Summer 2012 Bulletin of the Oregon Entomological Society

Total Page:16

File Type:pdf, Size:1020Kb

Summer 2012 Bulletin of the Oregon Entomological Society Summer 2012 Bulletin of the Oregon Entomological Society Dragonfly Pond Watch—coming to a wetland near you! Celeste Mazzacano1 Dragonfly Migration Although dragonfly migration has been documented for over 100 years, there is still much to be learned, as we lack defini- Dragonfly migration is one of the most fascinating events in the tive answers to questions surrounding the environmental cues insect world, but also one of the least-known. This is even more that trigger migration, the adaptive advantages gained by the surprising when you consider that dragonfly migration occurs on subset of odonate species that migrate, reproductive activity of every continent except Antarctica. When people think of insect migration, the Monarch butterfly (Danaus plexippus) is a familiar figure, but the Wandering Glider (Pantala flavescens), a widely distributed species also known as a regular mi- grant in North America, can travel 11,000 miles (17,700 km) across the Indian Ocean from Africa to India and back—more than twice the distance of the Monarch’s well-known annual journey. Only about 16 of our 326 dragonfly species in North America are regular migrants, with some making annual seasonal flights while others are more sporadic. The major migratory species in North America are Common Green Darner (Anax junius), Wandering Glider (Pantala flave- scens), Spot-winged Glider (P. hymenaea), Black Saddlebags (Tramea lacerata), and Variegated Meadowhawk (Sympetrum corruptum). Different species tend to dominate migration flights in different parts of the continent. Anax junius is our best-known migrant, moving in Common Green Darner (Anax junius) at North Bend, Coos County, Oregon. Photo by Ron Lyons. mass flights in the thousands to millions each fall from southern Canada and the northeastern US down migrants along their routes, southern extent of overwintering into the southern US, northern Mexico, and parts of the West grounds, and the relationships between resident and migratory Indies. Here in the West we are treated to the sight of thousands populations within the same species. The Migratory Dragonfly of Sympetrum corruptum (Variegated Meadowhawks) sweep- Partnership (MDP <www.migratorydragonflypartner- ing south along the coast in autumn, while Midwesterners can ship.org>), a collaborative effort among federal agencies, non- follow clouds of migratory dragonflies along the shores of the governmental programs, and academic institutions, is working Great Lakes. to gain a better understanding of dragonfly migration in North 1Staff Scientist/Aquatic Program Director, The Xerces Society for Invertebrate Conservation; Project Coordinator, Migratory Dragonfly Partnership; <[email protected]> Feel free to distribute this newsletter to others. Submit content to Ron Lyons (pondhawk @ uci.net). To be included on the distribution list contact Jim Johnson (jt_johnson @ comcast.net). Bulletin of the OES, Summer 2012 America, and to promote conservation of the vul- nerable wetland habitats on which these species rely. Dragonfly Pond Watch A major MDP initiative involves working with a network of citizen-scientists in Canada, the US, and Mexico to track the five main migratory species throughout the year. As a part of this initiative we re- cently launched Dragonfly Pond Watch, a volunteer- based program to investigate the annual movements of two major migratory dragonfly species in North America: Common Green Darner (Anax junius) and Black Saddlebags (Tramea lacerata). We decided to focus on these two species initially not only because they are regular migrants but also because they are among the easiest to identify even in flight, which is how most people are likely to see them. By visiting the same wetland or pond site on a regular basis, par- ticipants will be placed to note the arrival of migrant dragonflies moving south in the fall or north in the spring, and to record when the first resident adults of these species emerge in the spring. Black Saddlebags (Tramea lacerata) at White City, Jackson County, Oregon. Photo by Jim Johnson Participants select a local pond (or ponds) and visit regularly throughout the season. The frequency of site visits is up to Collecting seasonal information at local ponds across North each volunteer; ideally it will be at least once per month, although America will increase our knowledge of the timing and location more frequent observations will be gladly accepted. There is no pre- of dragonfly migration, and expand our understanding of the scribed survey method; volunteers simply visit their ponds, record relationship between migrant and resident populations within observations of the two target species during the time they have the same species. If you would like to know more about this and available, and upload their data to the MDP website. Additional other initiatives of the MDP, visit our website <http://www. data regarding location, observation start and end time, presence or migratorydragonflypartnership.org>, Facebook page absence of Common Green Darner and Black Saddlebags, and ad- <https://www.facebook.com/MigratoryDragonflyP- ditional notes such as observed behaviors (i.e. mating, oviposition), artnership>, or project site <http://www.xerces.org/ stages (i.e. teneral or mature), and presence of exuviae can also be dragonfly-migration/projects/>. recorded. Photo vouchers or videos are encouraged when possible but are not required to submit data. A sample data sheet can be downloaded from the project website at <http://www.xerces. org/wp-content/uploads/2012/03/Pond_Watch_data_ sheet_03-07_20128.pdf>. Odonates of the Storm Ranch Section of the New River ACEC Ron Lyons Administered by the BLM, New River Area of Critical Environ- The Storm Ranch section has a wide variety of habitats. On mental Concern (ACEC) consists of several parcels of mainly the west side are the foredunes which can be accessed by boat ocean front land, comprising about 1356 acres, in northern Cur- or wading, but are closed throughout the summer months as ry and southern Coos Counties. The main areas are Floras Lake part of the Western Snowy Plover recovery program. The river in Curry County, and Storm Ranch (240 acres+ river shoreline is open to the ocean for much of the year, and so has a varying and foredunes) and Lost Lake (71 acres) in Coos County. New mix of salt and fresh water. Most of Storm Ranch on the east River itself flows north from Floras Creek through the ACEC, side of the river is stabilized sand dunes, stabilized mainly by separated from the ocean by a thin strip of sand dunes. Lost Shore Pines and undergrowth such as rhododendrons, huckle- Lake, the only inland area, is separated from New River and the berry and manzanita. There are small areas of open dunes and ocean by a stretch of Bandon State Natural Area. The area sur- meadow. (Recently, some of the Shore Pines have been removed rounding the ACEC lands supports a number of cranberry bogs to increase the area of open dunes.) During the rainy winter and several small lakes. months shallow temporary ponds form in some of the low-lying 2 Bulletin of the OES, Summer 2012 areas. Storm Ranch includes an old cranberry bog, which is largely overgrown but still has some small open water areas. Muddy Lake, or Mudd Lake on some maps, is a permanent shallow water body—the northern end is part of Storm Ranch, the larger southern portion is private land. Muddy Lake is largely surrounded by Shore Pine, right down to the water’s edge. There is a viewing platform/bird blind at the lake’s edge. A system of hiking trails allows one easy access to the various habitats found at Storm Ranch. There are picnic tables and wash- rooms at the main parking area and the boat launch for the river. Since 2002, I have visited Storm Ranch a num- ber of times looking for odonates and other insects. My visits however have not been evenly distributed, being concentrated in the late Looking north along the New River. Photo by Ron Lyons. spring and early summer (March through June). Over the years, I have found the 24 different Odonata recorded at Storm Ranch, New River ACEC. species of odonates listed at right. While most of these spe- cies have been associated with Muddy Lake, I have found both Family Lestidae, Spreadwing Damselflies damselfly and dragonfly larvae in some of the winter ponds. [92 Lestes disjunctus Northern Spreadwing odonate species have been found in Oregon.] Lestes dryas Emerald Spreadwing The Common Whitetail (a male, Plathemis lydia) and the Family Coenagrionidae, Pond Damsels Widow Skimmer (a male, Libellula luctuosa) have each been Enallagma annexum Northern Bluet seen only once, the former along one of the trails and the latter Ischnura cervula Pacific Forktail at Muddy Lake. Pacific Clubtails (Gomphus kurilis) and Western Ischnura erratica Swift Forktail Pondhawks (Erythemis collocata) have each been seen on several occasions but neither appears to be common at Storm Ranch. Family Aeshnidae, Darners All of these species are known to breed in the area. Anax junius Common Green Darner Rhionaeschna californica California Darner The Flame Skimmer (Libellula saturata) is a relatively recent Rhionaeschna multicolor Blue-eyed Darner addition to the odonate fauna of Coos County, first reported by Dan Hull who found it on 18 September 2005 at Shore Acres Family Gomphidae, Clubtails State Park [the point on the coast in Kerst and Gordon (2011)]. Gomphus kurilis Pacific Clubtail Cary Kerst reported finding it at Arizona Beach State Park in Curry County on 23 August 2010 (record at <OdonataCen- Family Corduliidae, Emeralds Cordulia shurtleffii American Emerald Epitheca spinigera Spiny Baskettail Family Libellulidae, Skimmers Erythemis collocata Western Pondhawk Leucorrhinia intacta Dot-tailed Whiteface Libellula forensis Eight-spotted Skimmer Libellula luctuosa Widow Skimmer Libellula quadrimaculata Four-spotted Skimmer Libellula saturata Flame Skimmer Pantala hymenaea Spot-winged Glider Plathemis lydia Common Whitetail Sympetrum corruptum Variegated Meadowhawk Sympetrum illotum Cardinal Meadowhawk Sympetrum madidum Red-veined Meadowhawk Sympetrum pallipes Striped Meadowhawk Muddy Lake, Storm Ranch, New River ACEC.
Recommended publications
  • Providing a Base for Conservation of True Bugs (Insecta, Heteroptera) and Their Saline Habitats in Vojvodina (Northern Serbia)
    Short Note Hyla VOL. 2016., No.1, pp. 19- 23 ISSN: 1848-2007 Šeat et al. Providing a base for conservation of true bugs (Insecta, Heteroptera) and their saline habitats in Vojvodina (northern Serbia) 1 1,2 1 1,2 JELENA ŠEAT , BOJANA NADAŽDIN , MARIJA CVETKOVIĆ , ALEKSANDRA JOVANOV , 1,2 & IVAN TOT 1 HabiProt, Bulevar Oslobođenja 106/34, 11040 Belgrade, Serbia; e-mail: [email protected] 2 SRSBES “Josif Pančić”, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia Abstract Saline habitats of the Pannonian region are recognised as conservation priorities by EU legislation, and represent rare semi-natural habitats in mostly agricultural lowland of northern Serbia. Saline habitats have a key role in conservation of numerous plant and animal species in Vojvodina, as well as characteristic communities of true bugs. These insects belong to one of the most diverse insect groups in saline habitats. Species Henestaris halophilus (BURMEISTER, 1835), Conostethus hungaricus WAGNER, 1941 and Solenoxyphus fuscovenosus (FIEBER, 1864) are saline specialists and can be found only in these habitat types. True bugs have great qualities for future biomonitoring projects concerning habitats such as saline grasslands and wetlands. During the study, species Hydrometra gracilenta HORVÁTH, 1899 and Solenoxyphus fuscovenosus (FIEBER, 1864) are recorded for the first time in Serbia. Key words: Hemiptera, salt steppes, salt marshes, alkaline lakes, Pannonian plain Saline or halophitic habitats in Serbia are floods in spring (BOROS, 2003; TÖRÖK ET AL., 2011), are mostly situated in the northern part of the country, in apparently not favourable for many groups of insects, Vojvodina Province, and these habitats are listed among but the true bugs are among the most abundant and the the priority habitats by the Annex I of the EU Habitat most diverse insects in them.
    [Show full text]
  • Taxonomy of Iberian Anisolabididae (Dermaptera)
    Acta Zoologica Academiae Scientiarum Hungaricae 63(1), pp. 29–43, 2017 DOI: 10.17109/AZH.63.1.29.2017 TAXONOMY OF IBERIAN ANISOLABIDIDAE (DERMAPTERA) Mario García-París Museo Nacional de Ciencias Naturales, MNCN-CSIC c/José Gutiérrez Abascal, 2, 28006, Madrid. Spain. E-mail: [email protected] An update on the taxonomy and geographic distribution of Iberian Anisolabididae (Der- maptera) is provided. Former catalogues reported in the Iberian Peninsula three genera of Anisolabididae: Aborolabis, Anisolabis, and Euborellia. A revision of 487 specimens of Iberian and North African Anisolabidoidea permit to exclude the genus Aborolabis from the Iberian fauna, the re-assignation of inland Euborellia annulipes Iberian records to Euborellia moesta, and the exclusion of Aborolabis angulifera from Northwestern Africa. Examination of type materials of Aborolabis mordax and Aborolabis cerrobarjai allows to propose the treatment of A. cerrobarjai as a junior synonym of A. mordax. The diagnostic characters of Euborellia his- panica are included within the local variability found in E. moesta. I propose that E. hispanica should be treated as a junior synonym of E. moesta. Key words: earwigs, systematics, Mediterranean region, Spain, Morocco, NW Africa. INTRODUCTION The Iberian fauna of Dermaptera, including Anisolabididae Verhoeff, 1902, has been the subject of diverse revisionary (Bolívar 1876, 1897, Lapeira & Pascual 1980, Herrera Mesa 1980, Bivar de Sousa 1997) and compilatory works (Herrera Mesa 1999). These revisions together with the monograph of the Fauna of France (Albouy & Caussanel 1990) and the on-line information included in Fauna Europaea (Haas 2010), rendered the image of Dermaptera as a well known group in continental western Europe.
    [Show full text]
  • STUDIES on the DERMAPTERA of the PHILIPPINES1 by G
    Pacific Insects 17(1): 99-138 1 October 1976 STUDIES ON THE DERMAPTERA OF THE PHILIPPINES1 By G. K. Srivastava2 Abstract: This paper includes the description of 18 new species belonging to the genera Diplatys, Epilandex, Chaetospania, Auchenomus, Apachyus, Allostethus, Proreus, Adiathella, Kosmetor and Timomenus. Besides these, 2 species are reported for the first time from the Philippine Islands. Our knowledge of the fauna of the Philippine Islands is largely based on the works of Caudell (1904), BoreUi (1915a, b, 1916, 1917, 1918,1921,1923,1926), Brindle (1966,1967) and Ramamurthi (1967). Recently, Srivastava (in press) has studied a collection of earwigs belonging to the Field Museum of Natural History, Chicago, which has resulted in the description of 14 new species. The present paper contains an account of some Dermaptera recently received for study from the Bishop Museum, Honolulu, Hawaii. The collection comprises 55 species (excluding 22 represented by either females or nymphs, identified up to generic level only) belonging to 28 genera, of which 18 species are new to science and 2 others are reported for the first time from the Philippines. The genus Apachyus Serville, hitherto unknown from the Philippine Islands, is represented by a new species. For some species that are represented by a large series in the collection it has been possible to study in detail the range of variations. A few females and nymphs could not be identified because the taxonomy of the whole order is based mainly on males, which often makes identification difficult. The fauna of the Philippine Islands appears to be not only rich in the number of species but also in the multiplicity of individuals for some species.
    [Show full text]
  • The News Journal of the Dragonfly
    ISSN 1061-8503 TheA News Journalrgia of the Dragonfly Society of the Americas Volume 26 15 September 2014 Number 3 Published by the Dragonfly Society of the Americas http://www.DragonflySocietyAmericas.org/ ARGIA Vol. 26, No. 3, 15 September 2014 25th Annual Meeting of the DSA in Northern Wisconsin, by Robert DuBois ........................................................1 Calendar of Events ......................................................................................................................................................1 Minutes of the 2014 DSA Annual Meeting , by Steve Valley .....................................................................................5 Call for Papers for BAO ..............................................................................................................................................8 Epitheca semiaquaea (Mantled Baskettail) Confirmed for New Hampshire, by Paul Bedell .....................................9 Don't Forget to Renew Your DSA Membership for 2015! .........................................................................................9 Advice Column............................................................................................................................................................9 The Reappearance of Black-winged Dragonlet (Erythrodiplax funerea) in Arizona, by Douglas Danforth and Rich Bailowitz .........................................................................................................10 Celithemis bertha (Red-veined Pennant),
    [Show full text]
  • Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence
    When the Body Hides the Ancestry: Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence Petr Kocarek1*, Vaclav John2, Pavel Hulva2,3 1 Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic, 2 Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic, 3 Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Abstract Here, we present a study regarding the phylogenetic positions of two enigmatic earwig lineages whose unique phenotypic traits evolved in connection with ectoparasitic relationships with mammals. Extant earwigs (Dermaptera) have traditionally been divided into three suborders: the Hemimerina, Arixeniina, and Forficulina. While the Forficulina are typical, well-known, free-living earwigs, the Hemimerina and Arixeniina are unusual epizoic groups living on molossid bats (Arixeniina) or murid rodents (Hemimerina). The monophyly of both epizoic lineages is well established, but their relationship to the remainder of the Dermaptera is controversial because of their extremely modified morphology with paedomorphic features. We present phylogenetic analyses that include molecular data (18S and 28S ribosomal DNA and histone-3) for both Arixeniina and Hemimerina for the first time. This data set enabled us to apply a rigorous cladistics approach and to test competing hypotheses that were previously scattered in the literature. Our results demonstrate that Arixeniidae and Hemimeridae belong in the dermapteran suborder Neodermaptera, infraorder Epidermaptera, and superfamily Forficuloidea. The results support the sister group relationships of Arixeniidae+Chelisochidae and Hemimeridae+Forficulidae. This study demonstrates the potential for rapid and substantial macroevolutionary changes at the morphological level as related to adaptive evolution, in this case linked to the utilization of a novel trophic niche based on an epizoic life strategy.
    [Show full text]
  • Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
    Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick
    [Show full text]
  • Striped Earwig
    Beneficial Species Profile Photo credit: Joseph Berger, Bugwood.org Common Name: Striped Earwig Scientific Name: Labidura riparia Order and Family: Dermaptera: Labiduridae Size and Appearance: A small, mostly soft-bodied insect that appears pale brown in color with two lengthwise stripes on the pronotum, which is the protective outer plate covering the insect’s thorax. Front wings appear to be shortened and disguise much longer hind wings folded up beneath. Large pincher-like cerci, which are paired appendages at the end of the abdomen. Male cerci are widely separated at the base, slightly curved, and symmetrical. Antenna have 14-24 segments; 4th, 5th & 6th antennae segments combined are shorter than the 1st segment. 2nd tarsal segment is cylindrical, not lobed. Length (mm) Appearance Egg ~ 1mm but can swell to over Pearly grayish-white; laid in clustered double the size while uptaking masses water during development Larva/Nymph Strongly resemble the adult without 2mm- 18mm developed wings; whitish appearance when first born; 4 instars Adult Pale brown in color; front wings appear to be shortened and disguise much 18-26mm longer hind wings folded up beneath; Large pincher-like cerci on abdomen; antennae have 14-24 segments; 4th, 5th & 6th antennae segments combined are shorter than the 1st segment. 2nd tarsal segment is cylindrical, not lobed. Pupa (if applicable) Incomplete Metamorphosis (no pupae) n/a Type of feeder (Chewing, sucking, etc.): Chewing mouthparts on adult and immature. Host/s: Widespread and found on a variety of hosts in all life cycles including, but not limited to, ground litter, beaches, river banks, and irrigation fields.
    [Show full text]
  • Abundance and Diversity of Ground-Dwelling Arthropods of Pest Management Importance in Commercial Bt and Non-Bt Cotton Fields
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2007 Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields J. B. Torres Universidade Federal Rural de Pernarnbuco, [email protected] J. R. Ruberson University of Georgia Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Torres, J. B. and Ruberson, J. R., "Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields" (2007). Faculty Publications: Department of Entomology. 762. https://digitalcommons.unl.edu/entomologyfacpub/762 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Annals of Applied Biology ISSN 0003-4746 RESEARCH ARTICLE Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields J.B. Torres1,2 & J.R. Ruberson2 1 Departmento de Agronomia – Entomologia, Universidade Federal Rural de Pernambuco, Dois Irma˜ os, Recife, Pernambuco, Brazil 2 Department of Entomology, University of Georgia, Tifton, GA, USA Keywords Abstract Carabidae; Cicindelinae; Falconia gracilis; genetically modified cotton; Labiduridae; The modified population dynamics of pests targeted by the Cry1Ac toxin in predatory heteropterans; Staphylinidae.
    [Show full text]
  • A Synergism Between Dimethyl Trisulfide and Methyl Thiolacetate
    University of Connecticut OpenCommons@UConn Department of Ecology and Evolutionary EEB Articles Biology 2020 A Synergism Between Dimethyl Trisulfide And Methyl Thiolacetate In Attracting Carrion-Frequenting Beetles Demonstrated By Use Of A Chemically-Supplemented Minimal Trap Stephen T. Trumbo University of Connecticut at Waterbury, [email protected] John Dicapua III University of Connecticut at Waterbury, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/eeb_articles Part of the Behavior and Ethology Commons, and the Entomology Commons Recommended Citation Trumbo, Stephen T. and Dicapua, John III, "A Synergism Between Dimethyl Trisulfide And Methyl Thiolacetate In Attracting Carrion-Frequenting Beetles Demonstrated By Use Of A Chemically- Supplemented Minimal Trap" (2020). EEB Articles. 46. https://opencommons.uconn.edu/eeb_articles/46 1 1 2 A Synergism Between Dimethyl Trisulfide And Methyl Thiolacetate In Attracting 3 Carrion-Frequenting Beetles Demonstrated By Use Of A Chemically-Supplemented 4 Minimal Trap 5 6 Stephen T. Trumbo* and John A. Dicapua III 7 8 University of Connecticut, Department of Ecology and Evolutionary Biology, 9 Waterbury, Connecticut, USA 10 11 *Department of Ecology and Evolutionary Biology, University of Connecticut, 99 E. 12 Main St., Waterbury, CT 06710, U.S.A. ([email protected]) 13 ORCID - 0000-0002-4455-4211 14 15 Acknowledgements 16 We thank Alfred Newton (staphylinids), Armin MocZek and Anna Macagno (scarabs) 17 for their assistance with insect identification. Sandra Steiger kindly reviewed the 18 manuscript. The Southern Connecticut Regional Water Authority and the Flanders 19 Preserve granted permission for field experiments. The research was supported by 20 the University of Connecticut Research Foundation.
    [Show full text]
  • Appendix A: Common and Scientific Names for Fish and Wildlife Species Found in Idaho
    APPENDIX A: COMMON AND SCIENTIFIC NAMES FOR FISH AND WILDLIFE SPECIES FOUND IN IDAHO. How to Read the Lists. Within these lists, species are listed phylogenetically by class. In cases where phylogeny is incompletely understood, taxonomic units are arranged alphabetically. Listed below are definitions for interpreting NatureServe conservation status ranks (GRanks and SRanks). These ranks reflect an assessment of the condition of the species rangewide (GRank) and statewide (SRank). Rangewide ranks are assigned by NatureServe and statewide ranks are assigned by the Idaho Conservation Data Center. GX or SX Presumed extinct or extirpated: not located despite intensive searches and virtually no likelihood of rediscovery. GH or SH Possibly extinct or extirpated (historical): historically occurred, but may be rediscovered. Its presence may not have been verified in the past 20–40 years. A species could become SH without such a 20–40 year delay if the only known occurrences in the state were destroyed or if it had been extensively and unsuccessfully looked for. The SH rank is reserved for species for which some effort has been made to relocate occurrences, rather than simply using this status for all elements not known from verified extant occurrences. G1 or S1 Critically imperiled: at high risk because of extreme rarity (often 5 or fewer occurrences), rapidly declining numbers, or other factors that make it particularly vulnerable to rangewide extinction or extirpation. G2 or S2 Imperiled: at risk because of restricted range, few populations (often 20 or fewer), rapidly declining numbers, or other factors that make it vulnerable to rangewide extinction or extirpation. G3 or S3 Vulnerable: at moderate risk because of restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors that make it vulnerable to rangewide extinction or extirpation.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Earwigs from Brazilian Caves, with Notes on the Taxonomic and Nomenclatural Problems of the Dermaptera (Insecta)
    A peer-reviewed open-access journal ZooKeys 713: 25–52 (2017) Cave-dwelling earwigs of Brazil 25 doi: 10.3897/zookeys.713.15118 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Earwigs from Brazilian caves, with notes on the taxonomic and nomenclatural problems of the Dermaptera (Insecta) Yoshitaka Kamimura1, Rodrigo L. Ferreira2 1 Department of Biology, Keio University, 4-1-1 Hiyoshi, Yokohama 223-8521, Japan 2 Center of Studies in Subterranean Biology, Biology Department, Federal University of Lavras, CEP 37200-000 Lavras (MG), Brazil Corresponding author: Yoshitaka Kamimura ([email protected]) Academic editor: Y. Mutafchiev | Received 17 July 2017 | Accepted 19 September 2017 | Published 2 November 2017 http://zoobank.org/1552B2A9-DC99-4845-92CF-E68920C8427E Citation: Kamimura Y, Ferreira RL (2017) Earwigs from Brazilian caves, with notes on the taxonomic and nomenclatural problems of the Dermaptera (Insecta). ZooKeys 713: 25–52. https://doi.org/10.3897/zookeys.713.15118 Abstract Based on samples collected during surveys of Brazilian cave fauna, seven earwig species are reported: Cy- lindrogaster cavernicola Kamimura, sp. n., Cylindrogaster sp. 1, Cylindrogaster sp. 2, Euborellia janeirensis, Euborellia brasiliensis, Paralabellula dorsalis, and Doru luteipes, as well as four species identified to the (sub) family level. To date, C. cavernicola Kamimura, sp. n. has been recorded only from cave habitats (but near entrances), whereas the other four organisms identified at the species level have also been recorded from non-cave habitats. Wings and female genital structures of Cylindrogaster spp. (Cylindrogastrinae) are examined for the first time. The genital traits, including the gonapophyses of the 8th abdominal segment shorter than those of the 9th segement, and venation of the hind wings of Cylindrogastrinae correspond to those of the members of Diplatyidae and not to Pygidicranidae.
    [Show full text]