Be STAR NEWSLETTER
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Very Long Mystery of Epsilon Aurigae
A Unique Eclipsing Variable TheThe VeryVery LongLong MMysteryystery ofof EpsilonEpsilon AAurigaeurigae robertrobert e. sstenceltencel one of the great scientifi c advances of the 20th A remarkable naked-eye star century was the theory of stellar evolution, as physicists worked out not just how stars shine, but how they origi- will soon start dimming for nate, live, change, and die. To test theory against reality, however, astronomers had to determine accurate masses the eighth time since 1821. for many diff erent kinds of stars — and this meant analyz- What’s going on is still ing the motions of binary pairs. Theorists also needed the stars’ exact diameters, and this meant analyzing the light not exactly clear. curves of eclipsing binaries in particular. A century ago, S&T ILLUSTRATION BY CASEY REED giants of early astrophysics worked intensely on the prob- lem of eclipsing-binary analysis. Henry Norris Russell’s paper “On the Determination of the Orbital Elements of Eclipsing Variable Stars,” published in 1912, set the stage for what followed. BIG WHITE STAR, BIGGER BLACK PARTNER Epsilon Aurigae, hotter than the Sun and larger than Earth’s entire orbit, pours forth some 130,000 times the Sun’s light — which is why it shines as brightly as 3rd magnitude even from 2,000 light-years away. According to the currently favored model, a long, dark object will start sliding across its middle this summer. The object seems to be an opaque warped disk 10 a.u. wide and appearing roughly 1 a.u. tall. Whatever lies at its center seems to be hidden — though there’s also evidence that we see right through the center. -
Luminous Blue Variables
Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs. -
Aerodynamic Phenomena in Stellar Atmospheres, a Bibliography
- PB 151389 knical rlote 91c. 30 Moulder laboratories AERODYNAMIC PHENOMENA STELLAR ATMOSPHERES -A BIBLIOGRAPHY U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS ^M THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; in- vention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's work take the form of either actual equipment and devices or pub- lished papers. -
SHELL BURNING STARS: Red Giants and Red Supergiants
SHELL BURNING STARS: Red Giants and Red Supergiants There is a large variety of stellar models which have a distinct core – envelope structure. While any main sequence star, or any white dwarf, may be well approximated with a single polytropic model, the stars with the core – envelope structure may be approximated with a composite polytrope: one for the core, another for the envelope, with a very large difference in the “K” constants between the two. This is a consequence of a very large difference in the specific entropies between the core and the envelope. The original reason for the difference is due to a jump in chemical composition. For example, the core may have no hydrogen, and mostly helium, while the envelope may be hydrogen rich. As a result, there is a nuclear burning shell at the bottom of the envelope; hydrogen burning shell in our example. The heat generated in the shell is diffusing out with radiation, and keeps the entropy very high throughout the envelope. The core – envelope structure is most pronounced when the core is degenerate, and its specific entropy near zero. It is supported against its own gravity with the non-thermal pressure of degenerate electron gas, while all stellar luminosity, and all entropy for the envelope, are provided by the shell source. A common property of stars with well developed core – envelope structure is not only a very large jump in specific entropy but also a very large difference in pressure between the center, Pc, the shell, Psh, and the photosphere, Pph. Of course, the two characteristics are closely related to each other. -
Temperature, Mass and Size of Stars
Title Astro100 Lecture 13, March 25 Temperature, Mass and Size of Stars http://www.astro.umass.edu/~myun/teaching/a100/longlecture13.html Also, http://www.astro.columbia.edu/~archung/labs/spring2002/spring2002.html (Lab 1, 2, 3) Goal Goal: To learn how to measure various properties of stars 9 What properties of stars can astronomers learn from stellar spectra? Î Chemical composition, surface temperature 9 How useful are binary stars for astronomers? Î Mass 9 What is Stefan-Boltzmann Law? Î Luminosity, size, temperature 9 What is the Hertzsprung-Russell Diagram? Î Distance and Age Temp1 Stellar Spectra Spectrum: light separated and spread out by wavelength using a prism or a grating BUT! Stellar spectra are not continuous… Temp2 Stellar Spectra Photons from inside of higher temperature get absorbed by the cool stellar atmosphere, resulting in “absorption lines” At which wavelengths we see these lines depends on the chemical composition and physical state of the gas Temp3 Stellar Spectra Using the most prominent absorption line (hydrogen), Temp4 Stellar Spectra Measuring the intensities at different wavelength, Intensity Wavelength Wien’s Law: λpeak= 2900/T(K) µm The hotter the blackbody the more energy emitted per unit area at all wavelengths. The peak emission from the blackbody moves to shorter wavelengths as the T increases (Wien's law). Temp5 Stellar Spectra Re-ordering the stellar spectra with the temperature Temp-summary Stellar Spectra From stellar spectra… Surface temperature (Wien’s Law), also chemical composition in the stellar -
Science Units Grade 12 Advanced
Science units Grade 12 advanced Contents 12AB.1 Biological energetics 391 12AC.1 The periodic table 455 12AP.1 Gravity and circular motion 507 12AB.2 Transport systems 401 12AC.2 Rates of reaction 465 12AP.2 The nature of matter 515 12AB.3 Control, coordination and 413 12AC.3 Acids and K values 471 12AP.3 Thermodynamics 525 homeostasis 12AB.4 Human immune system 427 12AC.4 Energy and entropy 477 12AP.4 Oscillations 533 12AB.5 Genetic inheritance 435 12AC.5 Organic reaction 483 12AP.5 Electrostatic charge and 543 mechanisms force 12AB.6 Ecological relationships 441 12AC.6 Aromatic organic chemistry 489 12AP.6 Quantum and nuclear 557 physics 12AB.7 Biotechnology 449 12AC.7 Making and using chemicals 495 12AP.7 Astrophysics and cosmology 569 12AC.8 Macromolecules 501 Science scheme of work: Grade 12 advanced units 270 hours 1st semester 124 teaching hours Biology: 48 hours Chemistry: 37 hours Physics: 39 hours Unit 12AB.0: Revision unit Unit 12AC.0: Revision unit Unit 12AP.0: Revision unit Revision of key ideas from Grade 11. Revision of key ideas from Grade 11. Revision of key ideas from Grade 11. 3 hours 3 hours 3 hours Unit 12AP.1: Gravity and circular motion Unit 12AB.1: Biological energetics Unit 12AC.1: The periodic table Centripetal acceleration and force. Angular velocity. Biochemistry of anaerobic and aerobic respiration. Periodicity in ionisation energy, electron affinity and Gravitational field strength. Newton's law of ATP structure and generation. Biochemistry of electronegativity. Properties, compounds and trends gravitation. Satellites in circular orbit. Energy of an photosynthesis. -
Mass-Radius Relations for Massive White Dwarf Stars
A&A 441, 689–694 (2005) Astronomy DOI: 10.1051/0004-6361:20052996 & c ESO 2005 Astrophysics Mass-radius relations for massive white dwarf stars L. G. Althaus1,, E. García-Berro1,2, J. Isern2,3, and A. H. Córsico4,5, 1 Departament de Física Aplicada, Universitat Politècnica de Catalunya, Av. del Canal Olímpic, s/n, 08860 Castelldefels, Spain e-mail: [leandro;garcia]@fa.upc.es 2 Institut d’Estudis Espacials de Catalunya, Ed. Nexus, c/Gran Capità 2, 08034 Barcelona, Spain e-mail: [email protected] 3 Institut de Ciències de l’Espai, C.S.I.C., Campus UAB, Facultat de Ciències, Torre C-5, 08193 Bellaterra, Spain 4 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata, Argentina e-mail: [email protected] 5 Instituto de Astrofísica La Plata, IALP, CONICET, Argentina Received 4 March 2005 / Accepted 18 July 2005 Abstract. We present detailed theoretical mass-radius relations for massive white dwarf stars with oxygen-neon cores. This work is motivated by recent observational evidence about the existence of white dwarf stars with very high surface gravities. Our results are based on evolutionary calculations that take into account the chemical composition expected from the evolu- tionary history of massive white dwarf progenitors. We present theoretical mass-radius relations for stellar mass values ranging from1.06to1.30 M with a step of 0.02 M and effective temperatures from 150 000 K to ≈5000 K. A novel aspect predicted by our calculations is that the mass-radius relation for the most massive white dwarfs exhibits a marked dependence on the neutrino luminosity. -