<<

1981MNRAS.197..995M . Observationsgivelittleevidenceforappreciable amountsofgasorsignificantrates massive ellipticalsshowvariousindicationsofenergetic nuclearactivity(Collaetal.1975; stellar materialcanbeunderstoodifthereisan effective gasremovalmechanism,e.g.a An importantproblemofgalacticevolutionis the fateofstellarmasslossinelliptical not flowoutofthegalaxy butaccumulatesandflowsinwardstothecentre (Mathews& of starformationinmostthesesystems(Faber &Gallagher1976).Theabsenceofinter- Baker 1971;Bregman1978; Bailey1980). -driven galacticwind(Mathews&Baker 1971)orram-pressurestripping(Gisler Condon &Dressei1978). Thissuggeststhatundersomecircumstancesstellar masslossdoes Osterbrock 1960;Gallagheretal.1977;Fosbury al.1978).Alsoasignificantfractionof standpoint, concentrating particularly ontheeffectsofhigher stellarmasslossrates 1 Introduction 1976). However,someellipticalgalaxiesdocontain gas(Minkowski&Osterbrock1959; This paperconsidersthe problem ofgasflowinellipticalgalaxiesfroman evolutionary © Royal Astronomical Society • Provided by theNASA Astrophysics Data System -1 Mon. Not.R.astr.Soc.(1981)197,995-1019 galaxies The evolutionofflowsstellarmasslossinactive lifetime ofmostgiantellipticalgalaxies,irrespectivetheirdetailedstructure. Received 1981April2;inoriginalformFebruary11 J. MacDonaldandM.E.BaileyAstronomyCentre, unable topreventtheinflowofstellarmasslossforalargeproportion Vaucouleurs modelsofNGC3379.Ourresultsshowthatsupernovaheatingis been calculatednumericallyforthreefiducialepochsusingbothKingandde University ofSussex,Falmer,Brighton,SussexBN19QH with meanline-of-sightvelocitydispersionä>a=*300kms.Atearlier At thepresentepoch,stellarmasslossflowsinwardsinthoseellipticalgalaxies Summary. Gasflowsinellipticalgalaxiesfuelledbystellarmasslosshave moving densityevolutionasobserved.Thisworkdemonstratestheimportance mass functionattherelevantmasses,thisleadstoarapidincreasewithred- evolution inthestellarmasslossrate.Becauseofsteepnessgalaxy ticals toretaintheirstellarmassloss.Evolutioninaiscausedprincipallyby epochs thetransitionvelocitydispersiona,dividinggalaxieswithinflow from thosewithtotalwinds(aalsoassumed t {^SNEsti+oc-aljjci. (4) due tobothsupernovaeand randomstellarmotions <* =a*+a. dp 1a T SN dt rdr SN 0 2 (dv dv\dp (bE bE\\b,! v\ © Royal Astronomical Society • Provided by theNASA Astrophysics Data System Our calculationsdifferfromthoseofMathews&Baker(1971)inthatweusesomewhat The detailsofourmodelforthewindaregiveninSection2.Asimplepicturehow The totalspecificmasslossrateis The Euleriantime-dependentflowequationsforthewindare(Mathews&Baker1971) (2) (3) 1981MNRAS.197..995M 28 31 4 46 68 314 6 labelled ‘gas’. cooling curveofRaymond,Cox&Smith(1976)butwiththeFeabundancereducedtothat ment ofoutflowandalsothattheexternalpressurehasnosignificanteffectonanyoutflow. cooling curvefor graphitegrains. a waythatif(7)0asT^10K.Belowwetakei^=andaboveconsider where nandarethefreeelectrontotalhydrogen(i.e.ionizedneutral)number metric coolingrateisA=« «H-if (T)ergcm's"whereTisgastemperatureinKelvin. Alsoshownisthe Figure 1.Thecurvelabelled ‘gas’ isthecoolingcurveadoptedinnumericalcalculations. Thevolu- of Shapiro&Moore(1976).Below10Kweextrapolatethecurveinsuch of Cameron(1973).For10