Alien Malacostracan Crustaceans in the Eastern Baltic Sea: Pathways and Consequences

Total Page:16

File Type:pdf, Size:1020Kb

Alien Malacostracan Crustaceans in the Eastern Baltic Sea: Pathways and Consequences Bella S. Galil • Paul F. Clark • James T. Carlton Editors In the Wrong Place - Alien Marine Crustaceans: Distribution, Biology and Impacts Editors Bella S. Galil Paul F. Clark National Institute of Department of Zoology Oceanography The Natural History Museum Israel Oceanographic and Cromwell Road Limnological Research SW7 5BD London 31080 Haifa United Kingdom Israel [email protected] [email protected] James T. Carlton Maritime Studies Program Williams College 75 Greenmanville Avenue P.O. Box 6000 Mystic, Connecticut 06355, USA James.T. [email protected] ISBN 978-94-007-0590-6 e-ISBN 978-94-007-0591-3 DOI 10.1007/978-94-007-0591-3 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2011923971 © Springer Science+Business Media B.V. 2011 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Contents Part I In the Beginning The Global Dispersal of Marine and Estuarine Crustaceans ..................... 3 James T. Carlton Part II Global Dispersal Human-Mediated Spread of Alien Crabs ..................................................... 27 Annette Brockerhoff and Colin McLay The Global Spread of the Chinese Mitten Crab Eriocheir sinensis ............ 107 Matt G. Bentley The Japanese Skeleton Shrimp Caprella mutica (Crustacea, Amphipoda): A Global Invader of Coastal Waters ................. 129 Karin Boos, Gail V. Ashton, and Elizabeth J. Cook Part III Alien Faunas by Region Barnacle Invasions: Introduced, Cryptogenic, and Range Expanding Cirripedia of North and South America ....................................................... 159 James T. Carlton, William A. Newman, and Fábio Bettini Pitombo Marine Crustacean Invasions in North America: A Synthesis of Historical Records and Documented Impacts .......................................... 215 Gregory Ruiz, Paul Fofonoff, Brian Steves, and Alisha Dahlstrom Alien Decapod Crustaceans in the Southwestern Atlantic Ocean .............. 251 Marcos Tavares The Alien and Cryptogenic Marine Crustaceans of South Africa ............. 269 Charles Griffiths, Tamara Robinson, and Angela Mead vii viii Contents The Snow Crab, Chionoecetes opilio (Decapoda, Majoidea, Oregoniidae) in the Barents Sea .................................................................... 283 Ann-Lisbeth Agnalt, Valery Pavlov, Knut Eirik Jørstad, Eva Farestveit, and Jan Sundet Alien Malacostracan Crustaceans in the Eastern Baltic Sea: Pathways and Consequences .......................................................................... 301 Nadezhda A. Berezina, Victor V. Petryashev, Arturas Razinkovas, and Jūratė Lesutienė Alien Crustaceans Along the Southern and Western Baltic Sea ................ 323 Krzysztof Jażdżewski and Michał Grabowski Checklist of Cryptogenic and Alien Crustacea of the European Atlantic Coast...................................................................... 345 Pierre Y. Noël The Alien Crustaceans in the Mediterranean Sea: An Historical Review ...................................................................................... 377 Bella S. Galil An Incoming Flood on a Cryptic Stage: Understanding Alien Crustacean Invasions in Southeast Asia ............................................. 403 Darren C.J. Yeo, James T. Carlton, Serena L.M. Teo, and Peter K.L. Ng Alien Marine Crustaceans of Japan: A Preliminary Assessment ............... 419 Wataru Doi, Seiichi Watanabe, and James T. Carlton Aliens in the Antipodes: Non-indigenous Marine Crustaceans of New Zealand and Australia ....................................................................... 451 Shane T. Ahyong and Serena L. Wilkens Part IV Commercial Exploitation of Invasive Decapods The Pacific White Shrimp, Litopenaeus vannamei, in Asia: The World’s Most Widely Cultured Alien Crustacean ............................... 489 I Chiu Liao and Yew-Hu Chien The Invasive History, Impact and Management of the Red King Crab Paralithodes camtschaticus off the Coast of Norway .......................... 521 Lis Lindal Jørgensen and Einar M. Nilssen Contents ix The Commercial Exploitation of the Chinese Mitten Crab Eriocheir sinensis in the River Thames, London: Damned if We Don’t and Damned if We Do ................................................................ 537 Paul F. Clark Part V Case Studies Live and Let Live: Invasive Host, Charybdis longicollis (Decapoda: Brachyura: Portunidae), and Invasive Parasite, Heterosaccus dollfusi (Cirripedia: Rhizocephala: Sacculinidae) ................ 583 Gianna Innocenti and Bella S. Galil Invasion History and Success of the American Blue Crab Callinectes sapidus in European and Adjacent Waters................................ 607 Stefan Nehring The Introduced American Lobster, Homarus americanus in Scandinavian Waters .................................................................................. 625 Knut Eirik Jørstad, Ann-Lisbeth Agnalt, and Eva Farestveit Part VI Carcinus in the Wrong Place The Evolutionary Ecology of European Green Crab, Carcinus maenas, in North America .............................................................. 641 Timothy C. Edgell and Johan Hollander More than One Way to Invade: Lessons from Genetic Studies of Carcinus Shore Crabs ................................................................................. 661 John A. Darling Ecological Impacts of Replacing One Invasive Species with Another in Rocky Intertidal Areas ....................................................... 687 Blaine D. Griffen Index.................................................................................................................. 703 Alien Malacostracan Crustaceans in the Eastern Baltic Sea: Pathways and Consequences Nadezhda A. Berezina, Victor V. Petryashev, Arturas Razinkovas, and Jūratė Lesutienė Abstract The recent invasion history of malacostracan crustaceans into the eastern Baltic Sea is reviewed with 16 alien species being recorded from the easternmost area. These invasives constitute 3% of the total species richness (50% of the alien biota), and comprise up to 80% of the total benthic biomass in several localities. The Ponto-Azov-Caspian species are the most diverse and abundant component. Their taxonomical and ecological dominance could be explained by a combi- nation of factors including similarities between the Baltic, the donor regions and the waterway network that allows their dispersal. The high vulnerability of the Baltic Sea to invasion may be a consequence of low native biodiversity coupled with anthropogenic and natural factors. The potential impact of alien Malacostraca on the native community was assessed following predatory studies of alien amphi- pods on native benthic biota. These studies indicated that the alien amphipods may alter the structure of their prey communities. Alien crustaceans have outnumbered or even completely replaced native species and/or earlier established invaders locally in the eastern Baltic Sea. Keywords Alien Malacostraca • Benthic Community • Invasion History • Predatory Impact • Baltic Sea • Curonian Lagoon • Vistula Lagoon • Neva Estuary N.A. Berezina (*) and V.V. Petryashev Zoological Institute Russian Academy of Sciences, University embankment 1, Saint-Petersburg 199034, Russia e-mail: [email protected] A. Razinkovas and J. Lesutienė Coastal Research and Planning Institute, Klaipeda University, H. Manto 84, LT 92294 Klaipeda, Lithuania B.S. Galil et al. (eds.), In the Wrong Place - Alien Marine Crustaceans: Distribution, 301 Biology and Impacts, Invading Nature - Springer Series in Invasion Ecology 6, DOI 10.1007/978-94-007-0591-3_10, © Springer Science+Business Media B.V. 2011 302 N.A. Berezina et al. 1 Introduction The Baltic Sea is a brackish ecosystem characterized by low species diversity, and as other mesohaline seas, is easily colonized by alien species (Stachowicz et al. 1999). The increasing number of newly recorded aliens in the last decades has been attributed to the escalating anthropogenic stress on the Baltic Sea ecosystem (Gomoiu et al. 2002). A large catchment area combined with dense human population and intensive exploitation of natural resources of the Baltic Sea have caused the destabilization of a marine ecosystem already disturbed by natural or anthropogenic factors (e.g., extreme storms, bottom dredging), alteration due to previous introductions (habitat engineering), and eutrophication (Schernewski and Schiever 2002; Schiewer 2008). As a result a number of species are no longer recorded from the region and the food web has become weakly articulated giving rise to “vacant niches”. These according Zaiko et al. (2007) are then occupied by alien species. Such species as a rule are eurybiotic organisms, r-strategists and able to establish themselves in new habitats, including environments that have been disturbed. About 100 alien species have been recorded in the Baltic Sea during the last two centuries, and most of them have been unintentionally introduced by ballast water, hull fouling or by spreading from their primary sites of introduction into adjacent water bodies (Leppäkoski et al. 2002). The main introductory pathways of crustaceans
Recommended publications
  • Cladocera: Anomopoda: Daphniidae) from the Lower Cretaceous of Australia
    Palaeontologia Electronica palaeo-electronica.org Ephippia belonging to Ceriodaphnia Dana, 1853 (Cladocera: Anomopoda: Daphniidae) from the Lower Cretaceous of Australia Thomas A. Hegna and Alexey A. Kotov ABSTRACT The first fossil ephippia (cladoceran exuvia containing resting eggs) belonging to the extant genus Ceriodaphnia (Anomopoda: Daphniidae) are reported from the Lower Cretaceous (Aptian) freshwater Koonwarra Fossil Bed (Strzelecki Group), South Gippsland, Victoria, Australia. They represent only the second record of (pre-Quater- nary) fossil cladoceran ephippia from Australia (Ceriodaphnia and Simocephalus, both being from Koonwarra). The occurrence of both of these genera is roughly coincident with the first occurrence of these genera elsewhere (i.e., Mongolia). This suggests that the early radiation of daphniid anomopods predates the breakup of Pangaea. In addi- tion, some putative cladoceran body fossils from the same locality are reviewed; though they are consistent with the size and shape of cladocerans, they possess no cladoceran-specific synapomorphies. They are thus regarded as indeterminate diplostracans. Thomas A. Hegna. Department of Geology, Western Illinois University, Macomb, IL 61455, USA. ta- [email protected] Alexey A. Kotov. A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, Moscow 119071, Russia and Kazan Federal University, Kremlevskaya Str.18, Kazan 420000, Russia. alexey-a- [email protected] Keywords: Crustacea; Branchiopoda; Cladocera; Anomopoda; Daphniidae; Cretaceous. Submission: 28 March 2016 Acceptance: 22 September 2016 INTRODUCTION tions that the sparse known fossil record does not correlate with a meager past diversity. The rarity of Water fleas (Crustacea: Cladocera) are small, the cladoceran fossils is probably an artifact, a soft-bodied branchiopod crustaceans and are a result of insufficient efforts to find them in known diverse and ubiquitous component of inland and new palaeontological collections (Kotov, aquatic communities (Dumont and Negrea, 2002).
    [Show full text]
  • Trends of Aquatic Alien Species Invasions in Ukraine
    Aquatic Invasions (2007) Volume 2, Issue 3: 215-242 doi: http://dx.doi.org/10.3391/ai.2007.2.3.8 Open Access © 2007 The Author(s) Journal compilation © 2007 REABIC Research Article Trends of aquatic alien species invasions in Ukraine Boris Alexandrov1*, Alexandr Boltachev2, Taras Kharchenko3, Artiom Lyashenko3, Mikhail Son1, Piotr Tsarenko4 and Valeriy Zhukinsky3 1Odessa Branch, Institute of Biology of the Southern Seas, National Academy of Sciences of Ukraine (NASU); 37, Pushkinska St, 65125 Odessa, Ukraine 2Institute of Biology of the Southern Seas NASU; 2, Nakhimova avenue, 99011 Sevastopol, Ukraine 3Institute of Hydrobiology NASU; 12, Geroyiv Stalingrada avenue, 04210 Kiyv, Ukraine 4Institute of Botany NASU; 2, Tereschenkivska St, 01601 Kiyv, Ukraine E-mail: [email protected] (BA), [email protected] (AB), [email protected] (TK, AL), [email protected] (PT) *Corresponding author Received: 13 November 2006 / Accepted: 2 August 2007 Abstract This review is a first attempt to summarize data on the records and distribution of 240 alien species in fresh water, brackish water and marine water areas of Ukraine, from unicellular algae up to fish. A checklist of alien species with their taxonomy, synonymy and with a complete bibliography of their first records is presented. Analysis of the main trends of alien species introduction, present ecological status, origin and pathways is considered. Key words: alien species, ballast water, Black Sea, distribution, invasion, Sea of Azov introduction of plants and animals to new areas Introduction increased over the ages. From the beginning of the 19th century, due to The range of organisms of different taxonomic rising technical progress, the influence of man groups varies with time, which can be attributed on nature has increased in geometrical to general processes of phylogenesis, to changes progression, gradually becoming comparable in in the contours of land and sea, forest and dimensions to climate impact.
    [Show full text]
  • The Beachflea Platorchestia Platensis
    The beachflea Platorchestia OCEANOLOGIA, 48 (2), 2006. pp. 287–295. platensis (Krøyer, 1845): C 2006, by Institute of a new addition to the Oceanology PAS. Polish fauna (with KEYWORDS a key to Baltic talitrid Platorchestia platensis amphipods)* Talitrid amphipod Southern Baltic John I. Spicer1 Urszula Janas2 1 Marine Biology and Ecology Research Centre, School of Biological Sciences, University of Plymouth, Plymouth PL4 8AA, UK; e-mail: [email protected] 2 Institute of Oceanography, University of Gdańsk, al. Marszałka Piłsudskiego 46, PL–81–378 Gdynia, Poland Received 20 December 2005, revised 23 May 2006, accepted 5 June 2006. Abstract The present paper reports for the first time on the occurrence of Platorchestia platensis (Krøyer, 1845) (Crustacea, Amphipoda) in Puck Bay (southern Baltic, Poland) in May 2005. A key to the Baltic talitrids is given, which can be used to identify males and females of the four species occurring on Polish shores (Talitrus saltator, Talorchestia deshayesii, Orchestia cavimana, Platorchestia platensis)and additionally Orchestia gammarellus, which may yet be found in the Polish coastal zone. Only three species of talitrid amphipod (Crustacea) have been recorded from Polish shores. The sandhoppers Talitrus saltator (Montagu, 1808) and Talorchestia deshayesii (Audouin, 1826) are ubiquitous beneath flotsam and jetsam or wrack cast up at the high water mark on sandy beaches * This work was funded through European Community project BALTDER under the fifth FP, contract No EVK3-CT-2002-80005 and the Polish Ministry of Scientific Research and Information. The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/ 288 J.
    [Show full text]
  • Appendix 3: Lancashire Key Species Search Results and Definition
    Appendix 3: Lancashire Key Species Search Results and Definition 'Lancashire Key Species' (LKS) is used by LERN as a collective term to refer to species which have a recognised status, either nationally or locally. Specifically, it includes species identified in one or more of the following sources: The Conservation of Habitats and Species Regulations 2010 (usually referred to as the 2010 Habitats Regulations) implement Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora (the Habitats Directive) into national legislation. Articles 12 and 13 of the Habitats Directive contains a range of prohibitions seeking to protect species listed on Annex IV (animal and plant species in need of strict protection). European Protected Species are animals and plants that receive protection under The Conservation of Habitats and Species Regulations 2010. LKS includes species listed on Annexes II, IV and V of the Habitats Directive. These species, together with the birds protected under the Birds Directive, are called species of 'Community interest'. The Wildlife and Countryside Act 1981 (as amended) (WCA) implements parts of the Birds Directive 2009 [2] and the Berne Convention (1979) [3] into national legislation. It includes a number of Schedules which are reviewed (usually every five years) on which details of the protected species, and their level of protection, are shown. A detailed summary of the relevant sections of the Wildlife and Countryside Act, along with the protection afforded under them can be found within Paragraphs 118-122 of ODPM Circular_06/2005 . Species listed on Schedules 1, 5 and 8 are included on the list of LKS: Schedule 1 refers to Birds and their young, for which it is an offence to intentionally or recklessly disturb at, on or near an ‘active’ nest.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • National Reports (Term of Reference A) Presented at the 46Th Meeting of the ICES Working Group on Introductions and Transfers Of
    National Reports (Term of Reference a) Presented at the 46th meeting of the ICES Working Group on Introductions and Transfers of Marine Organisms, held in Gdynia, Poland from 4 to 6 March 2020. Arranged Alphabetically by Country Compiled by Cynthia H McKenzie, Chair, WGITMO CANADA …………………………………………………………………… …. 2 DENMARK ………………………………………………………………………. 10 FINLAND ………………………………………………………………………. 18 FRANCE ………………………………………………………………………. 21 GERMANY ………………………………………………………………………. 33 GREECE ………………………………………………………………………. 46 ICELAND ………………………………………………………………………. 54 ITALY ………………………………………………………………………. 58 LITHUANIA ………………………………………………………………………. 73 NETHERLANDS …………………………………………………………………. 75 NORWAY ………………………………………………………………………. 77 POLAND ………………………………………………………………………. 86 PORTUGAL ………………………………………………………………………. 89 SWEDEN ………………………………………………………………………. 99 UNITED KINGDOM ……………………………………………………………. 104 UNITED STATES …………………………………………………………………. 119 1 CANADA National Report for Canada 2019 Report Prepared By: Cynthia McKenzie, Fisheries and Oceans Canada, Newfoundland and Labrador Region: [email protected]; Contributions By: Nathalie Simard, Fisheries and Oceans Canada, Quebec Region: [email protected]; Kimberly Howland, Fisheries and Oceans Canada, Central and Arctic Region: [email protected]; Renée Bernier and Chantal Coomber, Fisheries and Oceans Canada, Gulf Region: renee.bernier@dfo- mpo.gc.ca, [email protected]; Angelica Silva, Fisheries and Oceans Canada, Maritimes Region: [email protected] Overview: NEW or SPREAD
    [Show full text]
  • Crustacea-Arthropoda) Fauna of Sinop and Samsun and Their Ecology
    J. Black Sea/Mediterranean Environment Vol. 15: 47- 60 (2009) Freshwater and brackish water Malacostraca (Crustacea-Arthropoda) fauna of Sinop and Samsun and their ecology Sinop ve Samsun illeri tatlısu ve acısu Malacostraca (Crustacea-Arthropoda) faunası ve ekolojileri Mehmet Akbulut1*, M. Ruşen Ustaoğlu2, Ekrem Şanver Çelik1 1 Çanakkale Onsekiz Mart University, Fisheries Faculty, Çanakkale-Turkey 2 Ege University, Fisheries Faculty, Izmir-Turkey Abstract Malacostraca fauna collected from freshwater and brackishwater in Sinop and Samsun were studied from 181 stations between February 1999 and September 2000. 19 species and 4 subspecies belonging to 15 genuses were found in 134 stations. In total, 23 taxon were found: 11 Amphipoda, 6 Decapoda, 4 Isopoda, and 2 Mysidacea. Limnomysis benedeni is the first time in Turkish Mysidacea fauna. In this work at the first time recorded group are Gammarus pulex pulex, Gammarus aequicauda, Gammarus uludagi, Gammarus komareki, Gammarus longipedis, Gammarus balcanicus, Echinogammarus ischnus, Orchestia stephenseni Paramysis kosswigi, Idotea baltica basteri, Idotea hectica, Sphaeroma serratum, Palaemon adspersus, Crangon crangon, Potamon ibericum tauricum and Carcinus aestuarii in the studied area. Potamon ibericum tauricum is the most encountered and widespread species. Key words: Freshwater, brackish water, Malacostraca, Sinop, Samsun, Turkey Introduction The Malacostraca is the largest subgroup of crustaceans and includes the decapods such as crabs, mole crabs, lobsters, true shrimps and the stomatopods or mantis shrimps. There are more than 22,000 taxa in this group representing two third of all crustacean species and contains all the larger forms. *Corresponding author: [email protected] 47 Malacostracans play an important role in aquatic ecosystems and therefore their conservation is important.
    [Show full text]
  • A Dissertation Entitled Evolution, Systematics
    A Dissertation Entitled Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) By Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) ____________________________________ Adviser: Dr. Carol A. Stepien ____________________________________ Committee Member: Dr. Christine M. Mayer ____________________________________ Committee Member: Dr. Elliot J. Tramer ____________________________________ Committee Member: Dr. David J. Jude ____________________________________ Committee Member: Dr. Juan L. Bouzat ____________________________________ College of Graduate Studies The University of Toledo December 2009 Copyright © 2009 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. _______________________________________________________________________ An Abstract of Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) The University of Toledo December 2009 The study of biodiversity, at multiple hierarchical levels, provides insight into the evolutionary history of taxa and provides a framework for understanding patterns in ecology. This is especially poignant in invasion biology, where the prevalence of invasiveness in certain taxonomic groups could
    [Show full text]
  • Further Expansion of the Genus Cercopagis (Crustacea, Branchiopoda, Onychopoda) in the Baltic Sea, with Notes on the Taxa Present and Their Ecology
    Hydrobiologia 429: 207–218, 2000. 207 © 2000 Kluwer Academic Publishers. Printed in the Netherlands. Further expansion of the genus Cercopagis (Crustacea, Branchiopoda, Onychopoda) in the Baltic Sea, with notes on the taxa present and their ecology Elena Gorokhova1;∗, Nikolai Aladin2 & Henri J. Dumont3 1Department of Systems Ecology, Stockholm University, 109 61 Stockholm, Sweden Present address: Department of Biology, Arizona State University, Tempe, U.S.A. Fax: [+1] 480-965-2519. E-mail: [email protected] 2Zoological Institute, Russian Academy of Science, 199034 St. Petersburg, Russia 3Laboratory of Animal Ecology, University of Ghent, B-9000 Ghent, Belgium Received 5 May 1999; in revised form 10 September 1999; accepted 20 September 1999 Key words: Cercopagis, invasion, Baltic Sea, depth, temperature, salinity, morphological variations Abstract The onychopod cladoceran Cercopagis that recently invaded the Baltic Sea is reported from new zones of the north- ern Baltic proper. Because of successful survival and an expanding distribution range, the addition of Cercopagis to the Baltic fauna is considered to be permanent. What has previously been cited as Cercopagis pengoi encompasses the morphology of several other species, subspecies and forms. Either a number of morphologically similar species is present, or there is a number of spurious species in Cercopagis. The last hypothesis is favoured. The spatial distribution pattern of Cercopagis, as well as that of total zooplankton, was correlated with depth. Deep (>100 m) and shallow (<10 m) stations had significantly lower abundance than stations of intermediate depth (<100 m). An overview of the distribution of C. pengoi group in fresh and brackish waters suggests a high tolerance to environmental factors, but with differences among taxa.
    [Show full text]
  • Molecular Data Suggest Multiple Origins and Diversification Times Of
    www.nature.com/scientificreports OPEN Molecular data suggest multiple origins and diversifcation times of freshwater gammarids on the Aegean archipelago Kamil Hupało1,3*, Ioannis Karaouzas2, Tomasz Mamos1,4 & Michał Grabowski1 Our main aim was to investigate the diversity, origin and biogeographical afliations of freshwater gammarids inhabiting the Aegean Islands by analysing their mtDNA and nDNA polymorphism, thereby providing the frst insight into the phylogeography of the Aegean freshwater gammarid fauna. The study material was collected from Samothraki, Lesbos, Skyros, Evia, Andros, Tinos and Serifos islands as well as from mainland Greece. The DNA extracted was used for amplifcation of two mitochondrial (COI and 16S) and two nuclear markers (28S and EF1-alpha). The multimarker time- calibrated phylogeny supports multiple origins and diferent diversifcation times for the studied taxa. Three of the sampled insular populations most probably represent new, distinct species as supported by all the delimitation methods used in our study. Our results show that the evolution of freshwater taxa is associated with the geological history of the Aegean Basin. The biogeographic afliations of the studied insular taxa indicate its continental origin, as well as the importance of the land fragmentation and the historical land connections of the islands. Based on the fndings, we highlight the importance of studying insular freshwater biota to better understand diversifcation mechanisms in fresh waters as well as the origin of studied Aegean freshwater taxa. Te Mediterranean islands are considered natural laboratories of evolution, exhibiting high levels of diversity and endemism, making them a vital part of one of the globally most precious biodiversity hotspots and a model system for studies of biogeography and evolution1–4.
    [Show full text]
  • Annotated Checklist of Chinese Cladocera (Crustacea: Branchiopoda)
    Zootaxa 3904 (1): 001–027 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3904.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:56FD65B2-63F4-4F6D-9268-15246AD330B1 Annotated Checklist of Chinese Cladocera (Crustacea: Branchiopoda). Part I. Haplopoda, Ctenopoda, Onychopoda and Anomopoda (families Daphniidae, Moinidae, Bosminidae, Ilyocryptidae) XIAN-FEN XIANG1, GAO-HUA JI2, SHOU-ZHONG CHEN1, GONG-LIANG YU1,6, LEI XU3, BO-PING HAN3, ALEXEY A. KOTOV3, 4, 5 & HENRI J. DUMONT3,6 1Institute of Hydrobiology, Chinese Academy of Sciences, 7# Southern Road of East Lake, Wuhan, Hubei Province, 430072, China. E-mail: [email protected] 2College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China 3 Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China. 4A. N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, Moscow 119071, Russia 5Kazan Federal University, Kremlevskaya Str.18, Kazan 420000, Russia 6Corresponding authors. E-mail: [email protected], [email protected] Abstract Approximately 199 cladoceran species, 5 marine and 194 freshwater and continental saltwater species, live in China. Of these, 89 species are discussed in this paper. They belong to the 4 cladoceran orders, 10 families and 23 genera. There are 2 species in Leptodoridae; 6 species in 4 genera and 3 families in order Onychopoda; 18 species in 7 genera and 2 families in order Ctenopoda; and 63 species in 11 genera and 4 families in non-Radopoda Anomopoda. Five species might be en- demic of China and three of Asia.
    [Show full text]
  • Exotic Species in the Aegean, Marmara, Black, Azov and Caspian Seas
    EXOTIC SPECIES IN THE AEGEAN, MARMARA, BLACK, AZOV AND CASPIAN SEAS Edited by Yuvenaly ZAITSEV and Bayram ÖZTÜRK EXOTIC SPECIES IN THE AEGEAN, MARMARA, BLACK, AZOV AND CASPIAN SEAS All rights are reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior permission from the Turkish Marine Research Foundation (TÜDAV) Copyright :Türk Deniz Araştırmaları Vakfı (Turkish Marine Research Foundation) ISBN :975-97132-2-5 This publication should be cited as follows: Zaitsev Yu. and Öztürk B.(Eds) Exotic Species in the Aegean, Marmara, Black, Azov and Caspian Seas. Published by Turkish Marine Research Foundation, Istanbul, TURKEY, 2001, 267 pp. Türk Deniz Araştırmaları Vakfı (TÜDAV) P.K 10 Beykoz-İSTANBUL-TURKEY Tel:0216 424 07 72 Fax:0216 424 07 71 E-mail :[email protected] http://www.tudav.org Printed by Ofis Grafik Matbaa A.Ş. / İstanbul -Tel: 0212 266 54 56 Contributors Prof. Abdul Guseinali Kasymov, Caspian Biological Station, Institute of Zoology, Azerbaijan Academy of Sciences. Baku, Azerbaijan Dr. Ahmet Kıdeys, Middle East Technical University, Erdemli.İçel, Turkey Dr. Ahmet . N. Tarkan, University of Istanbul, Faculty of Fisheries. Istanbul, Turkey. Prof. Bayram Ozturk, University of Istanbul, Faculty of Fisheries and Turkish Marine Research Foundation, Istanbul, Turkey. Dr. Boris Alexandrov, Odessa Branch, Institute of Biology of Southern Seas, National Academy of Ukraine. Odessa, Ukraine. Dr. Firdauz Shakirova, National Institute of Deserts, Flora and Fauna, Ministry of Nature Use and Environmental Protection of Turkmenistan. Ashgabat, Turkmenistan. Dr. Galina Minicheva, Odessa Branch, Institute of Biology of Southern Seas, National Academy of Ukraine.
    [Show full text]