Download PDF Datastream

Total Page:16

File Type:pdf, Size:1020Kb

Download PDF Datastream HIGH TEMPERATURE AQUEOUS ALTERATION AND DIAGENESIS: UNEXPECTED INSIGHTS WITH IMAGING SPECTROSCOPY FROM MICRONS TO METERS BY REBECCA N. GREENBERGER A.B., EARTH AND PLANETARY SCIENCES, WASHINGTON UNIVERSITY IN ST. LOUIS, 2010 Sc.M., GEOLOGICAL SCIENCES, BROWN UNIVERSITY, 2012 A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE DEPARTMENT OF EARTH, ENVIRONMENTAL, AND PLANETARY SCIENCES AT BROWN UNIVERSITY PROVIDENCE, RHODE ISLAND MAY 2015 © Copyright 2015 by Rebecca N. Greenberger This dissertation by Rebecca N. Greenberger is accepted in its present form by the Department of Earth, Environmental, and Planetary Sciences as satisfying the dissertation requirement of the degree of Doctor of Philosophy. Date________________ _____________________________________ John F. Mustard, Advisor Recommended to the Graduate Council Date________________ _____________________________________ Reid F. Cooper, Reader Date________________ _____________________________________ Ralph E. Milliken, Reader Date________________ _____________________________________ Peter H. Schultz, Reader Date________________ _____________________________________ Joel A. Hurowitz, Reader Approved by the Graduate Council Date________________ _____________________________________ Peter M. Weber, Dean of the Graduate School iii iv CURRICULUM VITAE Rebecca N. Greenberger (314) 458-9745; [email protected] Date of birth: October 8, 1987 (Columbus, Ohio) Education Brown University, Department of Earth, Environmental, and Planetary Sciences, Advisor: John Mustard Ph.D. Earth, Environmental and Planetary Sciences, May 2015. Thesis title: High Temperature Aqueous Alteration and Diagenesis: Unexpected Insights with Imaging Spectroscopy from Microns to Meters M. Sc. Geological Sciences, May 2012. Thesis title: Low temperature aqueous alteration of basalt: mineral assemblages of Deccan basalts and implications for Mars Washington University in St. Louis, A.B. Earth and Planetary Sciences, August 2010, Arts & Sciences College Honors Manuscripts submitted or in preparation Greenberger, R. N., J. F. Mustard, E. A. Cloutis, P. Mann, J. H. Wilson, R. L. Flemming, K. Robertson, M. R. Salvatore, and C. S. Edwards, Hydrothermal alteration and diagenesis of terrestrial lacustrine pillow basalts: coordination of hyperspectral imaging with laboratory measurements, Geochim. Cosmochim. Acta, in revision. Greenberger, R.N., J. F. Mustard, E. A. Cloutis, P. Mann, and J. H. Wilson, Characterization of aqueous alteration resulting from volcano-lacustrine interactions in the Hartford Basin: implications for Mars, Chem. Geol, in review. Greenberger, R. N., J. F. Mustard, G. R. Osinski, L. L. Tornabene, A. Pontefract, C. L. Marion, R. L. Flemming, J. H. Wilson, and E. A. Cloutis, Hyperspectral mapping of alteration assemblages at a hydrothermal calcite-marcasite vug at the Haughton impact structure, Meteorit. Planet. Sci, in review. Greenberger, R. N., J. F. Mustard, B. L. Ehlmann, D. L. Blaney, E. A. Cloutis, J. H. Wilson, and R. O. Green, Imaging spectroscopy of geological samples and outcrops: unexpected insights from microns to meters, in preparation for submission to GSA Today. Publications Greenberger, R. N., J. F. Mustard, E. A. Cloutis, L. M. Pratt, P. E. Sauer, P. Mann, K. Turner, M. D. Dyar, and D. L. Bish (2015), Serpentinization, iron oxidation, and aqueous conditions in an ophiolite: Implications for hydrogen production and habitability on Mars, Earth Planet. Sci. Lett., 416, 21–34, doi:10.1016/j.epsl.2015.02.002. Greenberger, R. N., J. F. Mustard, P. S. Kumar, M. D. Dyar, E. A. Breves, and E. C. Sklute (2012), Low temperature aqueous alteration of basalt: Mineral assemblages of Deccan basalts and implications for Mars, J. Geophys. Res., 117, E00J12, v doi:10.1029/2012JE004127. Arvidson, R. E., J. F. Bell III, P. Bellutta, N. A. Cabrol, J. G. Catalano, J. Cohen, L. S. Crumpler, D. J. Des Marais, T. A. Estlin, W. H. Farrand, R. Gellert, J. A. Grant, R. N. Greenberger, E. A. Guinness, K. E. Herkenhoff, J. A. Herman, K. D. Iagnemma, J. R. Johnson, G. Klingelhöfer, R. Li, K. A. Lichtenberg, S. A. Maxwell, D. W. Ming, R. V. Morris, M. S. Rice, S. W. Ruff, A. Shaw, K. L. Siebach, P. A. de Souza, A. W. Stroupe, S. W. Squyres, R. J. Sullivan, K. P. Talley, J. A. Townsend, A. Wang, J. R. Wright, and A. S. Yen (2010), Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater, J. Geophys. Res., 115, E00F03, doi:10.1029/2010JE003633. Arvidson, R, R. Bonitz, M. Robinson, J. Carsten, R. Volpe, A. Trebi-Ollenu, M. Mellon, P. Chu, K. R. Davis, J. Wilson, A. Shaw, R. Greenberger, K. Siebach, T. Stein, S. Cull, W. Goetz, R. Morris, D. Ming, H. Keller, M. Lemmon, H. Sizemore, and M. Mehta, (2009). Results from the Mars Phoenix Lander Robotic Arm Experiment., J. Geophys. Res., 114, E00E02, doi:10.1029/2009JE003408.. Arvidson, R.E., S. W. Ruff, R. V. Morris, D. W. Ming, L. S. Crumpler, A. S. Yen, S. W. Squyres, R. J. Sullivan, J. F. Bell, N. A. Cabrol, B. C. Clark, W. H. Farrand, R. Gellert, R. Greenberger, J. A. Grant, E. A. Guinness, K. E. Herkenhoff, J. A. Hurowitz, J. R. Johnson, G. Klingelhöfer, K. W. Lewis, R. Li, T. J. McCoy, J. Moersh, H. Y. McSween, S. L. Murchie, M. Schmidt, C. Schröder, A. Wang, S. Wiseman, M. B. Madsen, W. Goetz, and S. M. McLennan (2008), Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate, J. Geophys. Res., 113, E12S33, doi:10.1029/2008JE003183. Li, R., B. Wu, K. Di, A. Angelova, R. E. Arvidson, I. C. Lee, M. Maimone, L. H. Matthies, L. Richer, R. Sullivan, M. H. Sims, R. Greenberger, and S. W. Squyres (2008), Characterization of traverse slippage experienced by Spirit rover on Husband Hill at Gusev Crater, J. Geophys. Res., 113, E12S35, doi:10.1029/2008JE003097. Wang, A., J. F. Bell, R. Li, J. R. Johnson, W. H. Farrand, E. A. Cloutis, R. E. Arvidson, L. Crumpler, S. W. Squyres, S. M. McLennan, K. E. Herkenhoff, S. W. Ruff, A. T. Knudson, W. Chen, and R. Greenberger (2008), Light-toned salty soils and coexisting Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills, J. Geophys. Res., 113, E12S40, doi:10.1029/2008JE003126. Conference abstracts Greenberger, R. N., J. F. Mustard, G. R. Osinski, L. L. Tornabene, A. Pontefract,C. L. Marion, R. L. Flemming, J. H. Wilson, and E. A. Cloutis (2014), Hydrothermal Formation and Oxidation of a Calcite-Marcasite Vug at the Haughton Impact Structure: Mapping of Alteration Assemblages with Hyperspectral Imaging, 46th LPSC, Abstract #2267. Greenberger, R. N., J. F. Mustard, E. A. Cloutis, L. M. Pratt, P. E. Sauer, P. Mann, K. Turner, and M. D. Dyar (2014), Aqueous Conditions and Habitability Associated with Formation of a Serpentinite: Using Analyses of Ferric Iron and Stable Carbon Isotopes to Reconstruct Hydrogen Production, AGU Fall Meeting, vi Abstract #2211. Lawson, M. J., E. S. Amador, B. L. Carrier, A. Albuja, J. Bapst, K. R. S, Cahill, F. Ebersohn, S. Gainey, G. Gartrelle, R. N. Greenberger, J. M. Hale, S. Johnston, J. Olivares, C. E. Parcheta, J. P. Sheehan, A. K. Thorpe and S. K. Zareh (2014), Enceladus Environmental Explorer (EVE): A Mission Concept, AGU Fall Meeting, Abstract #11621. Greenberger, R. N., J. F. Mustard, E. A. Cloutis, L. M. Pratt, P. E. Sauer, P. Mann, K. Turner, and M. D. Dyar (2014), Understanding the Nature of Water-rock Interactions in a Serpentinizing System: Implications for Planetary Exploration and Subsurface Habitability, GSA Annual Meeting, Abstract #246202. Greenberger, R. N., J. F. Mustard, E. A. Cloutis, P. Mann, and J. H. Wilson (2014), Characterization of Alteration of Lacustrine Pillow Basalts: Insights from Hyperspectral Imaging and Implications for Water-rock Interactions on Mars, GSA Annual Meeting, Abstract #246143. Greenberger, R. N., J. F. Mustard, E. A. Cloutis, P. Mann, and J. H. Wilson (2014), Aqueous Alteration Rinds in Basalt: Mineralogic Characterization from Hand Sample to Outcrop with Hyperspectral Imaging and Implications for Mars 2020, 8th International Mars Conference, Abstract #1028. Cannon, K. M., J. F. Mustard, C. B. Agee, J. H. Wilson, and R. N. Greenberger (2014), Black Beauty’s Rainbow: Hyperspectral Imaging of NWA 7034, 8th International Mars Conference. Wilson J. H. and R. N. Greenberger (2014), Utility of hyperspectral imagers in the mining industry: Italy’s gypsum reserves, Proc. SPIE 9104, Spectral Imaging Sensor Technologies: Innovation Driving Advanced Application Capabilities, 91040E; doi:10.1117/12.2054981. Greenberger, R. N., J. F. Mustard, G. R. Osinski, L. L. Tornabene, C. L. Marion, A. Pontefract, and E. A. Cloutis (2014), Spectral Mapping of Alteration Phases within a Hydrothermal Vug at the Haughton Impact Structure, 45th LPSC, Abstract #1923. Greenberger, R. N., J. F. Mustard, E. A. Cloutis, P. Mann, J. H. Wilson, and K. M. Cannon, (2014), Remote Sensing of Volcano-Lacustrine Interactions: Implications for Mars, 45th LPSC, Abstract #1543. Mann, P., E. A. Cloutis, R. N. Greenberger, R. E. Milliken, T. Hiroi, J. F. Mustard, R. L. Klima, C. A. Hibbitts, J. B. Plescia, J. F. Bell III, T. L. Roush, J.L. Bishop, and B. L. Ehlmann (2014), An Interlaboratory UV/VIS/NIR Wavelength Calibration Study, 45th LPSC, Abstract #2392. Tornabene L. L., G. R. Osinski, R. N. Greenberger, J. L. Bishop, E. A. Cloutis, C. L. Marion, J. F. Mustard, A. Pontefract, and M. S. Ramsey (2014), The Pre-, Syn- and Post-Impact Origin of Hydrated Phases: A Case Study Based on the Remote Sensing and Ground-Truth at the Haughton Impact Structure, Nunavut, Canada, 45th LPSC, Abstract #2710. Greenberger, R. N., J. F. Mustard, E. A. Cloutis, P. Mann, K. M. Cannon, and J. H. Wilson (2014), Mineral Assemblages and Spectral Signatures of Altered Lacustrine Pillow Basalts: A Northeastern U.S. Analog for Lava-Water Interactions on Mars, 49th annual GSA Northeastern Section meeting, Abstract# 236217. vii Greenberger, R. N., J. F. Mustard, E. A.
Recommended publications
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Nördlingen 2010: the Ries Crater, the Moon, and the Future of Human Space Exploration, P
    Program and Abstract Volume LPI Contribution No. 1559 The Ries Crater, the Moon, and the Future of Human Space Exploration June 25–27, 2010 Nördlingen, Germany Sponsors Museum für Naturkunde – Leibniz-Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Germany Institut für Planetologie, University of Münster, Germany Deutsches Zentrum für Luft- und Raumfahrt DLR (German Aerospace Center) at Berlin, Germany Institute of Geoscience, University of Freiburg, Germany Lunar and Planetary Institute (LPI), Houston, USA Deutsche Forschungsgemeinschaft (German Science Foundation), Bonn, Germany Barringer Crater Company, Decatur, USA Meteoritical Society, USA City of Nördlingen, Germany Ries Crater Museum, Nördlingen, Germany Community of Otting, Ries, Germany Märker Cement Factory, Harburg, Germany Local Organization City of Nördlingen Museum für Naturkunde – Leibniz- Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin Ries Crater Museum, Nördlingen Center of Ries Crater and Impact Research (ZERIN), Nördlingen Society Friends of the Ries Crater Museum, Nördlingen Community of Otting, Ries Märker Cement Factory, Harburg Organizing and Program Committee Prof. Dieter Stöffler, Museum für Naturkunde, Berlin Prof. Wolf Uwe Reimold, Museum für Naturkunde, Berlin Dr. Kai Wünnemann, Museum für Naturkunde, Berlin Hermann Faul, First Major of Nördlingen Prof. Thomas Kenkmann, Freiburg Prof. Harald Hiesinger, Münster Prof. Tilman Spohn, DLR, Berlin Dr. Ulrich Köhler, DLR, Berlin Dr. David Kring, LPI, Houston Dr. Axel Wittmann, LPI, Houston Gisela Pösges, Ries Crater Museum, Nördlingen Ralf Barfeld, Chair, Society Friends of the Ries Crater Museum Lunar and Planetary Institute LPI Contribution No. 1559 Compiled in 2010 by LUNAR AND PLANETARY INSTITUTE The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration.
    [Show full text]
  • Supportive Comment On: “Morphology and Population of Binary Asteroid
    *Manuscript Click here to view linked References 1 Supportive comment on: “Morphology and population of binary asteroid 2 impact craters” , by K. Miljković , G. S. Collins, S. Mannick and P. A. 3 Bland [Earth Planet. Sci. Lett. 363 (2013) 121 –132] – An updated 4 assessment 5 6 Martin Schmieder 1,2 , Mario Trieloff 3, Winfried H. Schwarz 3, Elmar Buchner 4 and Fred Jourdan 2 7 1School of Earth and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 8 2Western Australian Argon Isotope Facility, Department of Applied Geology and JdL Centre, Curtin University, GPO Box 9 U1987, Perth, WA 6845, Australia 10 3Institut für Geowissenschaften, Universität Heidelberg, Im Neuenheimer Feld 234-236, D-69120 Heidelberg, Germany 11 4HNU-Neu-Ulm University, Edisonallee 5, D-89231 Neu-Ulm, Germany 12 13 In their recent paper, Miljković et al. (2013) assess the appar ent contradiction that the near-Earth asteroid population 14 consists of 15% binaries, while the terrestrial (and Martian) impact crater populations have only 2-4% of observable 15 doublet craters. The authors suggest that only a small fraction of sufficiently well separated binary asteroids yield 16 recognizable doublets. We generally agree with the conclusions by Miljković et al. (2013) and acknowledge the high 17 quality and relevance of the study. However, we would like to bring into focus additional geochronologic constraints 18 that are critical when evaluating terrestrial impact crater doublets. Miljković et al. (2013) appraised five potential 19 terrestrial doublets using the Earth Impact Database (EID; as of 2010). We hereby warn against the indiscriminate 20 usage of impact ages compiled in this database without an assessment based on solid isotopic and stratigraphic 21 constraints and comment on the geological, geochronological, and geochemical evidence for doublet impact craters 22 on Earth.
    [Show full text]
  • Effect of Volatiles and Target Lithology on the Generation and Emplacement of Impact Crater Fill and Ejecta Deposits on Mars
    Effect of volatiles and target lithology on the generation and emplacement of impact crater fill and ejecta deposits on Mars Item Type Proceedings; text Authors Osinski, Gordon R. Citation Osinski, G. R. (2006). Effect of volatiles and target lithology on the generation and emplacement of impact crater fill and ejecta deposits on Mars. Meteoritics & Planetary Science, 41(10), 1571-1586. DOI 10.1111/j.1945-5100.2006.tb00436.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 26/09/2021 23:08:45 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656199 Meteoritics & Planetary Science 41, Nr 10, 1571–1586 (2006) Abstract available online at http://meteoritics.org Effect of volatiles and target lithology on the generation and emplacement of impact crater fill and ejecta deposits on Mars Gordon R. OSINSKI Canadian Space Agency, 6767 Route de l’Aeroport, Saint-Hubert, Quebec, J3Y 8Y9, Canada E-mail: [email protected] (Received 15 October 2005; revision accepted 15 March 2006) Abstract–Impact cratering is an important geological process on Mars and the nature of Martian impact craters may provide important information as to the volatile content of the Martian crust. Terrestrial impact structures currently provide the only ground-truth data as to the role of volatiles and an atmosphere on the impact-cratering process. Recent advancements, based on studies of several well-preserved terrestrial craters, have been made regarding the role and effect of volatiles on the impact-cratering process. Combined field and laboratory studies reveal that impact melting is much more common in volatile-rich targets than previously thought, so impact-melt rocks, melt-bearing breccias, and glasses should be common on Mars.
    [Show full text]
  • Characterization of Impactite Clay Minerals with Implications for Mars Geologic Context and Mars Sample Return
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-9-2020 10:00 AM Characterization of Impactite Clay Minerals with Implications for Mars Geologic Context and Mars Sample Return Christy M. Caudill The University of Western Ontario Supervisor Dr. Gordon Osinski The University of Western Ontario Co-Supervisor Dr. Livio Tornabene The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Christy M. Caudill 2020 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons, and the Other Earth Sciences Commons Recommended Citation Caudill, Christy M., "Characterization of Impactite Clay Minerals with Implications for Mars Geologic Context and Mars Sample Return" (2020). Electronic Thesis and Dissertation Repository. 6935. https://ir.lib.uwo.ca/etd/6935 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Geological processes, including impact cratering, are fundamental throughout rocky bodies in the solar system. Studies of terrestrial impact structures, like the Ries impact structure, Germany, have informed on impact cratering processes – e.g., early hot, hydrous degassing, autometamorphism, and recrystallization/devitrification of impact glass – and products – e.g., impact melt rocks and breccias comprised of clay minerals. Yet, clay minerals of authigenic impact origin remain understudied and their formation processes poorly-understood. This thesis details the characterization of impact-generated clay minerals at Ries, showing that compositionally diverse, abundant Al/Fe/Mg smectite clays formed through these processes in thin melt-bearing breccia deposits of the ejecta, as well as at depth.
    [Show full text]
  • Melt Glasses in Martian Meteorite Elephant Moraine 79001
    Meteoritics & Planetary Science 1–18 (2016) doi: 10.1111/maps.12612 Ni/S/Cl systematics and the origin of impact-melt glasses in Martian meteorite Elephant Moraine 79001 Christian M. SCHRADER1,2, Barbara A. COHEN1*, John J. DONOVAN3, and Edward P. VICENZI4 1Marshall Space Flight Center, NASA, Huntsville, Alabama 35812, USA 2Geology Department, Bowdoin College, Brunswick, Maine 04011, USA 3Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA 4Smithsonian Institution, Museum Conservation Institute, Suitland, Maryland 20746, USA *Corresponding author. E-mail: [email protected] (Received 01 December 2014; revision accepted 09 December 2015) Abstract–Martian meteorite Elephant Moraine A79001 (EET 79001) has received considerable attention for the unusual composition of its shock melt glass, particularly its enrichment in sulfur relative to the host shergottite. It has been hypothesized that Martian regolith was incorporated into the melt or, conversely, that the S-enrichment stems from preferential melting of sulfide minerals in the host rock during shock. We present results from an electron microprobe study of EET 79001 including robust measurements of major and trace elements in the shock melt glass (S, Cl, Ni, Co, V, and Sc) and minerals in the host rock (Ni, Co, and V). We find that both S and major element abundances can be reconciled with previous hypotheses of regolith incorporation and/or excess sulfide melt. However, trace element characteristics of the shock melt glass, particularly Ni and Cl abundances relative to S, cannot be explained either by the incorporation of regolith or sulfide minerals. We therefore propose an alternative hypothesis whereby, prior to shock melting, portions of EET 79001 experienced acid-sulfate leaching of the mesostasis, possibly groundmass feldspar, and olivine, producing Al-sulfates that were later incorporated into the shock melt, which then quenched to glass.
    [Show full text]
  • Abstracts A-L.Fm
    Meteoritics & Planetary Science 41, Nr 8, Supplement, A13–A199 (2006) http://meteoritics.org Abstracts 5367 5372 CHARACTERIZATION OF ASTEROIDAL BASALTS THROUGH ONSET OF AQUEOUS ALTERATION IN PRIMITIVE CR REFLECTANCE SPECTROSCOPY AND IMPLICATIONS FOR THE CHONDRITES DAWN MISSION N. M. Abreu and A. J. Brearley. Department of Earth and Planetary Sciences, P. A. Abell 1, D. W. Mittlefehldt1, and M. J. Gaffey2. 1Astromaterials Research University of New Mexico, Albuquerque, New Mexico 87131, USA. E-mail: and Exploration Science, NASA Johnson Space Center, Houston, Texas [email protected] 77058, USA. 2Department of Space Studies, University of North Dakota, Grand Forks, North Dakota 58202, USA Introduction: Although some CR chondrites show evidence of significant aqueous alteration [1], our studies [2] have identified CR Introduction: There are currently five known groups of basaltic chondrites that exhibit only minimal degrees of aqueous alteration. These achondrites that represent material from distinct differentiated parent bodies. meteorites have the potential to provide insights into the earliest stages of These are the howardite-eucrite-diogenite (HED) clan, mesosiderite silicates, aqueous alteration and the characteristics of organic material that has not angrites, Ibitira, and Northwest Africa (NWA) 011 [1]. Spectroscopically, all been affected by aqueous alteration, i.e., contains a relatively pristine record these basaltic achondrite groups have absorption bands located near 1 and 2 of carbonaceous material present in nebular dust. The CR chondrites are of microns due to the presence of pyroxene. Some of these meteorite types have special significance in this regard, because they contain the most primitive spectra that are quite similar, but nevertheless have characteristics (e.g., carbonaceous material currently known [3].
    [Show full text]
  • Thirty-Eighth Lunar and Planetary Science Conference Program Of
    38th LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS SPONSORED BY LUNAR AND PLANETARY INSTITUTE NASA JOHNSON SPACE CENTER LPI THIRTY-EIGHTH LUNAR AND PLANETARY SCIENCE CONFERENCE Program of Technical Sessions March 12–16, 2007 Sponsored by Lunar and Planetary Institute NASA Johnson Space Center Program Committee Stephen Mackwell, Co-Chair, Lunar and Planetary Institute Eileen Stansbery, Co-Chair, NASA Johnson Space Center Robert Anderson, Jet Propulsion Laboratory Nancy Chabot, Johns Hopkins University Catherine Corrigan, Johns Hopkins University David Draper, University of New Mexico Herbert Frey, NASA Goddard Space Flight Center Yulia Goreva, University of Arizona Tracy Gregg, University at Buffalo Terry Hurford, NASA Goddard Space Flight Center Ross Irwin, Smithsonian Institution Randy Korotev, Washington University at St. Louis Don Korycansky, University of California Santa Cruz Monika Kress, San Jose State University Rachel Lentz, University of Hawaii Karl Mitchell, Jet Propulsion Laboratory Daniel Nunes, Lunar and Planetary Institute Elisabetta Pierazzo, University of Arizona Louise Prockter, Johns Hopkins University Frans Rietmeijer, University of New Mexico Paul Schenk, Lunar and Planetary Institute Stephanie Shipp, Lunar and Planetary Institute Suzanne Smrekar, Jet Propulsion Laboratory David Vaniman, Los Alamos National Laboratory Michael Weisberg, Kingsborough College and the University of New York David Williams, Arizona State University James Zimbelman, Smithsonian Institution Michael Zolensky, NASA Johnson Space Center GUIDE TO TECHNICAL SESSIONS AND ACTIVITIES Sunday Evening, 5:00 p.m. LPI Hess Room Registration LPI Great Room Reception LPI Berkner Rooms Open House Education and Public Outreach Displays: p. 1 Accessing the Solar System Through Educational Products Monday Morning, 8:30 a.m. Crystal Ballroom A Mars Polar and Glacial Processes p.
    [Show full text]
  • [Italic Page Numbers Indicate Major References] Abathomphalus
    Index [Italic page numbers indicate major references] Abathomphalus mayaroensis, 473, extinction, 519 immiser, 468 509 range, 519 quadrilobus, 468 Abathomphalus mayaroensis Zone, Ammonoidea, 39 reductus, 468 402, 405, 430, 511, 512, 515, ammonoids, 39, 519 reticulatus, 463, 464, 468 521 Amors, asteroids, 155,162 Aquilapollenites province, 433, 457 Abiespollenites microreticulatus, Anagaudryceras, 523 Aragonia 227 analogs, 374 aragonenis, 489 abiogenesis, 183 analyses velascoensis, 487 ablation, meteriote, 360 compilation-based, 4 aragonite compensation depth (ACD), abrasion, 545 instrumental neutron activation 531 Abyssamina poagi, 488 (INAA), 322 Arava Valley, 472 acid rain, 2, 134, 178, 268, 271, 186, outcrop-based, 5 arcs, volcanic, 102, 103 297, 374, 384, 386, 388, 405, percent calcium carbonate, 472 Arecipites, 452 419, 538, 546 planktonic foraminiferal, 472 arenites, 209 accretion rates Q-mode, 42 Areoligera senonensis, 277 cosmic iridium, 189 R-mode, 42 argon, 216 total chondritis 192 radiochemical neutron activation Arizona crater, 150 accumulations, vegetative, 542 (RNAA), 322 Arkhangelskiella ACD. See aragonite compensation time series, 9,10 cymbiformis, 473 depth Anapiculatisporites, 586 cymbiformis/specillata, 502 acid, nitric, 271 Anconodon, 551 Arrowhead Buttes, South Dakota, 440 Acuturris sootus, 502 angiosperms, 448, 451, 453, 459, arthropods, marine, 40 Ada, Oklahoma, 49 462, 465 artifacts, survivorship, 551 Adnatosphaeridium sp., 227 Angola Basin, 320 Artocarpus sp., 441 aerosols, 133, 269, 405, 538 Angulogavelinella
    [Show full text]
  • Reflectance Spectra Diversity of Silica-Rich Materials
    Icarus 223 (2013) 499–533 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Reflectance spectra diversity of silica-rich materials: Sensitivity to environment and implications for detections on Mars ⇑ M.S. Rice a, , E.A. Cloutis b, J.F. Bell III c, D.L. Bish d, B.H. Horgan c, S.A. Mertzman e, M.A. Craig f, R.W. Renaut g, B. Gautason h, B. Mountain i a Division of Geological and Planetary Sciences, California Institute of Technology, MS 170-25, Pasadena, CA 91125, USA b Department of Geography, University of Winnipeg, 515 Portage Ave., Winnipeg, MB, Canada R3B 2E9 c School of Earth and Space Exploration, Arizona State University, Box 871404, INTDS-A 115B, Tempe, AZ 85287, USA d Department of Geological Sciences, Indiana University, 1001 East 10th Street, Bloomington, IN 47405, USA e Department of Geosciences, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604, USA f University of Western Ontario, Department of Earth Sciences, 1151 Richmond St., London, Ontario, Canada N6A 5B7 g Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon SK, Canada S7N 5E2 h Iceland GeoSurvey, Rangarvellir, P.O. Box 30, 602 Akureyri, Iceland i GNS Science, Wairakei Research Centre, 114 Karetoto Rd., Taupo 337, New Zealand article info abstract Article history: Hydrated silica-rich materials have recently been discovered on the surface of Mars by the Mars Explo- Received 16 December 2011 ration Rover (MER) Spirit, the Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Revised 19 September 2012 Spectrometer for Mars (CRISM), and the Mars Express Observatoire pour la Minéralogie, l’Eau, les Glaces, Accepted 20 September 2012 et l’Activité (OMEGA) in several locations.
    [Show full text]
  • Recommended Reading List for Mars Aeolian Studies
    International Association of Geomorphologists Working Group on Planetary Geomorphology Recommended Reading List for Mars Impact Cratering Studies Compiled by Dr. Gordon Osinski, University of Western Ontario June 2007 General:............................................................................................................................... 2 Impact Ejecta: ..................................................................................................................... 2 Impact Melting and Impactites: .......................................................................................... 3 Impact-Induced Hydrothermal Systems: ............................................................................ 3 Degradation of Impact Craters:........................................................................................... 4 Intra-Crater Sedimentation: ................................................................................................ 4 1 International Association of Geomorphologists Working Group on Planetary Geomorphology General: French, B.M., 1998, Traces of Catastrophe: A handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures, LPI Contribution No. 954: Houston, Lunar and Planetary Institute, 1 p. Strom, R.G., Croft, S.K., and Barlow, N.G., 1992, The martian impact cratering record, in Kieffer, H.H., Jakosky, B.M., Snyder, C.W., and Matthews, M.S., eds., Mars: Tucson, University of Arizona Press, p. 383-423 Impact Ejecta: Barlow, N.G., 2005, A review of martian impact crater
    [Show full text]
  • Associated Societies
    Associated Societies GSA has a long tradition of collaborating with a wide range of partners in pursuit of our mutual goals to advance the geosciences, enhance the professional growth of society members, and promote the geosciences in the service of humanity. GSA works with other organizations on many programs and services. As the Society looks to AASP - The Palynological American Association of American Geophysical Union American Institute of American Quaternary American Rock Mechanics Society Petroleum Geologists (AAPG) (AGU) Professional Geologists (AIPG) Association (AMQUA) Association (ARMA) Association for the Sciences of American Water Resources Asociación Geológica Association for Women Association of American State Association of Earth Science Limnology and Oceanography Association (AWRA) Argentina (AGA) Geoscientists (AWG) Geologists (AASG) Editors (AESE) (ASLO) Association of Environmental Association of Geoscientists Blueprint Earth (BE) The Clay Minerals Society Colorado Scientific Society Council on Undergraduate & Engineering Geologists for International Development (CMS) (CSS) Research Geosciences Division (AEG) (AGID) (CUR) Cushman Foundation (CF) Environmental & Engineering European Association of European Geosciences Union Geochemical Society (GS) Geologica Belgica (GB) Geophysical Society (EEGS) Geoscientists & Engineers (EGU) (EAGE) Geological Association of Geological Society of Africa Geological Society of Australia Geological Society of China Geological Society of London Geological Society of South Canada (GAC) (GSAF) (GSAus) (GSC) (GSL) Africa (GSSA) Geologische Vereinigung (GV) Geoscience Information Society Geoscience Society of New Groundwater Resources History of Earth Sciences International Association for (GSIS) Zealand (GSNZ) Association of California Society (HESS) Geoscience Diversity (IAGD) (GRA) 102 2015 GSA Annual Meeting & Exposition the future, it aims to build strong, meaningful partnerships with societies and organizations across the country and around the world in service to members and the larger geoscience community.
    [Show full text]