Be STAR NEWSLETTER

Total Page:16

File Type:pdf, Size:1020Kb

Be STAR NEWSLETTER ISSN Be STAR NEWSLETTER NUMBER September EditorinChief Technical Editor Geraldine J Peters Douglas R Gies email g jp etersmucenuscedu email giescharagsuedu Space Sciences Center Center for High Angular Resolution Astronomy University of Southern California Georgia State University University Park University Plaza Los Angeles CA Atlanta Georgia Tel Tel FAX FAX Contents Editorial Working Group Matters Working Group News Myron Smith Jir Horn and Karel Juza P Harmanec Contributions New WUPPEAstro Observations of Hot Stars K Bjorkman et al Rapid Changes in the Sp ectrum of HD W Bidelman Recent Activity in Cen O Stahl et al Observation of a V R transition in Oph R Hanuschik et al A simple and natural explanation for shell events R Hanuschik Mo de Identication for doublewave Eri Stars L Balona The Radial Velocity Variation of Eri L Balona Whats Happ ening Forthcoming Multiwavelength Campaign on Eri G Peters Intensive Campaign on Cas M Smith IUE Campaign on Ori G Peters More on Be Star h Persei J Fabregat Polarization Activity in Omicron And D McDavid Photometric Reduction Software P Harmanec Newsletters on the WWW S Cranmer NRP Movie on the WWW J Telting Preprints Received Bibliography Meetings The Be Star Newsletter is produced at and nancial ly supported by the Georgia State University Department of Physics and Astronomy The electronic version is available on the World Wide Web httpcharagsueduBeNewsintrohtml or by anonymous ftp ftp charagsuedu cd BeNews Be Star Newsletter EDITORIAL We are happy to send you the th issue of the Be Star Newsletter We continue to make the Newsletter available in three forms pap er plain ASCI I text that is sent to email subscrib ers and also available via anonymous ftp and our version on the World Wide Web WWW We continue to receive p ositive feedback on our electronic Newsletter on the WWW and exp ect that it will continue evolve We are of course eager to hear your suggestions for improvement and are esp ecially interested in your opinions on whether we should continue to oer the email version in plain ASCI I text or p erhaps switch to a pure LaTeX format In Issue No we are pleased to publish the rst summary of the UV p olarimetric observations on hot stars that were obtained with the Wisconsin Ultraviolet Photo Polarimeter Exp eriment WUPPE on b oard the Astro Observatory payload own on the space shuttle Columbia in March Also included in this large issue are rep orts on recent activity in Cen Oph and HD Contributions discussing the geometry of shell phases pulsation mo des in the Eri stars and further discussion on the radial velocity variations in Eri itself are also a part of Issue No In our section Whats Happ ening we include announcements of several campaigns on Be stars and other newsworthy information of interest to the B star community The usualPreprints Received Bibliography note the new style and information on forthcoming Meetings are also a part of Issue No As usual we would like to thank those who sent contributions and help ed compile the bibliography We anticipate that Issue No will go to press around the rst of February In order to insure that your contribution will app ear please send copies to the editor inchief and technical editor by January We recommend that communications b e sent by electronic mail HYADESPETERS g jp etersmucenuscedu giescharagsuedu and prefer that contributions and ab stracts of submitted pap ers b e sent as LaTeX les Beginning with Issue No we will require that abstracts b e submitted as LaTeX les and we will supply a template for their preparation If it is not p ossible to transmit your contribution electroni cally we request that it b e submitted in a cameraready condition see pap ers in the current issue for style Contributions may also b e sent by FAX telephone number but this is not recommended for pap ers that are longer than a half page or those that contain gures due to the degradation of the resolution We pre fer that illustrations b e sent by Email as a PostScript or encapsulated PostScript le If this is not p ossible please send dark clear copies of the gures by regular mail References should by typed in the newer simpler style recently adopted by the Astrophysical Journal and other ma jor astronomical publications I would like to wish you in advance a pro ductive fall and happy holiday season and New Year I am lo oking forward to receiving your contributions in the months to come Gerrie Peters EditorinChief Be Star Newsletter WORKING GROUP MATTERS Working Group News Myron A Smith Working Group Chairman email BEIAUiuegtcgsfcnasagov First Jo e Cassinelli and I would like to arrange a regional meeting of members of the classical Be and BeXray communities next year for one day This would b e a very informal gathering that would coincide with the American Astronomical So ci ety meeting at the same time and place in Madison Wisconsin Jo e will set aside appropriate space for a meeting but it will not b e a part of the AAS meeting p er se We would b e delighted to welcome nonNorth American astronomers but they should b e aware that they would have to register for attendance of the AAS meeting separately The Wisconsin AAS meeting will take place b etween Sunday June and Thursday June Our meeting would b e held on either Friday June or Saturday June Should you b e interested please contact me Myron Smith at beiauiuegtcgsfcnasagov Second I want to remind you that the p ost of Scientic Editor of the Be Star Newslet ter will b e op en at the end of the year as the current term expires The current editor is of course Dr Gerrie Peters Gerrie has indicated that she would like to serve for a new term and we should b e thankful that there will indeed b e an outstanding candidate for the new term of At this time I would like to start to invite other willing candidates as well Should anyone b e interested please contact me or any of the other B Star Organizing Committee members Third as you may b e aware at the last IAU General Assembly in August the IAU approved a plan whereby the old Commissions would b e phased out in favor of a new structure in which a web of working groups would grow and interconnect within IAU Divisions This past winter the Division of Variable Stars and Close Binary Stars to which we will want to b elong elected its Division chairman Dr Yoji Kondo of the USA kondostarsgsfcnasagov Because this pro cess has just started I have continued with my plan which will t in well with the new IAU structure to request that our Working Group b e aliated with more than the original parent Commissions on Stellar Sp ectra and Variable Stars Therefore I have requested an aliation with the commissions on Theory of Stellar Atmospheres C and Close Binary Stars C I am now awaiting a replies from Lawrence Cram and Marcello Ro dono on this p etition Pro ceeding to topical liaisons I have circulated an invitation for several Xray as tronomers who study Xray Be binaries and High Mass Xray Binaries to join our Working Group and several have asked to b e put on the distribution list of the Chair and Newsletter Editors With the advent of ISO I am inviting interested members of the OC and others to solicit interested researchers in the study of high mass IR and radio emitting B stars to o In early February several of us in the WG were fortunate enough to attend the pulsation conference at Cap e Town South Africa As Mike Jerzykiewicz recently put Be Star Newsletter it the conference organizers in Cap e Town set new standards for hosting a conference that will b e dicult for the rest of us to emulate but we should try In any case the conference which concerned pulsators across the HRD was enjoyed by all participants It seemed to me that the conference gave a little more emphasis and certainly more results on RPNRP in B stars than other pulsation meetings over the last years For me one of the highlights was the talk by Pawel Moskalik on the theory of pulsations in B stars based on the demonstration that the new OPALOP opacities are sucient to drive radial and nonradial pulsations in B stars The new results leave many questions unanswered but certainly are a breath of fresh air to the observers who have had b een courageous enough in the past to interpret their results There were several interesting p oster pap ers on B stars as well Everyone has a favorite and mine was one by Telting et al on Cephei This pap er gives evidence for rotational splitting of NRP mo des consistent with a rotational p erio d of several days The evidence is apparently getting stronger for a magnetic dip ole as well as secondary NRP mo des in this star Jir Horn and Karel Juza Two Czech stellar astronomers and rare men Within less than a year the Stellar Department of the Astronomical Institute in Ondrejov Czech Republic whose astronomers traditionally study hot stars and Be stars in particular lost two of its most remarkable p ersonalities Drs Jir Horn and Karel Juza Karel died on March just b efore he could defend his PhD thesis devoted to a complex study of Dra Jirpassed away on December at age Though very dierent in character they were b oth brilliant scientists yet very mo dest p erhaps to o mo dest men For b oth of them their way to the profession of astronomy was full of obstacles
Recommended publications
  • The Very Long Mystery of Epsilon Aurigae
    A Unique Eclipsing Variable TheThe VeryVery LongLong MMysteryystery ofof EpsilonEpsilon AAurigaeurigae robertrobert e. sstenceltencel one of the great scientifi c advances of the 20th A remarkable naked-eye star century was the theory of stellar evolution, as physicists worked out not just how stars shine, but how they origi- will soon start dimming for nate, live, change, and die. To test theory against reality, however, astronomers had to determine accurate masses the eighth time since 1821. for many diff erent kinds of stars — and this meant analyz- What’s going on is still ing the motions of binary pairs. Theorists also needed the stars’ exact diameters, and this meant analyzing the light not exactly clear. curves of eclipsing binaries in particular. A century ago, S&T ILLUSTRATION BY CASEY REED giants of early astrophysics worked intensely on the prob- lem of eclipsing-binary analysis. Henry Norris Russell’s paper “On the Determination of the Orbital Elements of Eclipsing Variable Stars,” published in 1912, set the stage for what followed. BIG WHITE STAR, BIGGER BLACK PARTNER Epsilon Aurigae, hotter than the Sun and larger than Earth’s entire orbit, pours forth some 130,000 times the Sun’s light — which is why it shines as brightly as 3rd magnitude even from 2,000 light-years away. According to the currently favored model, a long, dark object will start sliding across its middle this summer. The object seems to be an opaque warped disk 10 a.u. wide and appearing roughly 1 a.u. tall. Whatever lies at its center seems to be hidden — though there’s also evidence that we see right through the center.
    [Show full text]
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]
  • Aerodynamic Phenomena in Stellar Atmospheres, a Bibliography
    - PB 151389 knical rlote 91c. 30 Moulder laboratories AERODYNAMIC PHENOMENA STELLAR ATMOSPHERES -A BIBLIOGRAPHY U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS ^M THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; in- vention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's work take the form of either actual equipment and devices or pub- lished papers.
    [Show full text]
  • SHELL BURNING STARS: Red Giants and Red Supergiants
    SHELL BURNING STARS: Red Giants and Red Supergiants There is a large variety of stellar models which have a distinct core – envelope structure. While any main sequence star, or any white dwarf, may be well approximated with a single polytropic model, the stars with the core – envelope structure may be approximated with a composite polytrope: one for the core, another for the envelope, with a very large difference in the “K” constants between the two. This is a consequence of a very large difference in the specific entropies between the core and the envelope. The original reason for the difference is due to a jump in chemical composition. For example, the core may have no hydrogen, and mostly helium, while the envelope may be hydrogen rich. As a result, there is a nuclear burning shell at the bottom of the envelope; hydrogen burning shell in our example. The heat generated in the shell is diffusing out with radiation, and keeps the entropy very high throughout the envelope. The core – envelope structure is most pronounced when the core is degenerate, and its specific entropy near zero. It is supported against its own gravity with the non-thermal pressure of degenerate electron gas, while all stellar luminosity, and all entropy for the envelope, are provided by the shell source. A common property of stars with well developed core – envelope structure is not only a very large jump in specific entropy but also a very large difference in pressure between the center, Pc, the shell, Psh, and the photosphere, Pph. Of course, the two characteristics are closely related to each other.
    [Show full text]
  • Temperature, Mass and Size of Stars
    Title Astro100 Lecture 13, March 25 Temperature, Mass and Size of Stars http://www.astro.umass.edu/~myun/teaching/a100/longlecture13.html Also, http://www.astro.columbia.edu/~archung/labs/spring2002/spring2002.html (Lab 1, 2, 3) Goal Goal: To learn how to measure various properties of stars 9 What properties of stars can astronomers learn from stellar spectra? Î Chemical composition, surface temperature 9 How useful are binary stars for astronomers? Î Mass 9 What is Stefan-Boltzmann Law? Î Luminosity, size, temperature 9 What is the Hertzsprung-Russell Diagram? Î Distance and Age Temp1 Stellar Spectra Spectrum: light separated and spread out by wavelength using a prism or a grating BUT! Stellar spectra are not continuous… Temp2 Stellar Spectra Photons from inside of higher temperature get absorbed by the cool stellar atmosphere, resulting in “absorption lines” At which wavelengths we see these lines depends on the chemical composition and physical state of the gas Temp3 Stellar Spectra Using the most prominent absorption line (hydrogen), Temp4 Stellar Spectra Measuring the intensities at different wavelength, Intensity Wavelength Wien’s Law: λpeak= 2900/T(K) µm The hotter the blackbody the more energy emitted per unit area at all wavelengths. The peak emission from the blackbody moves to shorter wavelengths as the T increases (Wien's law). Temp5 Stellar Spectra Re-ordering the stellar spectra with the temperature Temp-summary Stellar Spectra From stellar spectra… Surface temperature (Wien’s Law), also chemical composition in the stellar
    [Show full text]
  • Science Units Grade 12 Advanced
    Science units Grade 12 advanced Contents 12AB.1 Biological energetics 391 12AC.1 The periodic table 455 12AP.1 Gravity and circular motion 507 12AB.2 Transport systems 401 12AC.2 Rates of reaction 465 12AP.2 The nature of matter 515 12AB.3 Control, coordination and 413 12AC.3 Acids and K values 471 12AP.3 Thermodynamics 525 homeostasis 12AB.4 Human immune system 427 12AC.4 Energy and entropy 477 12AP.4 Oscillations 533 12AB.5 Genetic inheritance 435 12AC.5 Organic reaction 483 12AP.5 Electrostatic charge and 543 mechanisms force 12AB.6 Ecological relationships 441 12AC.6 Aromatic organic chemistry 489 12AP.6 Quantum and nuclear 557 physics 12AB.7 Biotechnology 449 12AC.7 Making and using chemicals 495 12AP.7 Astrophysics and cosmology 569 12AC.8 Macromolecules 501 Science scheme of work: Grade 12 advanced units 270 hours 1st semester 124 teaching hours Biology: 48 hours Chemistry: 37 hours Physics: 39 hours Unit 12AB.0: Revision unit Unit 12AC.0: Revision unit Unit 12AP.0: Revision unit Revision of key ideas from Grade 11. Revision of key ideas from Grade 11. Revision of key ideas from Grade 11. 3 hours 3 hours 3 hours Unit 12AP.1: Gravity and circular motion Unit 12AB.1: Biological energetics Unit 12AC.1: The periodic table Centripetal acceleration and force. Angular velocity. Biochemistry of anaerobic and aerobic respiration. Periodicity in ionisation energy, electron affinity and Gravitational field strength. Newton's law of ATP structure and generation. Biochemistry of electronegativity. Properties, compounds and trends gravitation. Satellites in circular orbit. Energy of an photosynthesis.
    [Show full text]
  • Mass-Radius Relations for Massive White Dwarf Stars
    A&A 441, 689–694 (2005) Astronomy DOI: 10.1051/0004-6361:20052996 & c ESO 2005 Astrophysics Mass-radius relations for massive white dwarf stars L. G. Althaus1,, E. García-Berro1,2, J. Isern2,3, and A. H. Córsico4,5, 1 Departament de Física Aplicada, Universitat Politècnica de Catalunya, Av. del Canal Olímpic, s/n, 08860 Castelldefels, Spain e-mail: [leandro;garcia]@fa.upc.es 2 Institut d’Estudis Espacials de Catalunya, Ed. Nexus, c/Gran Capità 2, 08034 Barcelona, Spain e-mail: [email protected] 3 Institut de Ciències de l’Espai, C.S.I.C., Campus UAB, Facultat de Ciències, Torre C-5, 08193 Bellaterra, Spain 4 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata, Argentina e-mail: [email protected] 5 Instituto de Astrofísica La Plata, IALP, CONICET, Argentina Received 4 March 2005 / Accepted 18 July 2005 Abstract. We present detailed theoretical mass-radius relations for massive white dwarf stars with oxygen-neon cores. This work is motivated by recent observational evidence about the existence of white dwarf stars with very high surface gravities. Our results are based on evolutionary calculations that take into account the chemical composition expected from the evolu- tionary history of massive white dwarf progenitors. We present theoretical mass-radius relations for stellar mass values ranging from1.06to1.30 M with a step of 0.02 M and effective temperatures from 150 000 K to ≈5000 K. A novel aspect predicted by our calculations is that the mass-radius relation for the most massive white dwarfs exhibits a marked dependence on the neutrino luminosity.
    [Show full text]
  • Bright Be-Shell Stars,,
    A&A 459, 137–145 (2006) Astronomy DOI: 10.1051/0004-6361:20053008 & c ESO 2006 Astrophysics Bright Be-shell stars,, Th. Rivinius1,S.Štefl1, and D. Baade2 1 European Southern Observatory, Casilla 19001, Santiago 19, Chile e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany Received 25 March 2003 / Accepted 28 June 2006 ABSTRACT Echelle observations are presented and discussed for 23 of the 27 known “normal” shell stars brighter than about 6.5 mag. In addition to those typical cases, three stars with known transitions between emission & shell and pure emission line appearance, and three rapidly rotating B stars without records of line emission (Bn stars) are added to the sample. Long-term V/R emission-line variability and central quasi emission bumps (CQEs) in photospheric lines were found in 75% of all normal shell stars. This strongly suggests that the velocity law in most, if not all, disks of Be stars is roughly Keplerian. Both phenomena may occur in the same star but not at the same time. This is in agreement with the previous conclusion that CQEs only form in the presence of negligible line-of-sight velocities while long-term V/R variations are due to non-circular gas particle orbits caused by global disk oscillations. V/R variations associated with binary orbits are much less pronounced. Similarly, phase lags between different lines were detected in long-term V/R variable stars only. A binary fraction of only one-third is too low to support binary hypotheses as an explanation of the Be phenomenon.
    [Show full text]
  • Download the AAS 2011 Annual Report
    2011 ANNUAL REPORT AMERICAN ASTRONOMICAL SOCIETY aas mission and vision statement The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the universe. 1. The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public. 2. The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests. 3. The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science. 4. The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy. A 5. The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering. Adopted 7 June 2009 A S 2011 ANNUAL REPORT - CONTENTS 4 president’s message 5 executive officer’s message 6 financial report 8 press & media 9 education & outreach 10 membership 12 charitable donors 14 AAS/division meetings 15 divisions, committees & workingA groups 16 publishing 17 public policy A18 prize winners 19 member deaths 19 society highlights Established in 1899, the American Astronomical Society (AAS) is the major organization of professional astronomers in North America.
    [Show full text]
  • The Connection Between Galaxy Stellar Masses and Dark Matter
    The Connection Between Galaxy Stellar Masses and Dark Matter Halo Masses: Constraints from Semi-Analytic Modeling and Correlation Functions by Catherine E. White A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy. Baltimore, Maryland August, 2016 c Catherine E. White 2016 ⃝ All rights reserved Abstract One of the basic observations that galaxy formation models try to reproduce is the buildup of stellar mass in dark matter halos, generally characterized by the stellar mass-halo mass relation, M? (Mhalo). Models have difficulty matching the < 11 observed M? (Mhalo): modeled low mass galaxies (Mhalo 10 M ) form their stars ∼ ⊙ significantly earlier than observations suggest. Our goal in this thesis is twofold: first, work with a well-tested semi-analytic model of galaxy formation to explore the physics needed to match existing measurements of the M? (Mhalo) relation for low mass galaxies and second, use correlation functions to place additional constraints on M? (Mhalo). For the first project, we introduce idealized physical prescriptions into the semi-analytic model to test the effects of (1) more efficient supernova feedback with a higher mass-loading factor for low mass galaxies at higher redshifts, (2) less efficient star formation with longer star formation timescales at higher redshift, or (3) less efficient gas accretion with longer infall timescales for lower mass galaxies. In addition to M? (Mhalo), we examine cold gas fractions, star formation rates, and metallicities to characterize the secondary effects of these prescriptions. ii ABSTRACT The technique of abundance matching has been widely used to estimate M? (Mhalo) at high redshift, and in principle, clustering measurements provide a powerful inde- pendent means to derive this relation.
    [Show full text]
  • LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
    LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian
    [Show full text]
  • Arxiv:1807.00574V1
    Draft version July 3, 2018 Typeset using LATEX default style in AASTeX62 New Oe stars in LAMOST DR5 Guang-Wei Li,1 Jian-Rong Shi,1 Brian Yanny,2 Zhong-Rui Bai,1 Si-Cheng Yu,1 Yi-qiao Dong,1 Ya-Juan Lei,1 Hai-Long Yuan,1 Wei Zhang,1 and Yong-Heng Zhao1 1Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China 2Fermi National Accelerator Laboratory, Batavia, IL 60510, USA (Received March 26, 2018; Accepted June 27, 2018) Submitted to ApJ ABSTRACT Stars of spectral type Oe are very rare. To date, only 13 Oe stars have been identified within our Galaxy. In this paper, we present six new Oe stars and four new B0e stars found in LAMOST DR5. Repeated spectral observations of the same Oe stars show some emission line variability. The Hβ emission of TYC 4801-17-1 shows rapid V/R variation. Phase lags in the V/R ratio of TYC 4801-17-1 spectra are also seen. We found the unusual O4.5 star RL 128 is an Oe star with variable Hα intensity and its Ca II triplet emission appears when Hα emission reaches maximum intensity. These newly identified early type Oe and B0e stars significantly increase the known sample. Keywords: stars: early-type — stars: emission-line, Be — stars: massive 1. INTRODUCTION The classic Oe spectral stellar type was defined by Conti & Leep (1974) as O type spectra showing emission in the hydrogen lines, but without N III λ4634-4640-4642 or He II λ4686 emission features.
    [Show full text]