The Deuterostomes Deuterostomes Why Are Echinoderms Considered

Total Page:16

File Type:pdf, Size:1020Kb

The Deuterostomes Deuterostomes Why Are Echinoderms Considered Protostome The Deuterostomes Deuterostomes Echinoderms and Chordates The SECOND opening of Ch 35 the digestive system (in the gastrula stage) becomes the mouth Deuterostomes Characteristics: • Bilaterally symetrical • Coelomate • Blastopore fate (anus) – Second opening in the gastrula becomes the mouth – This developmental similarity between echinoderms and chordates is supported by DNA sequence data Phylum Echinodermata Why are Echinoderms considered (Gk: echin = spiny; derma = skin) to be bilaterally symmetrical? • 5 Classes: Sea stars, brittle stars, sea urchins, sand dollars, sea cucumbers • A thin skin covers an endoskeleton of hard calcareous plates • 7,500 species – all marine 1 Adults - Pentaradial Echinoderm larvae are bilateral Starfish larvae Sea Urchin larva Sea Cucumber Some species are commercially harvested for human food Echinoderm Features • Unique “water vascular system” • A network of hydraulic canals used in: • locomotion • feeding • gas exchange • excretion 2 Sea Star anatomy Tube feet of a sea cucumber • Muscle and nervous tissue, but no cephalization Sea Star feeding on a bivalve in adults • Endoskeleton of hard calcareous plates • Complete (but short) digestive system • No specialized respiratory, circulatory, or excretory systems • Separate male and female individuals • External fertilization Everts stomach into the bivalve to digest it INSIDE ITS OWN SHELL!! Sea stars = Keystone predators Crown-of-thorns sea star • Keystone species - plays a unique role in the • Feed on the living cnidarians that produce coral reefs way ecosystems function – greater than • Population explosions of the crown-of-thorns sea star what their biomass would suggest. can severely damage coral reefs • Sea stars eat shell fish (urchins, mussels, • Causes of outbreaks appear to be removal of natural etc) that most others do not eat predators and increased nutrient levels in the water • If sea urchins and/or mussels (herbivores) (both due to human activities) take over what will happen? • Control efforts include injection of ! individual starfish with chemical toxins 3 Phylum Chordata Phylum Chordata • Divided into 3 subphyla, which include 11 This phylum includes the animals that major groups of chordates are most familiar to us - and includes humans. • Some of the 11 groups are defined as “Classes” by biologists • Others of the 11 groups are currently considered to be “clades”, i.e. formal taxonomic level has not been agreed upon Chordates! Fig 35.12 • Chordate does NOT = Vertebrate All chordates have four characteristics 1. Pharyngeal slits (at some developmental stage) • Openings to the outside of the body at the pharynx (region just behind the mouth) 1. Pharyngeal gill slits – Allows water that enters the mouth to exit without passing though the gut in invertebrate chordates 2. Dorsal hollow nerve cord – Modified for gas exchange or other functions in vertebrates 3. Notochord 4. Post-anal tail Fig. 34.3 Pharyngeal slits 4 2. Dorsal hollow nerve cord 2. Dorsal hollow nerve cord • Unique to chordates • Nerve cord develops into the central nervous – Other animals have a solid nerve cord that is usually system ventrally located – Brain and spinal cord Dorsal hollow nerve cord Ventral solid 3. Notochord 4. Muscular post-anal tail • A flexible rod located between nerve cord and gut • Skeletal elements (notochord) and muscles – Provides skeletal support for muscle attachment • Lost during embryonic development in many – Only remnants of embryonic notochord found in most species adult vertebrates – Non-chordates have a digestive tract that extends the length of the body Notochord Post-anal tail Phylum Chordata Subphylum Cephalochordata Three Subphyla: • Called “lancelets” because of their blade-like shape 1. Cephalochordata • Chordate characteristics persist into adulthood • Globally rare, but some places have high 2. Urochordata population density (e.g., Tampa Bay, Florida) 3. Vertebrates 5 Lancelet Anatomy Suspension feeders that use their pharyngeal slits to filter out small food particles Typically present buried tail-first in sand Subphylum Urochordata Adult tunicates don’t look much like a “chordate” • Tunicates (“sea squirts”) • No notochord, nerve cord or tail • Filter feeders with incurrent and excurrent siphons Adult tunicates don’t look much Some tunicate species are like a “chordate” colonial • But these features are present in the tunicate larval form… 6 The Vertebrates! Subphylum Vertebrates • Chordates with a skull (either bone or cartilage) • Includes all of the animals we call “vertebrates” Finally - something we’ve heard of!! All vertebrates have the same • Includes some large and rather obvious characteristics as chordates animals that are quite familiar to us (at some developmental stage), plus • But remember that vertebrates represent • Pronounced cephalization less than 5% of the known animal species – With a skull (cranium) on Earth • Vertebral column that encloses the nerve cord – Replaces the notochord function • Endoskeletons that grows with the animal • Closed circulatory system • Lampreys 7 Hagfish (Clade Myxini) Jawless Lost vertebrae through evolution (ancestors had vertebrae) 8 .
Recommended publications
  • Flatworms Phylum Platyhelminthes
    Flatworms Phylum Platyhelminthes The flatworms include more than 13,000 species of free-living and parasitic species.There are 3 classes of flat- worms, the planarians, flukes and tapeworms. General Physical Traits (Anatomy): Flatworms are bilaterally symmetrical. This means that they can only be cut them length-wise to produce two mirror-image halves. They have a distinct right and left half. This is differ- ent from radially symmetrical animals, like the anemones, which can be cut anywhere top to bottom to get two similar halves. Flatworms have 3 tissue layers, compared to the 2 layers in sponges and cnidarians (jellyfishes, anemones and corals). They also have only one opening for food to enter and waste to leave, like the sponges and cnidarians. This is called a “sac” body plan. Planarian (class Tubellaria) Habitat: They live mostly in saltwater (marine) habitats, but are also found in freshwater. Habits: They are free-living flatworms (not parasites). Physical Traits (Anatomy): Planarians are small - less than a centimeter long. They have a head, brain and sense organs. This is called “cephalization.” The sense organs – called eyespots – look like eyes and are sensitive to light changes, but are not like human eyes. They are made up of simple nerve cells that respond to stimuli, like light. When many nerve cells are gathered in one place, they are called a “ganglion,” so the two eyespots are actually ganglia. They also have points on either side of the head that look a bit like ears, called “sensory lobes” or auricles. They do not hear, but can sense food.
    [Show full text]
  • Illinois Fossils Doc 2005
    State of Illinois Illinois Department of Natural Resources Illinois Fossils Illinois Department of Natural Resources he Illinois Fossils activity book from the Illinois Department of Natural Resources’ (IDNR) Division of Education is designed to supplement your curriculum in a vari- ety of ways. The information and activities contained in this publication are targeted toT grades four through eight. The Illinois Fossils resources trunk and lessons can help you T teach about fossils, too. You will find these and other supplemental items through the Web page at https://www2.illinois.gov/dnr/education/Pages/default.aspx. Contact the IDNR Division of Education at 217-524-4126 or [email protected] for more information. Collinson, Charles. 2002. Guide for beginning fossil hunters. Illinois State Geological Survey, Champaign, Illinois. Geoscience Education Series 15. 49 pp. Frankie, Wayne. 2004. Guide to rocks and minerals of Illinois. Illinois State Geological Survey, Champaign, Illinois. Geoscience Education Series 16. 71 pp. Killey, Myrna M. 1998. Illinois’ ice age legacy. Illinois State Geological Survey, Champaign, Illinois. Geoscience Education Series 14. 67 pp. Much of the material in this book is adapted from the Illinois State Geological Survey’s (ISGS) Guide for Beginning Fossil Hunters. Special thanks are given to Charles Collinson, former ISGS geologist, for the use of his fossil illustrations. Equal opportunity to participate in programs of the Illinois Department of Natural Resources (IDNR) and those funded by the U.S. Fish and Wildlife Service and other agencies is available to all individuals regardless of race, sex, national origin, disability, age, reli-gion or other non-merit factors.
    [Show full text]
  • Energetics of Larval Swimming and Metamorphosis in Four Species of Bugula (Bryozoa)
    Energetics of Larval Swimming and Metamorphosis in Four Species of Bugula (Bryozoa) DEAN E. WENDT* Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 Abstract. The amount of energy available to larvae dur­ Introduction ing swimming, location of a suitable recruitment site, and metamorphosis influences the length of time they can spend The larval life of many marine invertebrates is character­ in the plankton. Energetic parameters such as swimming ized by three distinct phases. The first, a swimming phase, speed, oxygen consumption during swimming and meta­ is both a means of dispersal and, in planktotrophic larvae, a morphosis, and elemental carbon and nitrogen content were time to sequester the energy needed for larval development measured for larvae of four species of bryozoans, Bugula and metamorphosis. The two subsequent phases—settle­ neritina, B. simplex, B. stolonifera, and B. turrita. The ment and metamorphosis—can be temporally distinct, as in larvae of these species are aplanktotrophic with a short some echinoderm larvae (e.g., Strathmann, 1974), or tightly free-swimming phase ranging from less than one hour to a coupled, as in bryozoan larvae (e.g., Ryland, 1974). That the maximum of about 36 hours. There is about a fivefold duration of the larval swimming phase can have detrimental difference in larval volume among the four species, which effects on the latter two phases of the life cycle has been scales linearly with elemental carbon content and, presum­ demonstrated for several species in at least three phyla, ably, with the amount of endogenous reserves available for including bryozoans (Nielson, 1981; Woollacott et al., 1989; Orellana and Cancino, 1991; Hunter and Fusetani, swimming and metamorphosis.
    [Show full text]
  • "Lophophorates" Brachiopoda Echinodermata Asterozoa
    Deuterostomes Bryozoa Phoronida "lophophorates" Brachiopoda Echinodermata Asterozoa Stelleroidea Asteroidea Ophiuroidea Echinozoa Holothuroidea Echinoidea Crinozoa Crinoidea Chaetognatha (arrow worms) Hemichordata (acorn worms) Chordata Urochordata (sea squirt) Cephalochordata (amphioxoius) Vertebrata PHYLUM CHAETOGNATHA (70 spp) Arrow worms Fossils from the Cambrium Carnivorous - link between small phytoplankton and larger zooplankton (1-15 cm long) Pharyngeal gill pores No notochord Peculiar origin for mesoderm (not strictly enterocoelous) Uncertain relationship with echinoderms PHYLUM HEMICHORDATA (120 spp) Acorn worms Pharyngeal gill pores No notochord (Stomochord cartilaginous and once thought homologous w/notochord) Tornaria larvae very similar to asteroidea Bipinnaria larvae CLASS ENTEROPNEUSTA (acorn worms) Marine, bottom dwellers CLASS PTEROBRANCHIA Colonial, sessile, filter feeding, tube dwellers Small (1-2 mm), "U" shaped gut, no gill slits PHYLUM CHORDATA Body segmented Axial notochord Dorsal hollow nerve chord Paired gill slits Post anal tail SUBPHYLUM UROCHORDATA Marine, sessile Body covered in a cellulose tunic ("Tunicates") Filter feeder (» 200 L/day) - perforated pharnx adapted for filtering & repiration Pharyngeal basket contractable - squirts water when exposed at low tide Hermaphrodites Tadpole larvae w/chordate characteristics (neoteny) CLASS ASCIDIACEA (sea squirt/tunicate - sessile) No excretory system Open circulatory system (can reverse blood flow) Endostyle - (homologous to thyroid of vertebrates) ciliated groove
    [Show full text]
  • Evidence for Selection on a Chordate Histocompatibility Locus
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2012.01787.x EVIDENCE FOR SELECTION ON A CHORDATE HISTOCOMPATIBILITY LOCUS Marie L. Nydam,1,2,3 Alyssa A. Taylor,3 and Anthony W. De Tomaso3 1Division of Science and Mathematics, Centre College, Danville, Kentucky 40422 2E-mail: [email protected] 3Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106 Received June 7, 2011 Accepted July 31, 2012 Allorecognition is the ability of an organism to differentiate self or close relatives from unrelated individuals. The best known applications of allorecognition are the prevention of inbreeding in hermaphroditic species (e.g., the self-incompatibility [SI] systems in plants), the vertebrate immune response to foreign antigens mediated by MHC loci, and somatic fusion, where two genetically independent individuals physically join to become a chimera. In the few model systems where the loci governing allorecognition outcomes have been identified, the corresponding proteins have exhibited exceptional polymorphism. But information about the evolution of this polymorphism outside MHC is limited. We address this subject in the ascidian Botryllus schlosseri,where allorecognition outcomes are determined by a single locus, called FuHC (Fusion/HistoCompatibility). Molecular variation in FuHC is distributed almost entirely within populations, with very little evidence for differentiation among different populations. Mutation plays a larger role than recombination in the creation of FuHC polymorphism. A selection statistic, neutrality tests, and distribution of variation within and among different populations all provide evidence for selection acting on FuHC, but are not in agreement as to whether the selection is balancing or directional.
    [Show full text]
  • BIOLOGY and METHODS of CONTROLLING the STARFISH, Asterias Forbesi {DESOR}
    BIOLOGY AND METHODS OF CONTROLLING THE STARFISH, Asterias forbesi {DESOR} By Victor L. Loosanoff Biological Laboratory Bureau of Commercial Fisheries U. S. Fish and Wildlife Service Milford, Connecticut CONTENTS Page Introduction. .. .. ... .. .. .. .. ... .. .. .. ... 1 Distribution and occurrence....................................................... 2 Food and feeding ...................................................................... 3 Methods of controL........................................ ........................... 5 Mechanical methods : Starfish mop...................................................... .................. 5 Oyster dredge... ........................ ............. ..... ... ...................... 5 Suction dredge..................................................................... 5 Underwater plow ..... ............................................................. 6 Chemical methods .................................................................. 6 Quicklime............................. ........................... ................... 7 Salt solution......... ........................................ ......... ............. 8 Organic chemicals....... ..... ... .... .................. ........ ............. ...... 9 Utilization of starfish................................................................ 11 References..... ............................................................... ........ 11 INTRODUCTION Even in the old days, when the purchas­ ing power of the dollar was much higher, The starfish has long
    [Show full text]
  • Marine Invertebrate Field Guide
    Marine Invertebrate Field Guide Contents ANEMONES ....................................................................................................................................................................................... 2 AGGREGATING ANEMONE (ANTHOPLEURA ELEGANTISSIMA) ............................................................................................................................... 2 BROODING ANEMONE (EPIACTIS PROLIFERA) ................................................................................................................................................... 2 CHRISTMAS ANEMONE (URTICINA CRASSICORNIS) ............................................................................................................................................ 3 PLUMOSE ANEMONE (METRIDIUM SENILE) ..................................................................................................................................................... 3 BARNACLES ....................................................................................................................................................................................... 4 ACORN BARNACLE (BALANUS GLANDULA) ....................................................................................................................................................... 4 HAYSTACK BARNACLE (SEMIBALANUS CARIOSUS) .............................................................................................................................................. 4 CHITONS ...........................................................................................................................................................................................
    [Show full text]
  • The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
    lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae.
    [Show full text]
  • The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates.
    [Show full text]
  • Phylum Echinodermata Phylum Echinodermata
    Phylum Echinodermata Phylum Echinodermata About 7,000 species Strictly marine, mostly benthic. Typical deuterostomes. Phylum Echinodermata Class Crinoidea (sea lilies) Phylum Echinodermata Class Crinoidea Class Asteroidea (sea stars) Phylum Echinodermata Class Crinoidea Class Asteroidea Class Ophiuroidea (brittle stars and basket stars) Phylum Echinodermata Class Crinoidea Class Asteroidea Class Ophiuroidea Class Echinoidea (sea urchins and sand dollars) Phylum Echinodermata Class Crinoidea Class Asteroidea Class Ophiuroidea Class Echinoidea Class Holothuroidea (sea cucumbers) What do Echinoderms look like? Pentamerous radial symmetry. Oral and aboral surfaces. Oral surface has ambulacral grooves associated with tubefeet called podia. What do Echinoderms look like? Oral and aboral surfaces. What do Echinoderms look like? Arms (ambulacra) numbered with reference to the madreporite. Ambulacrum opposite is A then proceed couterclockwise. Ambulara C and D are the bivium, A B and E are the trivium. What do Echinoderms look like? Body wall Epidermis covers entire body. Endoskeleton of ossicles with tubefeet and dermal branchia protruding through and spines and pedicellaria on outside. What do Echinoderms look like? Body wall Ossicles can be fused into a test (urchins and sand dollars). Ossicles spread apart in cucumbers. Ossicles intermediate and variable in seastars. Muscle fibers beneath ossicles. What do Echinoderms look like? Body wall Tubercles and moveable spines on skeletal plates of echinoids. Small muscles attach spines to test. What do Echinoderms look like? Water vascular system Fluid-filled canals for internal transport and locomotion. Fluid similar to sewater but has coelomcytes and organic molecules. Moved through system with cilia. What do Echinoderms look like? Water vascular system Asteroidea: Madreporite on aboral surface.
    [Show full text]
  • Phylum Chordata
    Phylum Chordata 48,000 species very diverse phylum but still more unity in major characteristics than in most other phyla most advanced phylum of animal kingdom one to which we belong along with fish, amphibians reptiles, birds and other mammals some of the largest or most massive animals true coelom 4 major identifying characteristics: 1. Notochord flexible rodlike structure enclosed by a fibrous sheath extends the length of the body in larva and/or adult provides basic support and serves as main axis for muscle attachments to permit “fishlike” undulatory movements first part of skeleton to form in embryo in primitive chordates the notochord persists through life Animals: Chordates & Introduction to Vertebrates; Ziser Lecture Notes, 2006 1 in most chordates the notochord is replaced by a vertebral column of bone remnants of the notochord remain as “intervertebral discs” 2. Dorsal tubular nerve cord in most invert groups; nerve cord is ventral & paired in chordates the nerve cord is a single dorsal hollow nerve cord front end usually enlarged to form brain 3. Pharyngeal (gill) slits slit-like opening sleading from throat to outside first evolved as a filter feeding apparatus still used by some to filter water for food in others as gills in some groups they are only found in embryo and lost as adults 4. endostyle or thyroid gland specific kind of tissue found only in chordates was originally part of the feeding apparatus endostyle secretes mucus and traps food inside the pharyngeal cavity eg. lamprey larva in most chordates the same tissue has become an endocrine Animals: Chordates & Introduction to Vertebrates; Ziser Lecture Notes, 2006 2 gland in the neck region that helps control metabolism 5.
    [Show full text]
  • Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J
    Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J. R. Finnerty Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata *Nematoda *Platyhelminthes Acoelomorpha Calcispongia Silicispongiae PROTOSTOMIA Phylum Phylum Phylum CHORDATA ECHINODERMATA HEMICHORDATA Blastopore -> anus Radial / equal cleavage Coelom forms by enterocoely ! Protostome = blastopore contributes to the mouth blastopore mouth anus ! Deuterostome = blastopore becomes anus blastopore anus mouth Halocynthia, a tunicate (Urochordata) Coelom Formation Protostomes: Schizocoely Deuterostomes: Enterocoely Enterocoely in a sea star Axocoel (protocoel) Gives rise to small portion of water vascular system. Hydrocoel (mesocoel) Gives rise to water vascular system. Somatocoel (metacoel) Gives rise to lining of adult body cavity. Echinoderm Metamorphosis ECHINODERM FEATURES Water vascular system and tube feet Pentaradial symmetry Coelom formation by enterocoely Water Vascular System Tube Foot Tube Foot Locomotion ECHINODERM DIVERSITY Crinoidea Asteroidea Ophiuroidea Holothuroidea Echinoidea “sea lilies” “sea stars” “brittle stars” “sea cucumbers” “urchins, sand dollars” Group Form & Habit Habitat Ossicles Feeding Special Characteristics Crinoids 5-200 arms, stalked epifaunal Internal skeleton suspension mouth upward; mucous & Of each arm feeders secreting glands on sessile podia Ophiuroids usually 5 thin arms, epifaunal ossicles in arms deposit feeders act and appear like vertebrae
    [Show full text]