figured. A key to the species is presented.
    [Show full text]
  • Water Beetles
    Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE .......................................................................................................................................................
    [Show full text]
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Bioindicators of Water Quality
    Ephemeroptera | Mayflies ACE-11 Coleoptera | Beetles Using this guide Coleoptera with the data sheets Bioindicators of Water Quality Beetles Quick–Reference Guide Coleoptera (Beetles) Authors: Julie Speelman and Natalie Carroll | Photographer (unless otherwise noted): Julie Speelman | Design and Layout: Purdue Agricultural Communication Family Tolerance Number Family Tolerance 4 3 7 Value Found Score 5 5 5 Dryopidae 5 0 0 Dryopidae (larvae) Baetidae Baetiscidae Dytiscidae Dytiscidae (adult) Caenidae Dytiscidae 5 2 10 This publication shows aquatic insects that can be used as Long-toed Water Beetle Predaceous Diving Beetle Predaceous Diving Beetle Small Minnow Mayfly Armored Mayfly Small Square-gill Mayfly Biotic Water Quality Degree of Organic Elmidae 5 0 0 bioindicators of water quality in Indiana waterways. Bioindicators 5 are biological systems that are sensitive to environmental changes Index Rating Pollution Gyrinidae 4 0 0 organic pollution Dryopidae and, therefore, can indicate when pollution is present in the water. 0.00–3.75 excellent Long-toed Water Beetle Haliplidae 7 0 0 unlikely A tolerance score is included for each insect in this publication. Hydrophilidae 5 3 15 slight organic The tolerance score, ranging from 0–10, represents the insect’s 3.76–4.25 very good Psephenidae 4 0 0 sensitivity to pollution and can be used to estimate the quality of pollution possible the water in which the insect was found. Insects with a score of some organic Order Total 5 25 4.26–5.00 good 0 are intolerant to pollution, meaning they cannot tolerate any pollution probable water pollution, while insects with a score of 10 are very tolerant of fairly substantial 5 5 4 1 polluted water.
    [Show full text]
  • Biochemical Divergence Between Cavernicolous and Marine
    The position of crustaceans within Arthropoda - Evidence from nine molecular loci and morphology GONZALO GIRIBET', STEFAN RICHTER2, GREGORY D. EDGECOMBE3 & WARD C. WHEELER4 Department of Organismic and Evolutionary- Biology, Museum of Comparative Zoology; Harvard University, Cambridge, Massachusetts, U.S.A. ' Friedrich-Schiller-UniversitdtJena, Instituifiir Spezielte Zoologie und Evolutionsbiologie, Jena, Germany 3Australian Museum, Sydney, NSW, Australia Division of Invertebrate Zoology, American Museum of Natural History, New York, U.S.A. ABSTRACT The monophyly of Crustacea, relationships of crustaceans to other arthropods, and internal phylogeny of Crustacea are appraised via parsimony analysis in a total evidence frame­ work. Data include sequences from three nuclear ribosomal genes, four nuclear coding genes, and two mitochondrial genes, together with 352 characters from external morphol­ ogy, internal anatomy, development, and mitochondrial gene order. Subjecting the com­ bined data set to 20 different parameter sets for variable gap and transversion costs, crusta­ ceans group with hexapods in Tetraconata across nearly all explored parameter space, and are members of a monophyletic Mandibulata across much of the parameter space. Crustacea is non-monophyletic at low indel costs, but monophyly is favored at higher indel costs, at which morphology exerts a greater influence. The most stable higher-level crusta­ cean groupings are Malacostraca, Branchiopoda, Branchiura + Pentastomida, and an ostracod-cirripede group. For combined data, the Thoracopoda and Maxillopoda concepts are unsupported, and Entomostraca is only retrieved under parameter sets of low congruence. Most of the current disagreement over deep divisions in Arthropoda (e.g., Mandibulata versus Paradoxopoda or Cormogonida versus Chelicerata) can be viewed as uncertainty regarding the position of the root in the arthropod cladogram rather than as fundamental topological disagreement as supported in earlier studies (e.g., Schizoramia versus Mandibulata or Atelocerata versus Tetraconata).
    [Show full text]
  • Hungerford's Crawling Water Beetle (Brychius Hungerfordi)
    COSEWIC Assessment and Status Report on the Hungerford’s Crawling Water Beetle Brychius hungerfordi in Canada ENDANGERED 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Hungerford’s Crawling Water Beetle Brychius hungerfordi in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. ix + 40 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC would like to acknowledge Colin Jones for writing the status report on Hungerford’s Crawling Water Beetle (Brychius hungerfordi) in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Paul Catling, Co-chair of the COSEWIC Arthropods Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’haliplide de Hungerford (Brychius hungerfordi) au Canada. Cover illustration/photo: Hungerford’s Crawling Water Beetle — Photo provided by S.A. Marshall, University of Guelph. ©Her Majesty the Queen in Right of Canada, 2011. Catalogue No. CW69-14/627-2011E-PDF ISBN 978-1-100-18679-5 Recycled paper COSEWIC Assessment Summary Assessment Summary – May 2011 Common name Hungerford’s Crawling Water Beetle Scientific name Brychius hungerfordi Status Endangered Reason for designation A probable early postglacial relict, this water beetle is endemic to the upper Great Lakes and is Endangered in the U.S.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Appendix A: Common and Scientific Names for Fish and Wildlife Species Found in Idaho
    APPENDIX A: COMMON AND SCIENTIFIC NAMES FOR FISH AND WILDLIFE SPECIES FOUND IN IDAHO. How to Read the Lists. Within these lists, species are listed phylogenetically by class. In cases where phylogeny is incompletely understood, taxonomic units are arranged alphabetically. Listed below are definitions for interpreting NatureServe conservation status ranks (GRanks and SRanks). These ranks reflect an assessment of the condition of the species rangewide (GRank) and statewide (SRank). Rangewide ranks are assigned by NatureServe and statewide ranks are assigned by the Idaho Conservation Data Center. GX or SX Presumed extinct or extirpated: not located despite intensive searches and virtually no likelihood of rediscovery. GH or SH Possibly extinct or extirpated (historical): historically occurred, but may be rediscovered. Its presence may not have been verified in the past 20–40 years. A species could become SH without such a 20–40 year delay if the only known occurrences in the state were destroyed or if it had been extensively and unsuccessfully looked for. The SH rank is reserved for species for which some effort has been made to relocate occurrences, rather than simply using this status for all elements not known from verified extant occurrences. G1 or S1 Critically imperiled: at high risk because of extreme rarity (often 5 or fewer occurrences), rapidly declining numbers, or other factors that make it particularly vulnerable to rangewide extinction or extirpation. G2 or S2 Imperiled: at risk because of restricted range, few populations (often 20 or fewer), rapidly declining numbers, or other factors that make it vulnerable to rangewide extinction or extirpation. G3 or S3 Vulnerable: at moderate risk because of restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors that make it vulnerable to rangewide extinction or extirpation.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Metazoa Based on How Organized They Are
    BIOLOGY 18: Phyla of the “Changed Animals” Climbing the evolutionary lad- der from the protozoa we find higher levels of organization. Organisms are grouped into mesozoa and metazoa based on how organized they are. The simplest multicellular organisms (those having many cells) are the me- sozoa (“middle animals”). These or- ganisms are simple parasitic worms. Parasitic means that they live at the expense of some other organism. They often suck nutrient-rich fluids right out of the other organism, but they don’t usually kill the organism or they lose their source of food. The metazoa, meaning “changed animals” can be larger in size because they have different kinds of cells that work together to bring things in, take things out, protect the whole organ- ism, and perform other duties that enable them to live in a wider range of habitats. Because of the various cell types, organisms at this level be- gin taking on a variety of shapes that are not possible among colonies of identical cells. The metazoa include all other phyla of animals from the simple to the complex. A strawberry sponge of the phylum Porifera. Kingdom Animalia: Metazoa Kingdom Porifera Coelenterata Ctenophora Platyhelminthes Rhinochocoela Nematoda Acanthocephala Chaetognatha Nematomorpha Hemichordata (sponges) (flat worms) (proboscis, (round (spiny-headed (arrow (horsehair (acorn worms) nemertine & worms) worms) worms) worms) Phylum ribbon worms) 186 BIOLOGY The next set of organisms in terms of their simplicity is the phylum Porifera—the sponges. There are many types of these animals that live in the sea and a few that live in fresh water.
    [Show full text]
  • Crustaceans Topics in Biodiversity
    Topics in Biodiversity The Encyclopedia of Life is an unprecedented effort to gather scientific knowledge about all life on earth- multimedia, information, facts, and more. Learn more at eol.org. Crustaceans Authors: Simone Nunes Brandão, Zoologisches Museum Hamburg Jen Hammock, National Museum of Natural History, Smithsonian Institution Frank Ferrari, National Museum of Natural History, Smithsonian Institution Photo credit: Blue Crab (Callinectes sapidus) by Jeremy Thorpe, Flickr: EOL Images. CC BY-NC-SA Defining the crustacean The Latin root, crustaceus, "having a crust or shell," really doesn’t entirely narrow it down to crustaceans. They belong to the phylum Arthropoda, as do insects, arachnids, and many other groups; all arthropods have hard exoskeletons or shells, segmented bodies, and jointed limbs. Crustaceans are usually distinguishable from the other arthropods in several important ways, chiefly: Biramous appendages. Most crustaceans have appendages or limbs that are split into two, usually segmented, branches. Both branches originate on the same proximal segment. Larvae. Early in development, most crustaceans go through a series of larval stages, the first being the nauplius larva, in which only a few limbs are present, near the front on the body; crustaceans add their more posterior limbs as they grow and develop further. The nauplius larva is unique to Crustacea. Eyes. The early larval stages of crustaceans have a single, simple, median eye composed of three similar, closely opposed parts. This larval eye, or “naupliar eye,” often disappears later in development, but on some crustaceans (e.g., the branchiopod Triops) it is retained even after the adult compound eyes have developed. In all copepod crustaceans, this larval eye is retained throughout their development as the 1 only eye, although the three similar parts may separate and each become associated with their own cuticular lens.
    [Show full text]